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Abstract
In this paper, the diffraction problem of periodic strip gratings is considered. The
previous study of this problem usually concentrated on the numerical method;
however, we try to analyze this problem and the convergence of the numerical
solution from the mathematical point of view in this work. By use of the Dirichlet to
Neumann operator on the slit between two strips, we reformulate the problem to an
operator equation. The well-posedness of the solution to the operator equation is
proved. The Galerkin method is applied to solve this operator equation and the
convergence result of the numerical solution is also derived. Finally, some numerical
experiments are presented to show the effectiveness of our method and verify the
theoretical convergence result.

Keywords: Strip grating; Dirichlet to Neumann map; Helmholtz equation; Galerkin
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1 Introduction
The scattering theory of periodic structures has a wide variety of applications, for ex-
ample, the micro-optics and the antenna engineering. In optics, the periodic structure is
also called diffraction gratings. Introduction to the problem of electromagnetic diffrac-
tion through periodic structures and the corresponding numerical methods can be found
in [1]. The reviews on the diffractive optics technology and the mathematical analysis of
diffraction gratings are presented in [2] and [3], respectively.

In this paper, we focus on the diffraction problem of periodic perfectly conducting strip
gratings. This is a classic model which has been investigated by many researchers. In [4]
the method of moments (MoM) is employed to analyze the diffraction problem of strip
gratings located in free space. In papers [5, 6] the same numerical method is used to solve
the strip grating problem where the strips are printed on a dielectric substrate. As to the
improved MoM for scattering problem of periodic strip gratings, we refer to paper [7]
and the references therein. In addition to the MoM, there are also many other numerical
methods for the strip gratings problem. For example, the singular integral equation ap-
proach is proposed to deal with the plane wave diffraction by an infinite strip grating at
oblique incidence in [8]. Fourier modal method (FMM), also called combined boundary
conditions method (CBCM), is introduced in [9–11]. CBCM is applied for solving finite
strip grating problem in [11]. Because of the slow convergence and Gibbs phenomenon at
the tips of the strips, CBCM has been substantially improved in [12] with the aid of adap-
tive spatial resolution in [11]. The parametric formulation of CBCM in [12] improves the
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convergence rate, the computational efficiency, and the numerical accuracy. In [13] the
authors employ this improved method in multilayered structures of strip gratings. More
references about CBCM can be found in [14]. In mathematics, because the grating diffrac-
tion problem is governed by differential equation, the finite difference method (FDM) and
the finite element method (FEM) can also be applied in solving the problem. In the nu-
merical experiment part of this paper, we compare our method with the FDM.

The studies above concentrate on the mathematical model and the numerical method of
the strip gratings. In this paper, we will reformulate the diffraction problem of strip grating
into an operator equation by use of the Dirichlet to Neumann (DtN) operator. Then we
will give a rigorous mathematical analysis of the solution and the Galerkin method which
is used to solve the operator equation. The convergence of the Galerkin method has also
been verified by the numerical experiments.

The paper is organized as follows. In Sect. 2, we give some notations for describing the
strip gratings problem and reformulate this problem into an operator equation by use of
DtN operator on the slit between two strips. In Sect. 3, the well-posedness of the solution
to the operator equation derived in Sect. 2 is proved. The well-posedness contains the ex-
istence, the uniqueness, and the stability of the solution. In Sect. 4, the Galerkin method
is employed to solve the operator equation. The uniqueness and the convergence of the
numerical solution are proved. We also obtain the error estimate of the numerical solu-
tion in Theorem 5. The concrete computing process is given at the end of this section.
In Sect. 5, some numerical experiments are presented to show the effectiveness of the
Galerkin method and convergence order proved in Sect. 4 is also verified by numerical
Example 1 in this section.

2 Formulation of the problem
In this section, some notations are firstly presented to help us describe the diffraction
problem of periodic strip gratings with period d. Then the definition of quasi-periodic,
the famous Rayleigh expansion of diffraction field, and the DtN operator are introduced.
Finally, we reformulate the diffraction problem into an operator equation through simple
calculation and the knowledge prepared above.

