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1 Introduction

Fractional-order differential equations are important since their nonlocal property is suit-
able to characterize memory phenomena in economic, control, and materials sciences.
Existence, stability, and control theory to fractional differential equations was investigated
in [1-21]. In particular, the Ulam-type stability of delay differential equations was investi-
gated in [22-30]. In [22], results for a delay differential equation were obtained using the
Picard operator method, and in [23] the authors adopted a similar approach to establish
the existence and uniqueness results for a Caputo-type fractional-order delay differential
equation. In [31, 32], the authors gave stability and numerical schemes for two classes of
fractional equations. Sousa and Oliveira [33] proposed the v -Hilfer fractional differentia-
tion operator and established v -Hilfer fractional differential equations. In [24] the authors
studied the Ulam—Hyers stability and the Ulam—Hyers—Rassias stability of v -Hilfer frac-
tional integro-differential equations via the Banach fixed point method, and in [28] the
author discussed the existence and uniqueness of solutions and Ulam—Hyers and Ulam—
Hyers—Rassias stabilities for i -Hilfer nonlinear fractional differential equations via a gen-
eralized Gronwall inequality (see [34]).

Motivated by [23, 24, 28], we consider the y-Hilfer fractional differential equation

HDOPY () = f(2,%(1),x(g(7)), T el=(0,d],
IS:V;Wx(O") =xp € R, (1)
x(r) =), Tel-h0],
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where 7 ]D)g;ﬁ V() is the Y -Hilfer fractional derivative (see Definition 2.1) of order O < @ < 1
and type 0 <8 <1, Ié: V() is the Riemann-Liouville fractional integral of order 1 -y,
y = + B(1 — o) with respect to the function v (see [2]),and f : ] x R x R — Ris a given
function.

We establish the existence and uniqueness of solutions for (1) using the Picard operator
approach in a weight function space. We also introduce and present Ulam—Hyers—Mittag-
Leffler stability of solutions to (1).

2 Preliminaries
We collect the basic definitions of the i-Riemann—Liouville fractional integral, the -
Hilfer fractional derivative, and the standard Picard operator and an abstract Gronwall
lemma.

Let [¢,d] (0 < ¢ < d < 00) be a finite interval on R*, and let C[c, d] be the space of contin-
uous function g : [¢,d] — R with norm

lgllclea = cglféz|g(x)|'
The weighted space Ci_,;y [c,d] of continuous g on (¢, d] is defined by (see [24])
Cl—y;x// [Crd] = {g : (C, d] — R; (W(x) _ w(c))lfl/g(x) c C[C, d]}, 0< y < 1,

with norm

Iglcryptear = max | (@) - ¥(0) 7 g)|

or
lglls = max |(¥(0) = ¥(0) 7 g(@)]e O, 050

Definition 2.1 (see [33]) Let (¢,d) (—00 < ¢ <d < 00) be a finite or infinite interval of the
real line R, and let « > 0. In addition, let ¥ (x) be an increasing and positive monotone
function on (¢, d] having a continuous derivative ¥'(x) on (¢, d). The left- and right-sided
fractional integrals of a function g with respect to a function ¥ on [c, d] are defined by

1

W _ -
IV glx) = T

/ VO - v(0) e d,

a: 1 a ’ a-1
15200) = s [ VO - w) e,
respectively; here I" is the gamma function.

Definition 2.2 (see [33]) Letn—1<a <nwithn e N, and let f, ¥ € C"[c,d] be two func-

tions such that v is increasing and v'(x) # 0 for all x € [¢, d]. The left-side y-Hilfer frac-
o.By

tional derivative /ID%”" (-) of a function g of order « and type 0 < B < 1 is defined by

, , 1 4\ ‘
HDSBY () — POy ( AN et
¢ g(x) c w,(x) dx c g(x)

The right-sided v -Hilfer fractional derivative is defined in an analogous way.
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Theorem 2.3 (see [33]) Ifg€ Cllc,d),0<c<1,and0<p <1, then
DI LY gx) = g@).
Theorem 2.4 (see [33]) Ifg€ Cllc,d],0<c<1,and 0 < B <1, then

g(x) =gx) - —w§c))y_11(1—/5)(1—01);

3V Hy@ 859 (¥ (x) - v
LD 0 Q (o).

