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Abstract
This paper we devote to considering the periodic problem for the impulsive
evolution equations with delay in Banach space. By using operator semigroup theory
and the fixed point theorem, we establish some new existence theorems of periodic
mild solutions for the equations. In addition, with the aid of an integral inequality with
impulsive and delay, we present essential conditions on the nonlinear and impulse
functions to guarantee that the equations have an asymptotically stable ω-periodic
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MSC: 34G20; 34K30; 47H07; 47H08

Keywords: Evolution equations; Impulsive and delay; Periodic solutions; Existence
and uniqueness; Asymptotic stability; Operator semigroups

1 Introduction
Let X be a real Banach space with norm ‖ · ‖, L(X) stand for the Banach space of all
bounded linear operators from X to X equipped with its natural topology. Let r > 0 be a
constant, we denote by PC([–r, 0], X) the Banach space of piecewise continuous functions
from [–r, 0] to X with finite points of discontinuity where functions are left continuous
and have the right limits, with the sup-norm ‖φ‖Pr = sups∈[–r,0] ‖φ(s)‖.

In this paper, we consider the periodic problem for the impulsive delay evolution equa-
tion in Banach space X,

⎧
⎨

⎩

u′(t) + Au(t) = F(t, u(t), ut), t ∈ R, t �= ti,

�u(ti) = Ii(u(ti)), i ∈ Z,
(1.1)

where A : D(A) ⊂ X → X is a closed linear operator and –A generates a C0-semigroup T(t)
(t ≥ 0) in X; F : R× X × PC([–r, 0], X) → X is a nonlinear mapping which is ω-periodic in
t; ut ∈ PC([–r, 0], X) is the history function defined by ut(s) = u(t + s) for s ∈ [–r, 0]; p ∈ N

denotes the number of impulsive points between 0 and ω, 0 < t1 < t2 < · · · < tp < ω < tp+1

are given numbers satisfying tp+i = ti + ω (i ∈ Z); �u(ti) = u(t+
i ) – u(t–

i ) represents the jump
of the function u at ti, u(t+

i ) and u(t–
i ) are the right and left limits of u(t) at ti, respectively;

Ii : X → X (i ∈ Z) are continuous functions satisfying Ii+p = Ii.
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The theory of partial differential equations with delays has an extensive physical back-
ground and leads to a realistic mathematical model, and it has undergone a rapid develop-
ment in the last 50 years. The evolution equations with delay are more realistic than the
equations without delay in describing numerous phenomena observed in nature, hence
the numerous properties of their solutions have been studied; see [7, 22] and the refer-
ences therein for more comments.

One of the important research directions related to the asymptotic behavior of the so-
lutions for the evolution equations with delay is to find conditions for the existence and
stability of ω-periodic solutions in the case that the nonlinear mapping is ω-periodic func-
tion in t. In the last few decades, the existence and asymptotic stability of periodic so-
lutions have been investigated by some authors (see [5, 8–10, 15–17, 23] and the refer-
ences therein). In [5], under the assumption that the solutions of the associated homotopy
equations were uniformly bounded, Burton and Zhang obtained the existence of periodic
solutions of an abstract delay evolution equation. In [23], Xiang and Ahmed showed an
existence result of periodic solution to the delay evolution equations in Banach spaces un-
der the assumption that the corresponding initial value problem had a prior estimate. In
[15–17], Liu studied periodic solutions by using bounded solutions or ultimate bounded
solutions for delay evolution equations in Banach spaces. In [8], Huy and Dang studied the
existence, uniqueness and stability of periodic solutions to a partial functional differential
equation in Banach space in the case that the nonlinear function satisfied Lipschitz-type
condition. Specially, in [10], Li discussed the existence and asymptotic stability of periodic
solutions to the evolution equation with multiple delays in a Hilbert space. By using the
analytic semigroup theory and the integral inequality with delays, the author obtained the
essential conditions on the nonlinearity F to guarantee that the equation has ω-periodic
solutions or an asymptotically stable ω-periodic solution.

On the other hand, it is well known that an impulsive evolution equation has an ex-
tensive physical, chemical, biological, engineering background and realistic mathematical
model, and hence has been emerging as an important area of investigation in the last few
decades. Since the end of the previous century, the theory of impulsive evolution equa-
tion in Banach space has been largely developed (see [1, 2, 6, 12, 13, 24] and the references
therein). We would like to mention that Liang et al. [12] studied the periodic solutions
to a kind of impulsive evolution equation with delay in Banach spaces. In the case that
the nonlinear function satisfied Lipschitz conditions, the authors found that the evolu-
tion equation has a periodic solution by using the ultimate boundedness of solutions and
Horn’s fixed point theorem. Recently, in [11, 14], Liang et al. studied nonautonomous evo-
lutionary equations with time delay and being impulsive. With the nonlinear term being
continuous and Lipschitzian, they proved the existence theorem for periodic mild solu-
tions to the nonautonomous delay evolution equations.