Assume that the length of each slit is L (L < d), and the slits are separated by perfect
conductive material strips Γ̃ , see Figure 1. Denote the slit and the perfect conductive strip
in one period by Γ0 and Γ1, respectively:

Γ0 =
{

(x1, x2) ∈R
2; 0 < x1 < L, x2 = 0

}
,

Γ1 =
{

(x1, x2) ∈R
2; L < x1 < d, x2 = 0

}
.

Figure 1 The diffraction problem of strip grating
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Furthermore, define Γ as follows:

Γ =
{

(x1, x2) ∈R
2; 0 < x1 < d, x2 = 0

}
.

Suppose that the domain

S =
{

(x1, x2) ∈R
2; 0 < x1 < d, (x1, x2) /∈ Γ1

}

is filled with a homogeneous medium. Let S+ and S– denote the domain upon and below
the strip gratings, respectively:

S+ =
{

(x1, x2) ∈R
2; 0 < x1 < d, x2 > 0

}
,

S– =
{

(x1, x2) ∈ R
2; 0 < x1 < d, x2 < 0

}
.

Assume that the plane wave ui = eiαx1–iβx2 is the incident wave upon the grating, where α =
k sin θ , β = k cos θ , k > 0 is the wave number, and θ ∈ (–π/2,π/2) is the angle of incidence.
Denote the diffracted field by ud . Then the total field ut is

ut =

⎧
⎨

⎩
ui + ud, x2 > 0,

ud, x2 < 0,
(1)

and the diffraction problem of strip gratings reads as follows: when the incident field ui is
given, find the total field ut such that

�ut + k2ut = 0, in S, (2)

ut = 0, on Γ1. (3)

Among all the solutions of equations (2) and (3), we are interested in the quasi-periodic
solution, i.e., ute–iαx is a periodic function in x1 with period d. Moreover, we require the
diffracted field ud to satisfy the bounded outgoing wave condition in S+ and S–.

In domains S+ and S–, the famous Rayleigh expansion of ud is

ud(x1, x2) =
∞∑

n=–∞
anei(αn+α)x1+iβnx2 , (x1, x2) ∈ S+, (4)

ud(x1, x2) =
∞∑

n=–∞
bnei(αn+α)x1–iβnx2 , (x1, x2) ∈ S–, (5)

where αn = 2πn/d,

βn =

⎧
⎨

⎩
(k2 – (αn + α)2)1/2, n ∈ A,

i((αn + α)2 – k2)1/2, n /∈ A,

A = {n ∈ Z, k2 – (αn + α)2 > 0} and an, bn are coefficients to be determined. We further
assume that k �= |αn + α| for every n ∈ Z in order to avoid resonances. Define

u+
d(x1) = lim

x2→0+
ud(x1, x2), u–

d(x1) = lim
x2→0–

ud(x1, x2),
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∂u+
d

∂x2
(x1) = lim

x2→0+

∂ud

∂x2
(x1, x2),

∂u–
d

∂x2
(x1) = lim

x2→0–

∂ud

∂x2
(x1, x2),

and u+
i (x1), ∂u–

t
∂x2

(x1), etc. are defined in the same way. Then we have the following integral
expression of an and bn:

an =
1
d

∫ d

0
u+

d(x1)e–i(αn+α)x1 dx1,

bn =
1
d

∫ d

0
u–

d(x1)e–i(αn+α)x1 dx1.

For any quasi-periodic function f (x1), i.e., f (x1) has the following expansion:

f (x1) =
+∞∑

n=–∞
fnei(αn+α)x1 , where fn =

1
d

∫ d

0
f (x1)e–i(αn+α)x1 dx1,

define the Dirichlet to Neumann operator T1 and T2 as follows:

T1f (x1) =
+∞∑

n=–∞
iβnfnei(αn+α)x1 ,

T2f (x1) =
+∞∑

n=–∞
–iβnfnei(αn+α)x1 .