Let I = [¢,d]. For f € C(I x R%,R) and ¢ > 0, we consider the equations

H]D)gi’s”/'x(r) =f(t,%(1),x(g(r))), 1€(0,d], (2)

1;:”%(0*) = X0, (3)

x(f) = (/7(7—'), TE [—h, 0]¢ (4')
and the inequality

DG a(z) — f (1,5(2), 2(g(1))) | < B (¥ () - ¥(0))", T €(0,d], (5)

where E, is the Mittag-Leffler function [2] defined by

oo xi
Eo(x) = TaasD *€C¥@>o. 6)

i=0
Motivated by [23, Lemma 2.4], we introduce the following concept.

Definition 2.5 Equation (2) is Ulam-Hyers—Mittag-Leffler stable with respect to
Eo((¥(r) — ¥(0))*) if there exists cg, > 0 such that, for each ¢ > 0 and each solution
y € C([~h,d],R) to (5), there exists a solution x € C([-4,d], R) to (2) with

y(r) = x(7)| < cr, eBa((W(2) = ¥(0)%), tel-hdl

Remark 2.6 A function x € C([-h,d],R) is a solution of inequality (5) if and only if there
exists a function /1 € C([-h,d],R) (which depends on x) such that

(1) |h(‘E)| =< SEa((w(t) - W(O))a)r T el_hr d]’

(i) "D5 x(z) = £ (7, %(c), 2(g(x))) + h(z), T € (0,d].

Definition 2.7 (see Definition 3.1 of [23]) Let (Y, p) be a metric space. Now T: Y — Y is
a Picard operator if there exists y* € Y such that

(i) Fr=y* where Fr ={y € Y : T(y) =y} is the fixed point set of T;

(ii) the sequence (T"(¥0))nen converges to y* forall yo € Y.

Lemma 2.8 (see Lemma 3.2 of [23]) Let (Y, p, <) be an ordered metric space, and let T :
Y — Y be an increasing Picard operator with Fy = {y%}. Then for y € Y, y < T(y) implies

Y=<y

From Theorems 2.3 and 2.4 we have the following:

Page 3 of 12
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Lemma 2.9 (see [24]) Letf:I x R x R — R be a continuous function. Then (2) is equiv-
alent to

(@) -y )"

A0 =)

1 ' / a-1
F(oz)/o V() (Y (x) =¥ ()" f(sx(s),x(g(s))) ds.  (7)

Remark 2.10 Let y € C(I,R) be a solution of inequality (5). Then y is a solution of the
following integral inequality:

(Y(r) -y (0) 1 v a-1
‘y(r)— o) P T fo Y () (Y () =¥ ()" f(s50),5(g(s))) ds

£ ! / a-1 o
: F(a)/o YW@ =) Ea((y(6) - ¥(0)) ds

& ' ’ a-
i [ VOwO-v0)

> ko
1 Z (¥ (s) = ¥(0)) s

— I'(ka +1)

1 T . .,
) Z I (ke + 1) /0 W@ -v6) " (W) - v©)“ dy ()

0 YO0 .
a) kXO: F(ka+1 / (V@) =9 (0) ) us™

(let = Y(s) ~ ¥ (0))

e & 1 oy (VOO " wl
‘r(a)gr(kau)(‘/’(”““o)) fo <l‘w(r)—w(0)) e

1 o
™) Z I (ko + 1)(1ﬁ(7)—1//(0))(k ! _/0 1 -v)*dy
k=0

(let v= #>
V(7)) - (0)

(V(r) - W(O)) (krpa I (ke + 1)1 (e0)

I'((k+1a+1)

€ 1
At Z I (ko +1)

V() — ¥ (0))™
Z I'(no + 1)

n=0

Eo((v () - ¥ (0))").

