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Abstract
For discrete-time iterative learning control systems, the discrete Fourier transform
(DFT) is a powerful technique for frequency analysis, and Toeplitz matrices are a
typical tool for the system input–output transmission. This paper first exploits
z-transform and DFT-based frequency properties for iterative learning control systems
and studies the convergence property of a Toeplitz matrix to the power of iteration
index. The exploitation exhibits that for the finite-length discrete-time iterative
learning control systems, the time-domain convolution theorem for the z-transform
and DFT is no longer true, and the Toeplitz matrix to the power of iteration index
converges if and only if the identical diagonal element lies in the unit circle. Then, by
considering the DFT to a finite-length sequence as a linear transform, it is easy to
equivalently reform the input–output equation of linear discrete time-invariant and
time-varying ILC systems as an algebraic discrete-frequency equation. Thus the
derivative-type (D-type) iterative learning control (ILC) converges in a
discrete-frequency domain if and only if it converges in a discrete-time domain.
Numerical simulations are carried out to exhibit the validity and effectiveness.

Keywords: Iterative learning control; Discrete Fourier transform; Monotone
convergence; Linear discrete systems; Power formula

1 Introduction
Since the iterative learning control (ILC) has been invented three decades before, it has
been acknowledged as an efficacious intelligent strategy for a robot manipulator to repet-
itively execute a desired trajectory tracking over a finite time interval [1–3]. The mech-
anism is iterative generating an upgrading control input for the next iteration by means
of compensating the control input at the current iteration with its proportional, integral,
and/or derivative tracking discrepancy between the current output and the desired tra-
jectory [4–12]. The pursuing aim is that the generated control input may drive the system
to track the desired trajectory as precise as possible as the iteration index goes on, or in
other words, the ILC is convergent.

Reviewing the contributions of the ILC convergence for discrete-time systems, the an-
alytical techniques are mainly the time- and frequency-domains. In terms of convergence
in a discrete-time domain, the kernel idea is to express the ILC dynamics as an algebraic
input–output equation by the lift vector technique, and thus the ILC convergence is equiv-
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alent to the stability of the transmit matrix as shown [13–26]. The idea is innovative,
and the results are progressive. However, the convergence only involves the asymptoti-
cal tracking behavior measured in the sense of some fixed norm [26, 27] but does not
much concerns with the transient performance evolution along the iteration axis. In fact,
it is worth noticing that the input–output transmit matrix of a linear ILC-driven system
is Toeplitz, and thus along the iteration axis the evolution behavior of the Toeplitz ma-
trix to the power of iteration index must convey the learning performance evolution be-
haviors, including the transient overshooting, asymptotical convergence, or convergence
monotonicity. Therefore the inherent significant property of the Toeplitz matrix is advan-
tageous to ILC convergence analysis in a direct manner but not well discussed yet. This
paper addresses it.

Despite the ILC convergence explorations in the time domain, the ILC convergence
analysis in the frequency domain is necessary for filtering and cut-off frequency computa-
tion. For this, one existing analytical technique is the z-transform as adopted in [28–31],
where the z-transform-based frequency-domain ILC convergence and robustness have
been made basing on the postulation that the time-domain convolution theorem holds,
which converts the convolution of two infinite-length discrete-time sequences into an al-
gebraic multiplication of two z-transforms. However, as the input and output of a discrete-
time ILC-driven system are of finite length, the z-transform, which is fit to an infinite-
length signal [32], may not precisely deliver the frequency information. In the authors’
opinion, iis regarded as an approximate computation. This opinion has also been com-
mented in [33].

Recall that the ILC system is repetitive. Then, the one-iteration ILC-driven system out-
put can be regarded as a segment of a periodic sequence. It is thus feasible to make use
of the discrete Fourier transform (DFT) to compute the output spectrum. For the regard,
Owens’ group has firstly introduced the DFT for error spectrum analysis [34], which has
regarded the finite-length discrete-time output as a truncation of an infinite-length sys-
tem output, where, by defaulting the time-domain convolution theorem for a finite-length
ILC system, the frequency-wise input–output relation is described as an algebraic equa-
tion. For the circumstance, the Owens’ DFT technique is still z-transform-based. The so-
called frequency-wise algebraic equation looks so brief that it has inspired a number of
frequency-relevant ILC convergence and robustness investigations [35–41]. But, by care-
ful comparison, one acquired that the complexity and premise of the ILC convergence as
well as the robustness in discrete-time domain [17] are quite different from that made by
Owens’ DFT technique [34] in frequency domain, so that it is hard to match their equiva-
lence. This is not mathematically logic and very possibly makes confusion and puzzlement
for practical applications. In authors’ opinion, the confusion is incurred by the approxi-
mate computation of z-transform-based Owens’ DFT technique. As a matter of fact, by
reviewing the concept of z-transform, we see that it fits an infinite-length sequence whose
spectrum at each frequency is relevant to the sequence terms at all sampling times [32].
This means that the spectrum computed by the z-transform-based Owens’ DFT technique
is just an approximation because the finite-length truncation of an infinite-length system
has lost last part of information. The approximation precision is relevant to the trunca-
tion length and stability of the system. Generally speaking, for a given system, the longer
the truncation length, the better the precision. However, for a fixed truncation length and
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a given input, the precision of an unstable system is worse than that of a stable system
because the energy loss of the last part information of an unstable system is larger.