Although there have been many meaningful results on the delay or impulsive evolu-
tion equation periodic problem in Banach space, to the best of our knowledge, these
results have a relatively large limitation. First of all, the most popular approach is the
use of ultimate boundedness of solutions and the compactness of Poincaré map realized
through some compact embeddings. However, in some concrete applications, it is difficult
to choose appropriate initial conditions to guarantee the boundedness of the solution. Sec-
ondly, we observe that the most popular condition imposed on the nonlinear term F is its
Lipschitz-type condition. In fact, for equations arising in complicated reaction–diffusion
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processes, the nonlinear function F represents the source of material or population, which
dependents on time in diversified manners in many contexts. Thus, we may not hope to
have the Lipschitz-type condition of F . Finally, there are few papers studying the asymp-
totically stable of periodic solutions for the impulsive evolution equations with delay.

Motivated by the papers mentioned above, we consider the periodic problem for the im-
pulsive delay evolution equation (1.1) in Banach space. By using a periodic extension and
the fixed point theorem, we study the existence of ω-periodic mild solutions for Eq. (1.1).
It is worth mentioning that the assumption of prior boundedness of solutions is not em-
ployed and the nonlinear term F satisfies some growth condition, which is weaker than
Lipschitz-type condition. On the other hand, by means of an integral inequality with im-
pulsive and delay, we present the asymptotic stability result for Eq. (1.1), which will make
up the research in this area blank.

The rest of this paper is organized as follows. In Sect. 2, we collect some well-known
definitions and notions, and then provide preliminary results which will be used through-
out this paper. In Sect. 3, we apply the operator semigroup theory to find the ω-periodic
mild solutions for Eq. (1.1) and in Sect. 4, by strengthening the condition, we obtain the
global asymptotic stability theorems for Eq. (1.1). In the last section, we give an example
to illustrate the applicability of abstract results obtained in Sects. 3 and 4.

2 Preliminaries
Throughout this paper, we assume that X is a Banach space with norm ‖ · ‖.

Now, we recall some notions and properties of operator semigroups, which are essential
for us. For the detailed theory of operator semigroups, we refer to [18]. Assume that A :
D(A) ⊂ X → X is a closed linear operator and –A is the infinitesimal generator of a C0-
semigroup T(t) (t ≥ 0) in X. Then there exist M > 0 and ν ∈R such that

∥
∥T(t)

∥
∥ ≤ Meνt , t ≥ 0. (2.1)

Let

ν0 = inf
{
ν ∈R | there exists M > 0 such that

∥
∥T(t)

∥
∥ ≤ Meνt ,∀t ≥ 0

}
,

then ν0 is called the growth exponent of the semigroup T(t) (t ≥ 0). If ν0 < 0, then T(t)
(t ≥ 0) is called an exponentially stable C0-semigroup.

If C0-semigroup T(t) is continuous in the uniform operator topology for every t > 0 in
X, it is well known that ν0 can also be determined by σ (A) (the resolvent set of A),

ν0 = – inf
{
Reλ | λ ∈ σ (A)

}
, (2.2)

where –A is the infinitesimal generator of C0-semigroup T(t) (t ≥ 0). We know that T(t)
(t ≥ 0) is continuous in the uniform operator topology for t > 0 if T(t) (t ≥ 0) is compact
semigroup (see [21]).

Let J denote the infinite interval [0, +∞), from [18], it follows that when x0 ∈ D(A) and
h ∈ C1(J , X), the initial value problem of the linear evolution equation

⎧
⎨

⎩

u′(t) + Au(t) = h(t), t ∈ J ,

u(0) = x0,
(2.3)
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has a unique classical solution u ∈ C1(J , X) ∩ C(J , X1), which can be expressed by

u(t) = T(t)x0 +
∫ t

0
T(t – s)h(s) ds, (2.4)

where X1 = D(A) is Banach space with the graph norm ‖ · ‖1 = ‖ · ‖ + ‖A · ‖. Generally, for
x0 ∈ X and h ∈ C(J , X), the function u given by (2.4) belongs to C(J , X) and it is called a
mild solution of the linear evolution equation (2.3).