By simple calculation, we can get

∂u+
d

∂x2
(x1) = T1

(
u+

d
)
(x1), 0 < x1 < d, (6)

∂u–
d

∂x2
(x1) = T2

(
u–

d
)
(x1), 0 < x1 < d. (7)

Since the total field ut and the normal derivative ∂ut
∂x2

are continuous across Γ1 and ut = 0
on Γ0,

u+
t (x1) = u–

t (x1), 0 < x1 < d, (8)

∂u+
t

∂x2
(x1) =

∂u–
t

∂x2
(x1), 0 < x1 < L. (9)

Let u(x1) = u–
d(x1), x1 ∈ (0, L), then

u–
d(x1) = E0(u), x1 ∈ (0, d), (10)

where E0 is the zero extension operator defined by the following:

E0(u) =

⎧
⎨

⎩
u(x1), 0 < x1 < L,

0, L ≤ x1 ≤ d.

From (1), (6)–(9), and (10) we obtain

u+
i (x1) + u+

d(x1) = E0(u)(x1), x1 ∈ (0, d), (11)
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∂u+
i

∂x2
(x1) + T1

(
u+

d
)

= T2
(
u–

d
)
, x1 ∈ (0, L). (12)

Substitute (10) and (11) into (12)

∂u+
i

∂x2
(x1) + T1

(
E0(u) – u+

i
)

= T2
(
E0(u)

)
, x1 ∈ (0, L). (13)

From the definitions of T1 and T2, we know that

T1
(
u+

i
)

= iβeiαx1 , x1 ∈ (0, L), (14)

T1
(
E0(u)

)
= –T2

(
E0(u)

)
, x1 ∈ (0, L). (15)

Substitute (14) and (15) into (13)

T2
(
E0(u)

)
= –iβeiαx1 , x1 ∈ (0, L). (16)

Denote T = T2 ◦ E0 and g(x1) = –iβeiαx1 , then equation (16) can be rewritten to

Tu = g, x1 ∈ (0, L). (17)

Thus the diffraction problem of strip gratings can be reformulated into the operator equa-
tion (17). Once the solution of (17) is derived, the diffraction field ud and the total field ut

can be obtained through (4), (5), and (1).

3 Well-posedness analysis
In this section, we will prove the well-posedness of the solution to (17). In order to give the
uniqueness and existence of the solution to (17), we introduce the following definitions of
spaces and norms.

For any real number s, define Sobolev spaces

Hs
α(Γ ) =

{
u ∈ Hs(Γ ); u(x1)e–iαx1 is periodic in x1 with period d

}
,

Hs
α(Γ0) =

{
u ∈ (

C∞
0 (Γ0)

)′, u = U|Γ0 , for some U ∈ Hs
α(Γ )

}
,

Hs
α,∗(Γ0) =

{
u ∈ (

C∞
0 (Γ0)

)′, E0(u) ∈ Hs
α(Γ )

}
,

with norms

‖u‖s,Γ =

(

d
+∞∑

n=–∞

(
1 + (αn + α)2)s|un|2

) 1
2

, u ∈ Hs
α(Γ ),

‖u‖s,Γ0 = inf
U∈Hs

α (Γ ),U|Γ0 =u
‖U‖s,Γ , u ∈ Hs

α(Γ0),

‖u‖s,∗,Γ0 =
∥∥E0(u)

∥∥
s,Γ , u ∈ Hs

α,∗(Γ0),

where

un =
1
d

∫ d

0
u(x1)e–i(αn+α)x1 dx1.
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Using the above notations, the operator equation problem (17) can be formulated as fol-
lows: given g ∈ H– 1

2
α (Γ0), find u ∈ H

1
2
α,∗(Γ ) such that equation (17) is satisfied.

In the following, we will present two lemmas about the properties of spaces H
1
2∗ (Γ0),

H– 1
2∗ (Γ1) and the operator T . With the aid of these two lemmas, we can obtain the well-

posedness of the solution to equation (17).