Actually, by virtue of the repetition feature of the ILC system, the iteration-wise out-
put can be regarded as a segment of a periodic sequence whereas for a periodic sequence,
the DFT is a well-known powerful technique, which expresses the sequence with the fun-
damental N period as a summation of a fundamental sine wave plus (N – 1) harmonic
sine waves. Its equivalent form is in exponential complex-variable functions. Then the
frequency-domain spectrum can be precisely computed by DFT in a direct manner. This
motivates the paper firstly to investigate DFT properties for linear discrete time-invariant
(LDTI) derivative-type (D-type) ILC systems and the convergence of the Toeplitz matrix
to the power of the iteration index. The followed works are the frequency-domain con-
vergence derivation of LDTI D-type ILC systems and its generalization to linear discrete
time-varying (LDTV) D-type ILC systems.

The rest of the paper is organized as follows. Section 2 exhibits properties of the z-
transform and DFT for truncated LDTI systems together with convergence property of
Toeplitz matrix to the power of iteration index. Section 3 presents frequency-domain
convergence analysis of LDTI and LDTV D-type ILC systems, respectively. Numerical
simulations are made in Sect. 4, and Sect. 5 concludes the paper.

2 z-Transform and DFT for truncated LDTI systems
2.1 z-Transform feature of truncated LDTI systems
Definition 1 (z-transform and inverse z-transform [32]) For a sequence {h(n)}n=+∞

n=0 =
{h(0), h(1), . . . , h(n), . . .}, its z-transform is defined as

ĥ(z) = Z
(
h(n)

)
=

+∞∑

n=0

h(n)z–n, Rh– < |z| < Rh+,

where z is a complex variable, and Rh– < |z| < Rh+ refers to the region of convergence
(ROC).

Then the inverse z-transform of ĥ(z) is defined as a contour integration:

h(n) = Z–1(ĥ(z)
)

=
1

2π j

∮

c
ĥ(z)zn–1 dz,

where C represents a closed contour within the ROC: Rh– < |z| < Rh+ and j2 = –1.
By derivation it is easy to testify the additivity and homogeneity for both z-transform

and inverse z-transform.

Lemma 1 (Time-domain convolution theorem [32]) Given {w(n)}n=+∞
n=0

def= {h(n) ∗
v(n)}n=+∞

n=0 = {w(n) =
∑n

l=0 h(n – l)v(l)}n=+∞
n=0 , we have ŵ(z) = ĥ(z)v̂(z) = v̂(z)ĥ(z), provided

that the z-transform-based frequency domain input–output dynamics for a discrete linear
time-invariant system takes the form

ŷ(z) = ĝ(z)û(z), (1)

where ĝ(z), û(z), and ŷ(z) denote the z-transform transfer function, input, and output, re-
spectively.
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By the time-domain convolution theorem the discrete time-domain dynamics of system
(1) is equivalently formulated as

y(n + 1) =
n∑

l=0

g(n + 1 – l)u(l) for n ∈N = {0, 1, 2, . . .}, (2)

where y(n) = Z–1(ŷ(z)), g(n) = Z–1(ĝ(z)), and u(n) = Z–1(û(z)).
Let I = [ε1|ε2| · · · |εN ] denote the N th-order unit matrix, and let S = [ε2|ε3| · · · |εN |0] be

a shift matrix.

Proposition 1 Sl = [εl+1|εl+2| · · · |εN |0| · · · |0] for l = 2, 3, . . . , N – 1 and SN = 0.

Define the truncation operator

(Φ[n1,n2]x)(n) =

⎧
⎨

⎩
x(n), n1 ≤ n ≤ n2,

0, otherwise.

Here the integer (n2 – n1 + 1) is the assigned truncation length.
Denote the lifted vectors as

Φ[1,N]y =
[
(Φ[1,N]y)(1)|(Φ[1,N]y)(2)| · · · |(Φ[1,N]y)(N)

]T,

Φ[0,N–1]u =
[
(Φ[0,N–1]u)(0)|(Φ[0,N–1]u)(1)| · · · |(Φ[0,N–1]u)(N – 1)

]T.

Then

Φ[1,N]y =
[
y(1)|y(2)| · · · |y(N)

]T,

Φ[0,N–1]u =
[
u(0)|u(1)| · · · |u(N – 1)

]T.

Define the matrix operator for a truncation as

M(Φ[1,N]w) def= W = w(1)I + w(2)S + · · · + w(N)SN–1,

where Φ[1,N]w = [w(1)|w(2)| · · · |w(N)]T.

Proposition 2 εl = Sl–1ε1 for l = 2, 3, . . . , N , and SW = WS. Here εl = Sl–1ε1 is assigned as
the (l – 1)th shift impulse signal.

By making the truncation operator to system (2), a lift-vector form description becomes

Φ[1,N]y = M(Φ[1,N]g)Φ[0,N–1]u.

Denote the z-transform truncations with respect to the sequences {(Φ[1,N]y)(n)},
{(Φ[0,N–1]u)(n)}, and {(Φ[1,N]g)(n)} as

(Φ[1,N]ŷ)(z) = y(1) + y(2)z–1 + · · · + y(N)z–(N–1),
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(Φ[1,N]ĝ)(z) = g(1) + g(2)z–1 + · · · + g(N)z–(N–1),

(Φ[0,N–1]û)(z) = u(0) + u(1)z–1 + · · · + u(N – 1)z–(N–1).

Proposition 3 The relationship of the z-transform truncations with respect to (2) is as
follows:

(Φ[1,N]ŷ)(z) – (Φ[1,N]ĝ)(z)(Φ[0,N–1]û)(z)

= –
(
g(N)u(1) + g(N – 1)u(2) + · · · + g(2)u(N – 1)

)
z–N

–
(
g(N)u(2) + g(N – 1)u(3) + · · · + g(3)u(N – 1)

)
z–(N+1)

– · · · – g(N)u(N – 1)z–2(N–1).