Lemma 2.11 (see [34]) Let a > 0, and let v € C*((0,d],R) be a function such that v is
increasing and ' (t) # 0 for all T € (0,d]. Suppose that d > 0, z is a nonnegative function
locally integrable on (0,d], and w is nonnegative and locally integrable on (0,d] with

w(x) < 2(v) + k /0 W (W() - ¥(6) W) ds, e 0dl.

Then

k
W(r) < 2(z) + /Z[”"‘ VWO -vE) ) ds, e,
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Remark 2.12 (see [34]) Under the hypotheses of Lemma 2.11, let z be a nondecreasing
function on (0, d]. Then we have

w(t) < 2(0)Eo (kI (@)[¥ (1) - ¥ (0)]), 7€(0,d],
where E, is the Mittag-Leffler function defined by (6).

3 Main results
In this section, we establish the existence, uniqueness, and Ulam—Hyers—Mittag-Leffler
stability.

We impose the following conditions.

(Hy) feCU xR%LR), ge C,[-h,d]),gt)<t,h>0.

(H,) There exists Ly > 0 such that

2
[f(r,ul,ug) —f(r,vl,vz)‘ §Lf2 |u; —v;| forallt e lu;,v,eR,i=1,2.
i=1

(Hs) We have the inequality

2L T (y) (¥ (d) - ¥ (0)* <1
'y +a)

Theorem 3.1 Assume that (H;), (H,), and (Hs) are satisfied. Then
(i) (2)—(4) has a unique solution in C[—h,d] N Ci_yy [c, d].
(i) (2) is Ulam—Hyers—Mittag-Leffler stable.

Proof From Lemma 2.9 we get that (2)—(4) is equivalent to the following system:

(1), .
y(z) = w% .
7 SV OW O - PO 60O ds, T e (0,d)

The existence of a solution for (8) can be turned into a fixed point problem in X := C[-h, d]
for the operator Ty defined by

90(7:)7 TE [_h) 0];
T(x)(r) = | OOy, ©)

+ ﬁ Jo ¥ &)W () = ¥ () f (s,5(5), ¥(g(s))) ds, T €(0,d].

Note that for any continuous function f, Ty is also continuous. Indeed,

| Ty (x)(z) - Ty () (z0) |
(¥ (r) -y (0)"!

B ro)  °F

i | WO - 00) F6.56)5(e6) ds
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_ -1 ]
S ION s [ O - v 0) S (6005 (e09)

as T — Tp.
Next, we show T defined in (9) is a contraction mapping on X := C[-},d] with respect
to || - llcy_,.y (04 Consider Ty : X — X defined in (9). For t € [-4, 0], we have

| T (x)(x) - Ty0)(x)| =0, %,y € C([-h,0LR).

For all T € (0,d], we have

|Tf<x><r> 1))
/ e &) (5,26, %(2())) ~ £ (5,7(5),¥(g(5))) | ds

_f ’ _ a-1 _ y-1 _ 1-y _
< Fo /O () (¥ (2) = ()" (W ls) = vr(0)” T {(w(s) - w(0) 7 [[x(s) = y5)]
+ |x(g(s) - ¥(g(9)))|]} ds

Lyt ~ a-1 B y-1
<7l /0 VW) - 96) " () - ¥ (0)

x [ max |(v(6) - (@) () - 5(5)|

+ smax |(¥(9) - v (0) " x(g(s) - 7(2(5)) I] ds

-1
<

_F( )nx yncw,w]/ P EOWE) - vE) " (1) -y (0)

WO -y I,
) I' () Iy +a) Ylciyylodls

ds

which implies that

2L T (y) (¥ (d) — ¥ (0))*
I'a+y)

| Z7 (%) - T () ”cl,y;,/,[o,d] = %= yllc,_,,y 04

Thus Ty is a contraction (via the norm || - |Ic,_,,, (04 on X). Now apply the Banach con-
traction principle to establish (i).