Lemma 1 The operator T : H
1
2
α,∗(Γ0) → H– 1

2
α (Γ0) is a linear bounded operator.

Proof Denote un = 1
d
∫ d

0 E0(u)e–i(αn+α)x1 dx1 for u ∈ H
1
2
α,∗(Γ0), and define

V (x1) =
+∞∑

n=–∞
–iβnunei(αn+α)x1 , x1 ∈ (0, d).

Then V |Γ0 = Tu. From the definition of ‖ · ‖– 1
2 ,Γ0

, we have

‖Tu‖– 1
2 ,Γ0

= inf
U∈Hs

α (Γ ),U|Γ0 =Tu
‖U‖– 1

2 ,Γ ≤ ‖V‖– 1
2 ,Γ

=

( +∞∑

n=–∞

[
1 + (αn + α)

]– 1
2 |βn|2|un|2

) 1
2

≤
( +∞∑

n=–∞

[
1 + (αn + α)

]– 1
2
[
k2 + (αn + α)2]|un|2

) 1
2

≤ Ck

( +∞∑

n=–∞

[
1 + (αn + α)

] 1
2 |un|2

) 1
2

= Ck‖u‖ 1
2 ,∗,Γ0

,

where Ck = max{k, 1} 1
2 . �

Lemma 2 The embedding operator I∗ : H
1
2
α,∗(Γ0) → H– 1

2
α (Γ0) is a compact operator.

Proof The operator I∗ can be decomposed into I∗ = R◦I ◦E0, where E0 is the zero extension
operator from H

1
2
α,∗(Γ0) to H

1
2
α (Γ ), I is the embedding operator from H

1
2
α (Γ ) to H– 1

2
α (Γ ),

and R is the restriction operator from H– 1
2

α (Γ ) to H– 1
2

α (Γ0). Since E0 and R are bounded
and I is compact, we obtain that I∗ is compact. �

Theorem 1 Assume that βn �= 0 for all n ∈ Z, then the homogeneous equation

Tu = 0, u ∈ H
1
2
α,∗(Γ0)

has only one solution u = 0.

Proof From Tu = 0, we have 〈Tu, u〉 = 0. Furthermore,

〈Tu, u〉 =
∫

Γ0

Tuu dx1 =
∫

Γ

TuE0(u) dx1
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=
∫

Γ

+∞∑

n=–∞
–iβnunei(αn+α)x1

+∞∑

n=–∞
unei(αn+α)x1 dx1

= –d
+∞∑

n=–∞
iβn|un|2

= –d
∑

n∈A

iβn|un|2 – d
∑

n /∈A

iβn|un|2.

From 〈Tu, u〉 = 0, we can get

Re〈Tu, u〉 = –d
∑

n /∈A

iβn|un|2 = 0,

Im〈Tu, u〉 = –d
∑

n∈A

βn|un|2 = 0.

Since βn �= 0 for all n ∈ Z, from the above two equations, we can deduce that un = 0 for all
n ∈ Z. Thus E0(u) = 0, i.e., u = 0. �

Theorem 2 Assume that βn �= 0 for all n ∈ Z. Then, for any g ∈ H– 1
2

α (Γ0), the operator
equation Tu = g has a unique solution u ∈ H

1
2
α,∗(Γ0), and

‖u‖ 1
2 ,∗,Γ0

≤ C‖g‖– 1
2 ,Γ0

,

where C > 0 is a constant independent of g .

Proof Define operator B: H
1
2
α,∗(Γ0) → H– 1

2
α (Γ0) and the corresponding bilinear form b(·, ·)

as follows:

B = T +
√

2kI∗, b(u, v) = 〈Bu, v〉.