Proof

(Φ[1,N]ŷ)(z) = y(1) + y(2)z–1 + · · · + y(N)z–(N–1)

= g(1)u(0) +
(
g(2)u(0) + g(1)u(1)

)
z–1

+ · · · +
(
g(N)u(0) + g(N – 1)u(1) + · · · + g(1)u(N – 1)

)
z–(N–1). (3)

Additionally,

(Φ[1,N]ĝ)(z)(Φ[0,N–1]û)(z)

=
(
g(1) + g(2)z–1 + · · · + g(N)z–(N–1))(u(0) + u(1)z–1 + · · · + u(N – 1)z–(N–1))

= g(1)u(0) +
(
g(2)u(0) + g(1)u(1)

)
z–1

+ · · · +
(
g(N)u(0) + g(N – 1)u(1) + · · · + g(1)u(N – 1)

)
z–(N–1)

+
(
g(N)u(1) + g(N – 1)u(2) + · · · + g(2)u(N – 1)

)
z–N

+
(
g(N)u(2) + g(N – 1)u(3) + · · · + g(3)u(N – 1)

)
z–(N+1)

+ · · · + g(N)u(N – 1)z–2(N–1). (4)

Taking Eqs. (3) and (4) into account achieves the result. �

Remark 1 Proposition 3 exhibits that the time-domain convolution theorem, which is
fit for infinite-length sequences, is no longer guaranteed for truncated finite-length se-
quences. Therefore the spectrum at each frequency for a finite-length sequence computed
by the z-transform making use of time-domain convolution theorem is only an approx-
imate formulation. The approximation precision depends on the truncation length and
the stability of the impulse response. Thus the validity of the existing z-transform-based
controller design, convergence analysis, and robustness for ILC systems in [28–31] needs
to be clarified in a rigorous manner.
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2.2 Discrete Fourier transform for LDTI SISO systems
Definition 2 (Discrete Fourier transform [32]) For a finite-length discrete sequence v =
[v(0)|v(1)| · · · |v(N – 1)]T, its discrete Fourier transform (DFT) is defined as

V (m) =
N–1∑

n=0

v(n)e–j 2π
N m·n, m = 0, 1, . . . , N – 1. (5)

Its inverse discrete Fourier transform (IDFT) takes the form

v(n) =
1
N

N–1∑

m=0

V (m)ej 2π
N m·n, n = 0, 1, . . . , N – 1. (6)

For simplicity, denote s = ej 2π
N . Then ej 2π

N mn = smn, and formula (5) becomes

V (m) =
N–1∑

n=0

v(n)s–m·n, m = 0, 1, . . . , N – 1. (5a)

Analogously, its inverse discrete Fourier transform (IDFT) (6) can be rewritten as

v(n) =
1
N

N–1∑

m=0

V (m)sm·n. (6a)

Denote

v =
[
v(0)|v(1)| · · · |v(N – 1)

]T,

V =
[
V (0)|V (1)| · · · |V (N – 1)

]T,

Q =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

1 1 1 · · · 1
1 s–1·1 s–1·2 · · · s–1·(N–1)

1 s–2·1 s–2·2 · · · s–2·(N–1)

...
...

...
. . .

...
1 s–(N–1)·1 s–(N–1)·2 · · · s–(N–1)·(N–1)

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

.

Then V = Qv and, equivalently, v = Q–1V , where

Q–1 =
1
N

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎣

1 1 1 · · · 1
1 s1·1 s1·2 · · · s1·(N–1)

1 s2·1 s2·2 · · · s2·(N–1)

...
...

...
. . .

...
1 s(N–1)·1 s(N–1)·2 · · · s(N–1)·(N–1)

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎦

.

It is no difficult to derive the famous Parseval energy formula

‖v‖2
2 =

N–1∑

n=0

∣∣v(n)
∣∣2 =

1
N

N–1∑

m=0

∣∣V (m)
∣∣2 =

1
N

‖V‖2
2. (7)
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Moreover,

∣∣V(N – m)
∣∣ =

∣∣V(–m)
∣∣ =

∣∣V(m)
∣∣. (8)

We further calculate the DFT for a class of LDTI single-input–single-output (SISO) sys-
tems described by

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = Ax(n) + Bu(n),

y(n + 1) = Cx(n + 1),

x(0) = 0, n = 0, 1, . . . , N – 1;

(9)

where N is a finite positive integer denoting the total sampling number, x(n), u(n), and
y(n) are p-dimensional state vector, scalar input, and scalar output, respectively, and A, B,
and C are matrices of appropriate dimensions.

Let u∗ = ε1 = [1 0 · · · 0]T be the impulse signal and stimulate systems (9). Then the
output takes the form

y∗ = g1 =
[
g1(1)|g1(2)| · · · |g1(N)

]T =
[
CB|CAB|CA2B| · · · |CAN–1B

]T,

where the vector g1 is assigned as the impulse response of system (9).
Thus, for any input u = [u(0)|u(1)| · · · |u(N – 1)]T, the output of system (9) is expressed

as

y(n + 1) =
n∑

l=0

g1(n + 1 – l)u(l), n = 0, 1, . . . , N – 1. (10)

For simplicity, denote y+(n) = y(n + 1). Then the DFT of the sequence y+ = [y(1), y(2), . . . ,
y(N)]T is computed as

Y +(m) =
N–1∑

n=0

y+(n)s–m·n =
N–1∑

n=0

( n∑

q=0

g1(n + 1 – q)u(q)

)

s–m·n

=
N–1∑

n=0

( n∑

q=0

g1(n + 1 – q)u(q)s–m·n
)