Let D̃ = {t1, t2, . . . , tp} ⊂ [0,ω], where p ∈ N denotes the number of impulsive points be-
tween [0,ω]. Write

PC
(
[0,ω], X

)
:=

{
u : [0,ω] → X | u is continuous at t ∈ [0,ω] \ D̃,

u is continuous from left and has right limits at t ∈ D̃
}

and

PCω(R, X) :=
{

u : R → X | u is continuous at t ∈ R \ {ti}, u is continuous from

left and has right limits at ti, i ∈ Z, u(t + ω) = u(t) for t ∈R
}

.

It is clear that the restriction of PCω(R, X) on [0,ω] is PC([0,ω], X). Set

‖u‖PC = max
{

sup
t∈[0,ω]

∥
∥u(t + 0)

∥
∥, sup

t∈[0,ω]

∥
∥u(t + 0)

∥
∥
}

.

It can be seen that equipped with the norm ‖ ·‖PC , PCω(R, X) (or PC([0,ω], X)) is a Banach
space.

Given h ∈ PCω(R, X), we consider the existence of ω-periodic mild solution for the linear
impulsive evolution equation in X

⎧
⎨

⎩

u′(t) + Au(t) = h(t), t ∈R, t �= ti,

�u(ti) = vi, i ∈ Z,
(2.5)

where vi ∈ X satisfy vi+p = vi (i ∈ Z).

Lemma 2.1 Let –A generate an exponentially stable C0-semigroup T(t) (t ≥ 0) in X and
ν0 be a growth index of the semigroup T(t) (t ≥ 0). Then the linear impulsive evolution
equation (2.5) exists a unique ω-periodic mild solution u := Ph ∈ PCω(R, X). Furthermore,
the operator P : PCω(R, X) → PCω(R, X) is a bounded linear operator.

Proof Firstly, for x0 ∈ X, we consider the existence of mild solution for the initial value
problem of the linear impulsive evolution equation

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) + Au(t) = h(t), t ∈ J \ {t1, t2, . . .},
�u(ti) = vi, i = 1, 2, . . . ,

u(0) = x0.

(2.6)
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Let t0 = 0, v0 = θ and Ji = (ti–1, ti], i = 1, 2, . . . . If u ∈ PC(J , X) is a mild solution of Eq. (2.6),
then the restriction of u on Ji satisfies the initial value problem of linear evolution equation
without impulse

⎧
⎨

⎩

u′(t) + Au(t) = h(t), ti–1 < t ≤ ti,

u(t+
i–1) = u(ti–1) + vi–1, i = 1, 2, . . . .

(2.7)

Thus, the initial value problem (2.7) exists a unique mild solution u on Ji which can be
expressed by

u(t) = T(t – ti–1)
(
u(ti–1) + vi–1

)
+

∫ t

ti–1

T(t – s)h(s) ds, t ∈ Ji. (2.8)

Iterating successively in the above equation with u(tj), j = i – 1, i – 2, . . . , 1, we can verify
that u satisfies

u(t) = T(t)x0 +
∫ t

0
T(t – s)h(s) ds +

∑

0≤ti<t

T
(
t – t+

i
)
vi, t ∈ J . (2.9)

Inversely, we can see that the function u ∈ PC(J , X) defined by (2.8) is a mild solution of
the initial value problem (2.6).

Secondly, we demonstrate that the linear impulsive evolution equation (2.5) exists a
unique ω-periodic mild solution. It is clear that the ω-periodic mild solution of Eq. (2.5)
restricted on J is the mild solution of the initial value problem (2.6) with the initial
value

x0 := u(0) = u(ω),

namely

(
I – T(ω)

)
x0 =

∫ ω

0
T(ω – s)h(s) ds +

p∑

i=1

T
(
ω – t+

i
)
vi. (2.10)

For any ν ∈ (0, |ν0|), there exists M > 0 such that

∥
∥T(t)

∥
∥ ≤ Me–νt ≤ M, t ≥ 0. (2.11)

In X, define an equivalent norm | · | by |x| = sup0≤s≤t ‖eνtT(t)x‖, then ‖x‖ ≤ |x| ≤ M‖x‖.
By |T(t)| we denote the norm of T(t) in (X, | · |), it is easy to obtain |T(t)| ≤ e–νt

for t ≥ 0, which implies that (I – T(ω)) has bounded inverse operator (I – T(ω))–1,
and

∣
∣
(
I – T(ω)

)–1∣∣ ≤ 1
1 – e–νω

. (2.12)

Therefore, there exists a unique initial value

x0 =
(
I – T(ω)

)–1
(∫ ω

0
T(ω – s)h(s) ds +

p∑

i=1

T
(
ω – t+

i
)
vi

)

:= B(h), (2.13)
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such that the mild solution u of Eq. (2.6) given by (2.8) satisfies the periodic boundary
condition u(0) = u(ω) = x0.