Since the operators T and I∗ are bounded, b(·, ·) is a bounded bilinear form on H
1
2
α,∗(Γ0) ×

H
1
2
α,∗(Γ0). Next, we will show that b(·, ·) has a lower bound. By simple calculation, we can

derive the following two inequalities:

∣∣b(u, v)
∣∣ ≥

√
2

2
(∣∣Re

{
b(u, v)

}∣∣ +
∣∣Im

{
b(u, v)

}∣∣),
√∣∣(αn + α)2 – k2

∣∣ ≥
√∣∣(αn + α)2 + k2

∣∣ –
√

2k.

Thus

∣∣b(u, v)
∣∣ =

∣∣〈Tu, v〉 + 〈√2kI∗u, v〉∣∣

=
∣∣∣∣

∫

Γ

TuE0(u) dx1 +
√

2k
∫

Γ

∣∣E0(u)
∣∣2 dx1

∣∣∣∣

=

∣∣∣∣∣
d

+∞∑

n=–∞
–iβn|un|2 +

√
2kd

+∞∑

n=–∞
|un|2

∣∣∣∣∣
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=

∣∣∣∣∣
d

∑

n∈A

–i
√

k2 – (αn + α)2|un|2

+ d
∑

n /∈A

√
(αn + α)2 – k2|un|2 +

√
2kd

+∞∑

n=–∞
|un|2

∣∣∣∣∣

≥
√

2
2

(∣∣∣∣d
∑

n∈A

√
k2 – (αn + α)2|un|2

∣∣∣∣

+

∣∣∣∣∣
d

∑

n /∈A

√
(αn + α)2 – k2|un|2 +

√
2kd

+∞∑

n=–∞
|un|2

∣∣∣∣∣

)

≥
√

2
2

(

d
+∞∑

n=–∞

√
(αn + α)2 + k2|un|2

– d
∑

n∈A

√
2k|un|2 – d

∑

n /∈A

√
2k|un|2 +

√
2kd

+∞∑

n=–∞
|un|2

)

=
√

2
2

(

d
+∞∑

n=–∞

√
(αn + α)2 + k2|un|2

)

≥ C
+∞∑

n=–∞

√
(αn + α)2 + 1|un|2 = C‖u‖ 1

2 ,∗,Γ0
,

where C =
√

2
2 min{1, k}. By Lax–Milgram theorem, the operator B has a bounded inverse

B–1 : H– 1
2

α (Γ0) → H
1
2
α,∗(Γ0). Then the operator equation Tu = g can be rewritten as

(B –
√

2kI∗)u = g.

From Theorem 1, we know that –
√

2k is not an eigenvalue of B. Because I∗ is a com-
pact operator, by use of Fredholm alternative theorem, the operator equation Tu = g has
a unique solution u ∈ H

1
2
α,∗(Γ0) and

‖u‖ 1
2 ,∗,Γ0

≤ C‖g‖– 1
2 ,Γ0

,

where C is a constant independent of g . �

4 Galerkin method
In this section we introduce the Galerkin method to solve equation (17) numerically. As-
sume

VN = span{ϕ1,ϕ2, . . . ,ϕN },

where

ϕn = sin

(
nπx1

L

)
, n = 1, 2, . . . , N .

The Galerkin method to solve equation (17) is to find uN ∈ VN such that

〈TuN ,ϕm〉 = 〈g,ϕm〉, m = 1, 2, . . . , N , (18)
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where

〈TuN ,ϕm〉 =
∫ L

0
TuNϕm dx1,

〈g,ϕm〉 =
∫ L

0
gϕm dx1.

Theorem 3 The Galerkin equation (18) has a unique solution uN ∈ VN .

Proof For the finite dimensional problem (18), we only need to show that the homoge-
neous equation

〈TuN ,ϕm〉 = 0, m = 1, 2, . . . , N , (19)

has only one solution uN = 0. From (19), we can get 〈TuN , uN 〉 = 0. Thus the proof for
uN = 0 is similar to Theorem 1.

The next theorem follows from standard estimates for Galerkin method associated with
compact operator equation, so we omit the proof here and refer to [15] for details. �

Theorem 4 Assume that βn �= 0 for all n ∈ Z, u is the solution of (17), and uN is the solution
of (18). When N is large enough,

‖u – uN‖ 1
2 ,∗,Γ0

≤ C inf
vN ∈VN

‖u – vN‖ 1
2 ,∗,Γ0

,

where C is a positive constant independent of N .