=
N–1∑

q=0

(N–1∑

n=q
g1(n + 1 – q)s–mn

)

u(q)

=
N–1∑

q=0

((N–1)–q∑

p=n–q=0

g1(p + 1)s–m(p+q)

)

u(q), m = 0, 1, . . . , N – 1. (11)

In addition, according to DFT formula (5a), the DFTs for the sequences g1 = [g1(1), g1(2),
. . . , g1(N)]T and u = [u(0), u(1), . . . , u(N – 1)]T are computed as

G1(m) =
N–1∑

p=0

g1(p + 1)s–m·p and U(m) =
N–1∑

q=0

u(q)s–m·q.
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Then

G1(m)U(m) =
N–1∑

p=0

g1(p + 1)s–m·p
N–1∑

q=0

u(q)s–m·q

=
N–1∑

q=0

(N–1∑

p=0

g1(p + 1)s–m·(p+q)

)

u(q), m = 0, 1, . . . , N – 1. (12)

Comparing the summation expression on the right side of Eq. (11) with that of (12), we ob-
serve that usualy Y +(m) �= G1(m)U(m) unless N = +∞. This means that the time-domain
convolution theorem for the discrete Fourier transform applied to a finite-length sequence
is not true either. The expression G1(m)U(m) is only regarded as an approximation of
Y +(m). Therefore, the so-called approximate spectrum-based convergence and robust-
ness in [34–41] need to be refined in a rigorous manner.

For an example, in the LDTI SISO system (9), denote the spectral radius of the pth-order
state matrix A as ρ(A) = max1≤i≤p{|λi|} with λi, i = 1, 2, . . . , p, being the eigenvalues of A.

For simplicity, denote by Ỹ (m) = G1(m)U(m) the frequency-domain output approxima-
tion of the precise frequency-domain output Y +(m).

Let ‖Y +‖2 =
√∑N–1

m=0 |Y +(m)|2, ‖Ỹ‖2 =
√∑N–1

m=0 |Ỹ (m)|2, and ‖y+‖2 =
√∑N–1

n=0 |y+(n)|2 be
the 2-norms of the frequency-domain output, frequency-domain approximate output, and
time-domain output, respectively. From Parseval’s energy formula (7) we have ‖Y +‖2 =√

N‖y+‖2.
For comparison, generate an input sequence u = [u(0)|u(1)| · · · |u(79)]T with compo-

nents being uniformly distributed random numbers between 0 and 1.
Case 1: Let

A =

⎡

⎢
⎣

1.8869 0 0
1.1507 0.9989 1
0.0008 0.100 1

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0
0.0097
0.0093

⎤

⎥
⎦ , and C =

[
0 0 1

]
.

It is computed that ρ(A) = 1.8869 > 1. This means that system (9) is unstable. Figure 1 ex-
hibits the frequency-wise magnitude spectra of the frequency-domain output and its ap-
proximation when the truncation length N = 20, from which we see that |Ỹ (m)| < |Y +(m)|
for frequency orders m = 1, 2, . . . , 19 but |Ỹ (0)| > |Y +(0)|. Figure 2 displays the energy

Figure 1 Magnitude spectrum of output and its
approximation
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Figure 2 Energy tendency of output and its
approximation

Figure 3 Magnitude spectrum of output and its
approximation

tendencies of the frequency-domain output, frequency-domain approximate output, and
time-domain output as the truncation length N increases, which says that the discrepancy
of the approximation ‖Ỹ‖2 from the precise value ‖Y +‖2 enlarges as the truncation length
N increases.

Case 2: Let

A =

⎡

⎢
⎣

0.8869 0 0
0.1507 0.7989 1
0.0008 0.100 0.7

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0
0.0097
0.0093

⎤

⎥
⎦ , C =

[
0 0 1

]
.

It is testified that ρ(A) = 0.8869 < 1. This implies that the system is stable.
Figure 3 depicts the frequency-wise magnitude spectra of the output and its approxima-

tion when the truncation length N = 20, which conveys that the orders of frequency-wise
spectra |Y +(m)| and |Ỹ (m)| are diverse. Whilst Fig. 4 presents the 2-norms of frequency-
domain output, frequency-domain approximate output, and time-domain output for the
truncation lengths N = 10, 20, . . . , 80, respectively, which shows that the discrepancy of
the approximation ‖Ỹ‖2 from the precise value ‖Y +‖2 does not distinctly enlarge as the
truncation length N increases.

Besides, Figs. 1 and 3 deliver that |Y +(m)| = |Y +(N – m)| and |Ỹ (m)| = |Ỹ (N – m)| for
m = 1, 2, . . . , 19, whereas Figs. 2 and 4 convey that ‖Y +‖2 ≡ √

N‖y+‖2.

2.3 Relationship formulation in discrete-frequency domain
In what follows, we derive the discrete-frequency relationship among output, shift impulse
responses, and input.



Li and Ruan Advances in Difference Equations         (2019) 2019:59 Page 10 of 22

Figure 4 Energy tendency of output and its
approximation

For simplicity, denote

y = y+ =
[
y(1)|y(2)| · · · |y(N)

]T,

u =
[
u(0)|u(1)| · · · |u(N – 1)

]T,

Ḡ =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

g1(1) 0 0 · · · 0
g1(2) g1(1) 0 · · · 0
g1(3) g1(2) g1(1) · · · 0

...
...

...
. . .

...
g1(N) g1(N – 1) g1(N – 2) · · · g1(1)

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

.