Now we prove (ii). Let y € C[-/,0] N Ci_,,y[0,d] be a solution to (2). We denote by
x € C[-h,0] N Cy_y,y[0,d] the unique solution to problem (1). Now

‘P(T): TE [_h) 0]’

_ -1
(1) = (w(nru(fy«)»v 9

T Jo WEOW @) =¥ ()* (s, 5(5),5(¢(5)) T €(0,d].
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From Remark 2.10 we have

(W(r) =y (0)!
I'(y)

< eEq((¥(2) - ¥ (0))%) (10)

1 ’ ’ a-1
YOR - T fo W) (D) = w(6) f (5,960 (g(s)) ds

for 7 € (0,d] and note that |y(t) — x(t)| = 0 for t € [-4,0].
For all T € (0,d], it follows from (H;) and (10) that

[y(t) = x(v)|

(W) =y ()
I'(y)

1 ’ ’ a-1
S‘y(r)— T /0 V() (Y (x) =¥ ()" f(s009),7(g(s))) ds

+ i) / PO @) - 6) (5,96, 5(e(s))) ds

/ VO (@) = () F (5%, 5(g(s))) ds

1
I(e)
= eEo((v(®) - v(0))

f _ a-1
Fris [ VO - v 0) [ -56)] + blew) ~sle)]as

For all w € C([~h,d],R,), consider the operator
Ty: C([-hd],R,) — C([-h,d],R,)
defined by
0, r € [-h,0],
eEq ((W( ) =¥ (0)%)

r(a) L(fs v/ ()W (2) = ¥ (s))* Tw(s) ds
+ [EP W) - v (6)* wlgs)ds), T (0,d).

Ti(w)(7) =

We prove that T is a Picard operator. For all 7 € [0, d], it follows from (H,) that

2L (y) (Y (T) = ¥ (0))* 71
' +y)

| T1(w)(7) - T1(2(7))] < Iw—2zllc,_, 04

for all w,z € C([-h,d],R). Then we obtain

2L I (y) (¥ (d) - ¢ (0)”

T\ -T2 @ ¢, oy = Cla+y)

lw—zlc,_,,, 04

for all w,z € C([~h,d],R). Thus T; is a contraction (via the norm | - |c,_,,, [0 On

C([-h,d),R)).
Applying the Banach contraction principle to 77, we see that T} is a Picard operator and
Fr, = w*. Then, for all t € [0,d], we have

w*(7) (= Tiw*(1))

Page 7 of 12
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((1/;(:) -(0)")

(/w(s () = p(9)* W () ds

+ /0 W6 (¥ () = (5) W (g05) ds).

Next, we show that the solution w* is increasing. For all 0 < 7; < 7o < d (letting m :=
mingefo,q [W*(s) + w*(g(s))] € R, ), we have

w(12) —w*(11)
= &[Bo (¥ (r2) - ¥(0))) = Ea (¥ (r1) - ¥ (0)))]
Lf o / a-1 a-1 * «
m/{) Y O[(¥(r2) - ()" = (W) =)™ Jws) + w*(gls)) ds

. % V(W) = w6 W)+ w (gs)) ds

> E[Ea((xﬂ(fz) ~9(0))") = Eo (¥ (1) - ¥(0)))]
L / V[ @) - v6) " = () - v(e) ] ds

’ a-1
. m/ VO () ()" ds

= &[Ea((¥(12) = ¥(0))") = Eo (¥ (r1) — ¥(0))%)]
WlLf
F(a 1)

[(¥(2) = ¥(0))) = (¥(11) - ¥(0)*)]

> 0.

Thus w* is increasing, so w*(g(r)) < w*(t) since g(r) < r and

w (1) < eBo (¥ (x) - ¥(0))%)

a-1 w
o )/ V)W) - p(s) W (s) ds.

Using Lemma 2.11 and Remark 2.12, we obtain

w(t) < eEo (¥ (7) — ¥(0)*)Eq (2Ls (¥ (2) = (0))7)  (r € [0,d])
< eEo (¥ (1) = ¥(0)) ") Ea (2Ls (¥ (d) — ¥(0))%)
= ¢, sEq (¥ (7) - ¥(0))),
where cg,, := Eq (2L (¥ (d) — ¥(0))%).