For s ∈R, define space Hs
p (Γ0) as follows:

Hs
p(Γ0) =

{

u =
+∞∑

n=1

an sin

(
nπx

L

)
;

L
2

+∞∑

n=1

[
1 +

(
nπ

L

)2]s

|an|2 < +∞
}

.

The norm in Hs
p(Γ0) is given by

‖u‖s,p,Γ0 =

(
L
2

+∞∑

n=1

[
1 +

(
nπ

L

)2]s

|an|2
) 1

2

.

With a little extension of Lemma 4.11 and Example 4.15 in [16] to quasi-periodic func-
tions, the space Hs

α,∗(Γ0) is equal to Hs
p(Γ0), and the norms ‖ · ‖s,∗,Γ0 and ‖ · ‖s,p,Γ0 are

equivalent when 0 < s < 1. Then the conclusion of Theorem 4 can be rewritten as

‖u – uN‖ 1
2 ,∗,Γ0

≤ C inf
vN ∈VN

‖u – vN‖ 1
2 ,p,Γ0

, (20)

or

‖u – uN‖ 1
2 ,p,Γ0

≤ C inf
vN ∈VN

‖u – vN‖ 1
2 ,p,Γ0

. (21)
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Theorem 5 Assume that βn �= 0 for all n ∈ Z, u ∈ Hs
p(Γ0) (s > 1

2 ) is the solution of (17), and
uN is the solution of (18), then when N is large enough,

‖u – uN‖ 1
2 ,∗,Γ0

≤ C
Ns– 1

2
‖u‖s,p,Γ0 , (22)

or

‖u – uN‖ 1
2 ,p,Γ0

≤ C
Ns– 1

2
‖u‖s,p,Γ0 , (23)

where C is a positive constant independent of N .

Proof Because

inf
vN ∈VN

‖u – vN‖ 1
2 ,p,Γ0

≤
∥∥∥∥∥

+∞∑

n=1

an sin

(
nπx

L

)
–

N∑

n=1

an sin

(
nπx

L

)∥∥∥∥∥ 1
2 ,p,Γ0

=

(
L
2

+∞∑

n=N+1

(
1 +

(
nπ

L

)2) 1
2 |an|2

) 1
2

≤
(

L
2

+∞∑

n=N+1

(
1 +

(
nπ

L

)2) 1
2 –s(

1 +
(

nπ

L

)2)s

|an|2
) 1

2

≤
(

L
2

+∞∑

n=N+1

(
Nπ

L

)1–2s(
1 +

(
nπ

L

)2)s

|an|2
) 1

2

≤ C
Ns– 1

2
‖u‖s,p,Γ0 ,

then (22) and (23) are derived by combining the above inequality with (20) and (21). �

5 Numerical results
In this section we demonstrate the numerical results of our method. All computations
are performed using MATLAB. In all the following examples, we set the period d = 4, the
length of the slit L = 2, and Γ0 = {(x1, 0); 0 < x1 < 2}.

Example 1 In this example we consider the convergence results of our Galerkin method.
Let u(x1) = x1(x1 – 2), x1 ∈ (0, 2) be the exact solution of the operator equation (17) with
k = 1, α = 0, and the corresponding right-hand side function

g(x1) = –2
+∞∑

n=–∞
iβn

nπ + (–1)nnπ + 2i – (–1)n2i
n3π3 ei nπx1

2 .