From (10) we have

y = Ḡu

= Ḡ
[
u(0)ε1 + u(1)ε2 + · · · + u(N – 1)εN

]

= u(0)Ḡε1 + u(1)Ḡε2 + · · · + u(N – 1)ḠεN . (13)

Denote

gl = Ḡεl for l = 1, 2, . . . , N

and

Ḡ = [Ḡ1|Ḡ2| · · · |ḠN ].

Then Ḡl = gl = Ḡεl for l = 2, . . . , N , which means that the lth column of the matrix Ḡ is the
response of system (10) with respect to the shift impulse εl , named as the (l – 1)th shift
impulse response. Hence Ḡ is called the impulse response matrix.

Then (10) becomes

y = Ḡu = [g1|g2| · · · |gN ]u.

Therefore

Y = Qy = Q[g1|g2| · · · |gN ]u
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= [Qg1|Qg2| · · · |QgN ]Q–1Qu

= [G1|G2| · · · |GN ]Q–1U, (14)

where Gl = [Gl(0)|Gl(1)| · · · |Gl(N – 1)]T = Qgl for l = 1, 2, . . . , N , which expresses the DFT
of the (l – 1)th shift impulse response, and

Gl(m) =
N–1∑

n=0

gl(n + 1)s–m·n for m = 0, 1, 2, . . . , N – 1. (15)

Denote G = [G1|G2| · · · |GN ]. Equivalently, Eq. (14) becomes

Y = GQ–1U. (16)

Equation (16) formulates the discrete-frequency relationship of output, shift impulse re-
sponses, and input.

2.4 Properties of Toeplitz matrix
Proposition 4 For a lower triangular Toeplitz matrix

M =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

aN aN–1 aN–2 · · · a1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

we have limk→+∞ Mk = 0 iff λ = |a1| < 1.

Proof In view of the expression

M = a1I + a2S + a3S2 + · · · + aN SN–1, (17)

denote P = a2 + a3S + a4S2 + · · · + aN SN–2. Then PS = SP and Mk = (a1I + PS)k .
Then, for an index k (k < N ), Eq. (17) induces

Mk = (a1I + PS)k

= (a1)kI + C1
k (a1)k–1PS + · · · + Cl

k(a1)k–lPlSl

+ · · · + Ck–1
k (a1)Pk–1Sk–1 + PkSk . (18)

For a sufficiently large iteration index k (k ≥ N ), by considering SN = 0 Eq. (18) results in

Mk = (a1I + PS)k

= (a1)kI + C1
k (a1)k–1PS + · · · + Ci

k(a1)k–lPlSl

+ · · · + CN–1
k (a1)k–(N–1)PN–1SN–1, (19)

where Cl
k = k(k–1)···(k–l+1)

l(l–1)···2·1 .
Necessity is obvious.
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Sufficiency: Recall the assumption that λ = |a1| < 1.
Case 1: For the case where λ = |a1| = 0, from expression (18) we see that MN = 0.
Case 2: For the case where 0 < λ = |a1| < 1, note that

∣∣Cl
k(a1)k–l∣∣ =

k(k – 1) · · · (k – l + 1)
l(l – 1) · · ·2 · 1

|a1|k–l

=
1

l(l – 1) · · ·2 · 1
kl + b1kl–1 + · · · + bl–1k + bl

| 1
a1

|k–l
.

By multiple adopting L. Hospital’s rule for limiting times, we have

lim
k→+∞

∣∣Cl
k(a1)k–l∣∣ =

1
l(l – 1) · · ·2 · 1

lim
k→+∞

lkl–1 + (l – 1)b1kl–2 + · · · + bl–1

| 1
a1

|k–l ln | 1
a1

| = · · · = 0.

As the number N is fixed, Eq. (18) gives rise to limk→+∞ Mk = 0. �

Remark 2 It should be pointed out that Proposition 4 can be regarded as a corollary of
Schur complementary. However, the derivation of Schur complementary is too compli-
cated to easily acquire the evolution of elements of the Toeplitz matrix to the power of
iteration index as the power index k increases. The proof of Proposition 4 is given in a
straightforward mode, which explicitly presents the evolution of elements of the Toeplitz
matrix to the power of iteration index in a clear way. This is helpful in observing the evolu-
tion behavior of the transient learning performance of the iterative learning control system
because the transmit matrix of the tracking errors of the two adjacent iterations turns to
be a lower triangular Toeplitz matrix.

Proposition 5 If the matrices M1 and M2 are Toeplitz, then M1M2 = M2M1 is Toeplitz.

Proof Let M1 = a1I + a2S + a3S2 + · · · + aN SN–1 and M2 = b1I + b2S + b3S2 + · · · + bN SN–1.
Then

M1M2 =
(
a1I + a2S + a3S2 + · · · + aN SN–1)(b1I + b2S + b3S2 + · · · + bN SN–1)

= a1b1I + (a1b2 + a2b1)S + (a1b3 + a2b2 + a3b1)S2

+ · · · + (a1bm + a2bm–1 + · · · + am–1b1)Sm–1

+ · · · + (a1bN + a2bN–1 + · · · + aN b1)SN–1

= M2M1. �

Proposition 6 For a lower triangular matrix

R =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

...
. . .

...
aN ,1 aN–1,2 aN–2,3 · · · aN ,N

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

we have limk→+∞ Rk = 0 if a1 = maxi=1,2,...,N {|ai,i|} < 1.
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Proof Let a1 = maxi=1,2,...,N {|ai,i|} and al+1 = maxi=1,2,...,N–l{|ai+l,i|} for l = 1, 2, . . . , N – 1.
Then

–M ≤ –|R| ≤ R ≤ |R| ≤ M,

where |A| = (|aij|) ≤ |B| = (|bij|) if and only if |aij| ≤ |bij|.
By multiplication of matrices it is no difficult to yield

–Mk ≤ Rk ≤ Mk .