For t ∈ J , by the semigroup properties of T(t), we have

u(t + ω) = T(t + ω)u(0) +
∫ t+ω

0
T(t + ω – s)h(s) ds +

∑

0<ti<t+ω

T
(
t + ω – t+

i
)
vi

= T(t + ω)u(0) +
∫ ω

0
T(t + ω – s)h(s) ds +

∫ t+ω

ω

T(t + ω – s)h(s) ds

+
p∑

i=1

T
(
t + ω – t+

i
)
vi +

∑

ω<ti<t+ω

T
(
t + ω – t+

i
)
vi

= T(t)

(

T(ω)u(0) +
∫ ω

0
T(ω – s)h(s) ds +

p∑

i=1

T
(
ω – t+

i
)
vi

)

+
∫ t

0
T(t – s)h(s) ds +

∑

0<ti<t

T
(
t – t+

i
)
vi

= T(t)u(0) +
∫ t

0
T(t – s)h(s) ds +

∑

0<ti<t

T
(
t – t+

i
)
vi

= u(t).

Therefore, the ω-periodic extension of u on R is a unique ω-periodic mild solution of
Eq. (2.5).

Finally, by (2.8) and (2.13), we obtain

u(t) = T(t)x0 +
∫ t

0
T(t – s)h(s) ds +

∑

0<ti<t

T
(
t – t+

i
)
vi

= T(t)
(
I – T(ω)

)–1
(∫ ω

0
T(ω – s)h(s) ds +

p∑

i=1

T
(
ω – t+

i
)
vi

)

+
∫ t

0
T(t – s)h(s) ds +

∑

0<ti<t

T
(
t – t+

i
)
vi

=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)h(s) ds

+
(
I – T(ω)

)–1
p∑

i=1

T(t + ω – ti)vi +
∑

0<ti<t

T(t – ti)vi

=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)h(s) ds

+
(
I – T(ω)

)–1 ∑

t–ω≤ti<t
T(t – ti)vi

:= Ph(t),

thus, it is easy to prove that the solution operator P : PCω(R, X) → PCω(R, X) is a bounded
linear operator. This completes the proof of Lemma 2.1. �
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3 Existence and uniqueness
In this section, we discuss the existence of ω-periodic mild solution to Eq. (1.1) for the case
that the semigroup T(t) (t ≥ 0) generated by –A is a compact semigroup, which implies
that T(t) is a compact operator for any t > 0.

Now, we are in a position to state and prove our main results of this section.

Theorem 3.1 Let X be a Banach space, –A generates an exponentially stable compact
semigroup T(t) (t ≥ 0) in X. Assume that F : R × X × PC([–r, 0], X) → X is continuous
and F(t, ·, ·) is ω-periodic in t, Ik ∈ C(X, X) (k ∈ Z) satisfies Ik+p = Ik , p is the number of
impulsive points between [0,ω]. If the following conditions are satisfied:

(H1) there exist nonnegative constants c0, c1, c2 such that

∥
∥F(t, x,φ)

∥
∥ ≤ c0 + c1‖x‖ + c2‖φ‖Pr, t ∈R, x ∈ X,φ ∈ PC

(
[–r, 0], X

)
,

(H2) for every Ik , Ik(θ ) = θ , and there exist positive constants ak such that

∥
∥Ik(x) – Ik(y)

∥
∥ ≤ ak‖x – y‖, ak+p = ak , x, y ∈ X, k ∈ Z,

(H3) (c1 + c2) + 1
ω

∑p
k=1 ak < |ν0|

M ,
then Eq. (1.1) has at least one ω-periodic mild solution u.

Proof Define an operator Q : PCω(R, X) → PCω(R, X) by

(Qu)(t) =
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)f
(
s, u(s), us

)
ds

+
(
I – T(ω)

)–1 ∑

t–ω≤tk<t
T(t – tk)Ik

(
u(tk)

)
, t ∈R. (3.1)

From Lemma 2.1 and the definition of Q, we easily see that the ω-periodic mild solution
of Eq. (1.1) is equivalent to the fixed point of Q. In the following, we will prove Q has a
fixed point by applying the fixed point theorem.