Moreover, u(x1) has the following expansion:

u(x1) = x1(x1 – 2) =
+∞∑

n=1

32
(2n – 1)3π3 sin

(
(2n – 1)πx

2

)
, x ∈ (0, 2),
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Table 1 ‖u – uN‖ 1
2 ,p,Γ0

and ‖u – uN‖ 1
2 ,∗,Γ0

with respect to N

N 2 4 8 16 32 64

‖u – uN‖ 1
2 ,p,Γ0

9.0460E–02 2.6825E–02 7.1011E–03 1.8020E–03 4.5188E–04 1.1302E–04

order 1.7537 1.9175 1.9785 1.9956 1.9995
‖u – uN‖ 1

2 ,∗,Γ0
8.4367E–02 2.5019E–02 6.6220E–03 1.6799E–03 4.2110E–04 1.0522E–04

order 1.7537 1.9177 1.9788 1.9959 1.9997

Figure 2 Numerical convergence results with respect to N in Example 1

Figure 3 Example 2. (left) Absolute value of total field ut on Γ0, (right) Absolute value of total field ut

so we have u(x1) ∈ H
5
2 –ε

p (Γ0) with ε > 0 arbitrarily small. Results are presented in Table 1
and Fig. 2. From these results, we can see that the errors ‖u – uN‖ 1

2 ,∗,Γ0
and ‖u – uN‖ 1

2 ,p,Γ0

decay rapidly with respect to N , and the corresponding convergence orders are coincident
with Theorem 5.

Example 2 We consider the situation of small wave number. Let the wave number k = 1,
and the dimension of VN be N = 10. The incident wave is plane wave with the incident
angle θ = 0. Results are shown in Figs. 3–4. In Fig. 3, we show the absolute value of the
total field ut on Γ0 and the total field ut in one period. In Fig. 4, we show the real part
and the imaginary part of total field ut . From these results we can see that our method is
effective when the wave number k is small. Further, in the left one of Fig. 3, we also show
the results given by FDM (finite difference method). We demonstrate two results given
by FDM with 32 and 64 nodes in one period. Comparing with the FDM, we can see the
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Figure 4 Example 2. (left) Real part of total field ut , (right) Imaginary part of total field ut

Figure 5 Example 3. (left) Absolute value of total field ut on Γ0, (right) Absolute value of total field ut

Figure 6 Example 3. (left) Real part of total field ut , (right) Imaginary part of total field ut

results of our Galerkin method with 20 dofs (degree of freedoms) are coincident with the
results of FDM with 64 dofs, i.e., our Galerkin method needs fewer dofs than the FDM.

Example 3 We consider the case of wave number k = 10. The dimension of VN is N = 50.
The incident wave is plane wave with the incident angle θ = π/4. Results are presented in
Figs. 5–6. From these results, we can see that the Galerkin method works well and needs
fewer dofs than the FDM to obtain reliable results.
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Figure 7 Example 4. (left) Absolute value of total field ut on Γ0 with k = 50 and θ = 0, (right) Absolute value
of total field ut on Γ0 with k = 50 and θ = π /4

Figure 8 Example 4. (left) Absolute value of total field ut on Γ0 with k = 100 and θ = 0, (right) Absolute value
of total field ut on Γ0 with k = 100 and θ = π /4

Example 4 In this example, we consider the situation of large wave number k = 50 and 100.
For k = 50, we set N = 100. The absolute values of total fields ut on Γ0 are presented in
Fig. 7 with incident angles θ = 0 and θ = π/4, respectively. For k = 100, we set N = 200. The
absolute values of total fields ut on Γ0 are presented in Fig. 8 with incident angles θ = 0
and θ = π/4, respectively. Also the numerical solutions given by the FDM are shown in
these figures. When k = 50, compared with the FDM which needs 1024 dofs, our Galerkin
method needs only 100 dofs to get reliable computational results. When k = 100, the FDM
needs 2048 dofs, while our Galerkin method needs only 200 dofs.

6 Conclusion
In this paper, we study the scattering problem of strip gratings. By use of the continuity
of the total field across the slit in one period and the Dirichlet to Neumann map, this
problem is reformulated to an operator equation on the slit. The well-posedness of the
solution to the operator equation is proved and Galerkin method is employed to solve
this operator equation. We also derive the error estimate for the Galerkin method and
numerical examples show that our method is effective.
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