From Proposition 4 we have limk→+∞ Rk = 0. �

3 Convergence analysis
3.1 DFT-based convergence for LDTI systems
3.1.1 First-order D-type ILC scheme and convergence
Provided that system (10) attempts to track a predetermined desired trajectory yd(n + 1)
while it repetitively operates, let u1(n) be an arbitrary initial input, and let e1(n+1) = yd(n+
1) – y1(n + 1) denote the output error of systems (10) driven by u1(n), n = 0, 1, 2, . . . , N – 1.

By compensating u1(n) with its output error e1(n + 1), u2(n) is generated. In recursion,
the first-order derivative-type iterative learning control (D-type ILC) updating law is for-
mulated as

u1(n), arbitrary given,

uk+1(n) = uk(n) + Γ ek(n + 1), n = 0, 1, 2, . . . , N – 1,
(20)

where the subscript k = 1, 2, . . . denotes the iteration index, and Γ is assigned as the deriva-
tive learning gain.

Denote

yd =
[
yd(1)|yd(2)| · · · |yd(N)

]T,

uk =
[
uk(0)|uk(1)| · · · |uk(N – 1)

]T,

yk =
[
yk(1)|yk(2)| · · · |yk(N)

]T,

ek = yd – yk =
[
ek(1)|ek(2)| · · · |ek(N)

]T,

Yk = Qyk ,

Ek = Qek ,

Uk = Quk .

Inferring the derivation of Eq. (14), we have

yk = Ḡuk . (21)

Analogously, the first-order D-type ILC (20) becomes

uk+1 = uk + Γ ek . (22)
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Theorem 1 Assume that for system (10) g1(1) �= 0, and the first-order D-type ILC (22) is
applied. Then in the frequency domain, limk→+∞ Ek+1 = 0 if and only if ρ1 = |1–Γ g1(1)| < 1.

Proof Taking Eqs. (21) and (22) into account yields

ek+1 = (I – Γ Ḡ)ek . (23)

Then

Ek+1 = Qek+1 = Q(I – Γ Ḡ)Q–1Qek = Q(I – Γ Ḡ)Q–1Ek . (24)

Therefore

Ek+1 = Q(I – Γ Ḡ)Q–1Ek = Q(I – Γ Ḡ)2Q–1Ek–1 = · · · = Q(I – Γ Ḡ)kQ–1E1. (25)

In Eqs. (23) and (24),

I – Γ Ḡ =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 – Γ g1(1) 0 0 · · · 0
–Γ g1(2) 1 – Γ g1(1) 0 · · · 0
–Γ g1(3) –Γ g1(2) 1 – Γ g1(1) · · · 0

...
...

...
. . .

...
–Γ g1(N) –Γ g1(N – 1) –Γ g1(N – 2) · · · 1 – Γ g1(1)

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (26)

Noting that the matrix I – Γ Ḡ is lower triangular Toeplitz, from Proposition 4 the suffi-
ciency and necessity are immediate. �

Remark 3 Because the matrix Q is invertible, limk→+∞ Ek+1 = 0 in the discrete-frequency
domain if and only if limk→+∞ ek+1 = 0 in the discrete-time domain. This is theoretically
logic and thus convincing. Thus the robustness of the ILC algorithm to the system param-
eters uncertainty may be addressed in the time domain in a direct manner. This issue is
involved in our future work. As for the existing frequency-domain convergence analysis
by means of the z-transform, the convergence equivalence to the discrete-domain result
is quite obscure, the robustness analysis such as of the system parameter uncertainty by
the z-transform needs to be refined in a rigorous manner, as mentioned in Remark 1.

Remark 4 Though the frequency-domain relationship of (16) is not simpler than the rela-
tionship in the time domain, Theorem 1 of the paper conveys that the lifted tracking error
vector converges itself. This means that the tracking error may converge while measured
in any form of norm. This is benefited from the property of the lower triangular Toeplitz
matrix addressed by Proposition 4. However, in many existing convergence results, the
discrete-time convergence of the traditional D-type iterative learning control algorithm is
ensured in the sense of the lifted tracking error measured in some of but not a preferred
norm.

Remark 5 The derivation of Theorem 1 conveys that the convergence condition ρ1 = |1 –
Γ g1(1)| < 1 depends upon the systems input matrix B, output matrix C, and the derivative
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learning gain Γ , but no relevance to the system matrix A. This coincides with the existing
conclusion in the literature [31].

Remark 6 From the proof of Lemma 1 we found that the magnitude of tracking error
would grow extremely at the first finite iterations. This makes the use of ILC cautious
for practical applications. A preferred candidate guarantees the ILC algorithm (22) to be
monotonously convergent.

Theorem 2 Assume that the D-type ILC (22) is applied to system (10) and satisfies the
condition ρ̃1 = ‖I – Γ Ḡ‖2 < 1. Then ‖Ek+1‖2 < ‖Ek‖2 and limk→+∞ ‖Ek+1‖2 = 0.

Proof Calculating the 2-norm of both sides of expression (23), we have

‖ek+1‖2 ≤ ‖I – Γ Ḡ‖2‖ek‖2. (27a)

From Parseval’s energy formula (7), (27a) is equivalently reformed as

‖Ek+1‖2 ≤ ‖I – Γ Ḡ‖2‖Ek‖2. (27b)

According to the 2-norm of matrix I – Γ Ḡ,

‖I – Γ Ḡ‖2 =
√

ρ
(
(I – Γ Ḡ)T(I – Γ Ḡ)

)
,

where ρ((I – Γ Ḡ)T(I – Γ Ḡ)) = maxi(λi((I – Γ Ḡ)T(I – Γ Ḡ))) denotes the spectral radius of
the matrix (I – Γ Ḡ)T(I – Γ Ḡ).