In particular, if w = |y — x|, from (11), w < T;w by Lemma 2.8 we obtain w < w*, where

T, is an increasing Picard operator. As a result, we get

’J’(T) —x(r)| = CEagEa((w(r) - W(O))a)r S [_hrd]r

and thus (2) is Ulam—Hyers—Mittag-Leffler stable. O
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Now we change (H3) to
(Hs) We have the inequality

2L T () VDV Oy (d) — 4 (0))
I'(a+y)

<1, 6>0.

Theorem 3.2 Assume that (H;), (H,), and (H,) are satisfied. Then
(i) (2)—(4) has a unique solution in C[—h,d] N Cy_y[0,d].
(ii) (2) is Ulam—Hyers—Mittag-Leffler stable.

Proof As in Theorem 3.1, we need only prove that T; defined as before is a contraction

on X (via the norm | - ||5). Since the process is standard, we only give the main difference

in the proof as follows: For all T € (0,d], we have

| Ty (x)(2) - Ty()(0)]

1 ’ / a-1 _
Sm/() U)W (@) = () |f(sx(),x(g(s))) = (s:7(5),7(g(5))) | s

= % f T W) (W (@) = ¥(s) " (Jxls) - y(s)| + |%(2(s)) - (g(s)) )

< s [ Wowm - we) e - voy oo
{()Tsixd \[/(0))1 Ve W)y (}x(s) —y(s)| + |x(g(s)) —y(g(s))‘)} ds
< T” s / VO @ - 6) " (W) -y @) HOrO) g
¥ (d)-v(0)) _ a-1 Y- 1
< F( )nx ylpe / VWD - ) (B 6 - v 0)
2Ly I (y)e? VDV Oy (d) — yr(0))*+7
i ()’ - i@ﬁy()) ¥(0)) 12— lls.
Then
2L T (y)e’t N (yr(d) - ¥ (0))*
|76~ 1], < b =3l
Thus Ty is a contraction (via the norm || - ||z on X). O

4 Examples
In this section, we give two examples illustrating our main results.

Example 4.1 Consider the fractional-order system

Hpy 23 1 xz( -1) 1
Dy " %(t) = 37 2 +aarctan(x(r)), Te€ (0,1],
1577 %(0*) = xo, (12)

x(t)=0, t€l[-h0]

Page 9 of 12
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and the following inequality

Nl

’H]Dﬂie x(t) = f (T, (), y(x = 1))| <eE1((e" - 1)?).
Leta = % ,B = 1 .Theny =« + ;3(1 —a)= %, d=1,¢%()=e€,g()=--11(,x(),gx()) =

2
z]L 1fx(2( 1)) tya arctan(x( ))and Ly = 7. Thus,

Nl

2L I (y) (Y (d) - ¥ (0)”

~ 0.8861 < 1.
T(a+y)

Now all the assumptions in Theorem 3.1 are satisfied, so problem (12) has a unique solu-
tion, and the first equation in (12) is Ulam—Hyers—Mittag-Leffler stable with

NI

() —x(x)| < C]E%EE% ((e°-1)%), rel-L1],

where cg, = E%( 32_1).
b

Example 4.2 Consider the fractional-order system

»BI»—A

1
Hpy 3

2 .
(r -2)=1 o T(rz)z) +Lsin(x(t -2)), Tel=(01],

17" i x2(0%) = x, (13)
x(t)=0, te€l[-1,0],

and the inequality
(c5).

Following Theorem 3.2, leta = % and B = i. Theny =a+p(1-a)=;.Letd=1,0 = %
Y¥(:) =2, and Ly = Thus

|H]D)§+’%:r2x(r) —f(T.y()y(t -1))| <€E

ol

2L I ()" VOV ONy(d) - 9 (0)*

~ (0.8766 < 1.
I'a+y)

Now all the assumptions in Theorem 3.2 are satisfied, so (13) has a unique solution, and
the first equation in (13) is Ulam—Hyers—Mittag-Leffler stable with

|y(r) —x(1)| < c]ElsIE% (r%), T e[-1,1],

where cg, = E%(é).
3
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