Considering the assumption ρ̃1 = ‖I – Γ Ḡ‖2 < 1, the results are ensured. �

Remark 7 From the above-mentioned convergence condition, the choice of learning gain
Γ is one degree of freedom but depends upon the impulse response at all sampling in-
stants. This makes the choice of learning gain Γ difficult. For the regard, a possible manner
is to adaptively construct a time-varying iteration-dependent ILC algorithm.

3.2 DFT-based convergence for LDTV systems
Consider the class of LDTV systems described as

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = A(n)x(n) + B(n)u(n),

y(n + 1) = C(n + 1)x(n + 1),

x(0) = 0, n = 0, 1, . . . , N – 1;

(28)

where N is the total sampling number, x(n), u(n), and y(n) are p-dimensional state vector,
scalar input, and output, respectively, and A(n), B(n), and C(n) are time-varying matrices
of appropriate dimensions.

Let u∗ = ε1 = [1 0 · · · 0]T be the impulse signal and stimulate systems (28). Then the
output takes the form

y∗ = g̃1 =
[
g̃1(1)|g̃1(2)| · · · |g̃1(N)

]T,
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where g̃1(1) = C(1)B(0) and g̃1(l) = C(l)(
∏l–1

i=1 A(i))B(0) for l = 2, 3, . . . , N . The vector g̃1 is
assigned as the impulse response of LDTV system (28).

Thus, for any input u = [u(0)|u(1)| · · · |u(N – 1)]T, its output is expressed as

y(n + 1) =
n∑

l=0

g̃l+1(n + 1 – l)u(l), n = 0, 1, . . . , N – 1, (29)

where g̃m(1) = C(m)B(m – 1) and g̃m(l) = C(m + l – 1)(
∏m+l–2

i=1 A(i))B(m – 1) for m =
1, 2, . . . , N and l = 2, 3, . . . , N + 1 – m.

Next, we derive a discrete-frequency relationship among output, shift impulse re-
sponses, and input for LDTV system (28).

Denote

y =
[
y(1)|y(2)| · · · |y(N)

]T,

u =
[
u(0)|u(1)| · · · |u(N – 1)

]T,

H̃ =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

g̃1(1) 0 0 · · · 0
g̃1(2) g̃2(1) 0 · · · 0
g̃1(3) g̃2(2) g̃3(1) · · · 0

...
...

...
. . .

...
g̃1(N) g̃2(N – 1) g̃3(N – 2) · · · g̃N (1)

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

.

From (29) we have

y = H̃u

= H̃
[
u(0)ε1 + u(1)ε2 + · · · + u(N – 1)εN

]

= u(0)H̃ε1 + u(1)H̃ε2 + · · · + u(N – 1)H̃εN . (30)

Denote

g̃l = H̃εl for l = 1, 2, . . . , N

and

H̃ =
[

H̃1|H̃2|H̃3| · · · |H̃N
]
.

Then H̃l = g̃l = H̃εl for l = 2, . . . , N , which means that the lth column of the matrix H̃ is
the response of system (29) with respect to the shift impulse εl , called the (l – 1)th shift
impulse response. Then (29) becomes

y = H̃u = [g̃1|g̃2| · · · |g̃N ]u.

Therefore

Y = Qy = Q[g̃1|g̃2| · · · |g̃N ]u
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= [Qg̃1|Qg̃2| · · · |Qg̃N ]Q–1Qu

= [G̃1|G̃2| · · · |G̃N ]Q–1U, (31)

where G̃l = [G̃l(0)|G̃l(1)| · · · |G̃l(N – 1)]T = Qg̃l for l = 1, 2, . . . , N , which expresses the DFT
of the (l – 1)th shift impulse response, and

G̃l(m) =
N–1∑

n=0

g̃l(n + 1)s–m·n for m = 0, 1, 2, . . . , N – 1. (32)

Denote G̃ = [G̃1|G̃2| · · · |G̃N ]. Equivalently, Eq. (31) becomes

Y = G̃Q–1U. (33)

Equation (33) formulates the discrete-frequency relationship of output, shift impulse re-
sponses, and input.

Comparing the input–output equation (33) for LDTV system (28) with the input–output
equation (16) for LDTI system (10), the constructive forms of the input–output transmit
matrices are identical, except that the elements G̃l(m) expressed by (32) are different from
Gl(m) given by (15). By considering the difference and using Proposition 6, we analogously
achieve the following convergence results.

Theorem 3 Assume that, for system (28), g̃l(1) �= 0, l = 1, 2, . . . , N , and the first-order D-
type ILC (22) is applied. Then, in the frequency domain, limk→+∞ Ek+1 = 0 if and only if
ρ2 = maxl=1,2,...,N |1 – Γ g̃l(1)| < 1.

Remark 8 Theorem 3 reveals that the convergence is guaranteed in the vector form either
for the time-domain tracking error or for the frequency-domain tracking error. This im-
plies that the tracking error converges in any form of norm. However, the existing results
are only for a fixed but unknown norm [26, 27], although they are equivalent.

Theorem 4 Assume that the D-type ILC (22) is applied to system (28) and satisfies the
condition ρ̃2 = ‖I – Γ H̃‖2 < 1. Then ‖Ek+1‖2 < ‖Ek‖2 and limk→+∞ ‖Ek+1‖2 = 0.

Remark 9 Theorem 4 obtains frequency-domain sufficient conditions for the monotonic
convergence of a class of LDTV D-type ILC systems, whilst the z-transform-based fre-
quency analysis is very hard to compute the tracking error spectrum either for the infinite-
length or for the finite-length time-varying system. The result is marvelous for practical
applications.

4 Numerical simulations
Example 1 Consider the LDTI SISO system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ x1
k (n+1)

x2
k (n+1)

x3
k (n+1)

]

=
[

1 0.02 0
0 1 0.02
0 –0.0009 0.9922

][ x1
k (n)

x2
k (n)

x3
k (n)

]

+
[

0
0

0.02

]
uk(n),

yk(n) = [ 0.0018 0.0272 0.0905]

[ x1
k (n)

x2
k (n)

x3
k (n)

]

, n ∈ D̄.

(34)
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Figure 5 Tracking behavior of the D-type ILC

Figure 6 Tracking error tendency in discrete-time
domain

The sampling number of system (34) is set as D̄ = {0, 1, 2, . . . , 99}. The desired trajectory
is chosen as yd(n) = 1 – exp(–0.048n), n ∈ D̄, and the beginning control input is chosen as
u1(n) = 1, n ∈ D̄. The initial state is set as xk(0) = [x1

k(0), x2
k(0), x3

k(0)]T = [0, 0, 0]T. It is ob-
vious that ek(0) = 0. For the D-type ILC algorithm (22), we choose the derivative learning
gain Γ = 40. It is computed that ρ1 = |1 – Γ g1(1)| = 0.9276, which means that the conver-
gent condition ρ1 < 1 holds.

Figure 5 exhibits the tracking behavior of system (34) driven by the D-type ILC (22),
where the dash curve stands for the desired trajectory, and the dash-dotted and solid
ones are the outputs at the fiftieth and eightieth iterations, respectively, which shows
that the output tracks the desired trajectory closer as the iteration goes on. Figure 6
depicts the tracking error tendency along iteration direction in the sense of 2-norm of
‖ek‖2 =

√∑100
n=1 |ek(n)|2 in the discrete-time domain.

Figure 7 exhibits the frequency-wise spectra of the tracking error at the fiftieth, eight-
ieth, and hundredth iterations, respectively. Figure 8 displays the tracking error energy
tendency expressed by ‖Ek‖2 =

√∑99
m=0 |Ek(m)|2.

Example 2 Consider the other LDTI SISO system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
x1

k (n+1)
x2

k (n+1)

]
=

[ 1 0.02
–0.04 0.94

][
x1

k (n)
x2

k (n)

]
+

[ 0
0.02

]
uk(n),

yk(n) = [ 0 1]

[
x1

k (n)
x2

k (n)

]
, n ∈ D̄.

(35)
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Figure 7 Frequency-wise error spectra

Figure 8 Tracking error tendency in frequency
domain

Figure 9 Tracking behavior of the D-type ILC

The sampling time of system (35) is set as D̄ = {0, 1, 2, . . . , 199}. The desired trajectory
is given as yd(n) = 1 – exp(–0.048n), n ∈ D̄, and the beginning control input is fixed as
u1(n) = 1, n ∈ D̄. The initial state is set as xk(0) = [x1

k(0), x2
k(0)]T = [0, 0]T. It is obvious that

ek(0) = 0. For the D-type ILC algorithm (22), we select the derivative learning gain Γ = 5.6.
It is computed that ρ̃1 = ‖I –Γ Ḡ‖2 = 0.9423, which means that the monotone convergence
condition ρ̃1 < 1 holds.

Figure 9 exhibits the tracking behavior of the system (35) driven by the D-type ILC (22),
where the dash curve stands for the desired trajectory, and the dash-dotted and solid ones
are the outputs at the sixth and twentieth iterations, respectively, which shows that the
output tracks the desired trajectory more and more closer as the iteration goes on. Fig-
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Figure 10 Tracking error tendency in discrete-time
domain

Figure 11 Frequency-wise error spectra

Figure 12 Tracking error tendency in frequency
domain

ure 10 depicts the monotone convergence of the tracking error ‖ek‖2 =
√∑200

n=1 |ek(n)|2
produced by the D-type ILC (22) in the discrete-time domain.

Figure 11 exhibits the frequency-wise spectra of the tracking error at the sixth, twenti-
eth, and thirtieth iterations, respectively, which shows that, for each harmonic frequency
2π
200 m, the spectrum |Ek(m)| is decreasing as the iteration index k increases. Figure 12 dis-

plays the monotone convergence of the tracking error power ‖Ek‖2 =
√∑199

m=0 |Ek(m)|2 in
the discrete-frequency domain.

5 Conclusion
The paper firstly exploits DFT properties of iterative learning control systems and the
property of a Toeplitz matrix. The exploitation exhibits that, for repetitive finite-length
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iterative learning control systems, the time-domain convolution theorem either for the z-
transform or for the DFT form is no longer true by rigorous reduction. This challenges the
existing methodologies and results in deed. Though the derived DFT-based frequency-
domain relationship among the input, impulse response, and the output looks compli-
cated, it objectively reveals their inherent features, and thus it is not difficult to achieve
the equivalence of the convergence in the frequency domain to the existing results in the
time domain. Besides, the adopted DFT-based frequency technique is feasible for linear
discrete time-variable systems. This will greatly extend the applicable scope. In addition,
the convergences for LDTI systems and for LDTV systems have been made in a straight-
forward manner by means of investigating the convergence property of a Toeplitz matrix
to the power of iteration index. This is important for an ILC system to present its tracking
behavior evolution along the iteration direction. However, this paper does not involve the
frequency-domain robustness to system uncertainties and external noise perturbations.
This will be addressed in future works.
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