It is not difficult to prove that Q is continuous on PCω(R, X). In fact, let {un} ⊂ PCω(R, X)
be a sequence such that un → u ∈ PCω(R, X) as n → ∞, hence, for every t ∈ R, we
have un(t) → u(t) ∈ X and un,t → ut ∈ PC([–r, 0], X) as n → ∞. From F : R × X ×
PC([–r, 0], X) → X is continuous, and Ik ∈ C(X, X) (k ∈ Z), it follows that

F
(
t, un(t), un,t

) → F
(
t, u(t), ut

)
, n → ∞, (3.2)

and

Ik
(
un(tk)

) → Ik
(
u(tk)

)
, n → ∞. (3.3)

By (3.1)–(3.3) and the Lebesgue dominated convergence theorem, for every t ∈R, we have

∥
∥(Qun)(t) – (Qu)(t)

∥
∥

≤ ∥
∥
(
I – T(ω)

)–1∥∥ ·
∥
∥
∥
∥

∑

t–ω≤tk<t
T(t – tk)

(
Ik

(
un(tk)

)
– Ik

(
u(tk)

))
∥
∥
∥
∥
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+
∥
∥
(
I – T(ω)

)–1∥∥ ·
∥
∥
∥
∥

∫ ω

t–ω

T(t – s) · (F
(
s, un(s), un,s

)
ds – F

(
s, u(s), us

))
ds

∥
∥
∥
∥

≤ C
( ∑

t–ω≤tk<t

∥
∥T(t – tk)

∥
∥ · ∥∥Ik

(
un(tk)

)
– Ik

(
u(tk)

)∥
∥

+
∫ t

t–ω

∥
∥T(t – s)

∥
∥ · ∥∥F

(
s, un(s), un,s

)
– F

(
s, u(s), us

)∥
∥ds

)

→ 0 (n ∈ ∞),

which implies that Q : PCω(R, X) → PCω(R, X) is continuous, where C = ‖(I – T(ω))–1‖,
by the proof of Lemma 2.1, one can obtain

∥
∥
(
I – T(ω)

)–1∥∥ ≤ ∣
∣
(
I – T(ω)

)–1∣∣ ≤ 1
1 – eν0ω

.

For any R > 0, let

ΩR =
{

u ∈ PCω(R, X) | ‖u‖PC ≤ R
}

. (3.4)

Note that ΩR is a closed ball in PCω(R, X) with center θ and radius r. Now, we show that
there is a positive constant R such that Q(ΩR) ⊂ ΩR. If this were not case, then, for any
R > 0, there exist u ∈ ΩR and t ∈ R such that ‖(Qu)(t)‖ > R. Thus, we see by (H1) and (H2)
that

R <
∥
∥(Qu)(t)

∥
∥

≤ ∥
∥
(
I – T(ω)

)–1∥∥ ·
∫ ω

t–ω

∥
∥T(t – s)

∥
∥ · ∥∥F

(
s, u(s), us

)∥
∥ds

+
∥
∥
(
I – T(ω)

)–1∥∥ ·
∑

t–ω≤tk<t

∥
∥T(t – tk)

∥
∥ · ∥∥Ik

(
u(tk)

)∥
∥

≤ 1
1 – eν0ω

·
∫ t

t–ω

Meν0(t–s)(c0 + c1
∥
∥u(s)

∥
∥ + c2‖us‖Pr

)
ds

+
1

1 – eν0ω
·

p∑

k=1

Meν0(t–tk )ak
∥
∥u(tk)

∥
∥

≤ –
M
ν0

(
c0 + (c1 + c2)‖u‖PC

)
–

M
ν0ω

p∑

k=1

ak‖u‖PC

≤ –
M
ν0

(
c0 + (c1 + c2)R

)
–

M
ν0ω

p∑

k=1

akR.

Dividing on both sides by R and taking the lower limit as R → ∞, we have

(c1 + c2) +
1
ω

p∑

k=1

ak ≥ –
ν0

M
, (3.5)

which contradicts (H3). Hence, there is a positive constant R such that Q(ΩR) ⊂ ΩR.
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In order to show that the operator Q has a fixed point on ΩR, we also introduce the
decomposition Q = Q1 + Q2, where

Q1u(t) :=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)F
(
s, u(s), us

)
ds, (3.6)

Q2u(t) :=
(
I – T(ω)

)–1 ∑

t–ω≤tk<t
T(t – tk)Ik

(
u(tk)

)
. (3.7)

Then we will prove that Q1 is a compact operator and Q2 is a contraction.
Firstly, we prove that Q1 is a compact operator. Clearly, Q1 is continuous and Q1 maps

ΩR into a bounded set in PCω(R, X). Now, we demonstrate that Q1(ΩR) is equicontinuous.
For every u ∈ ΩR, by the periodicity of u, we only consider it on [0,ω]. Setting 0 ≤ t1 < t2 ≤
ω, we get

Q1u(t2) – Q1u(t1)

=
(
I – T(ω)

)–1
∫ t2

t2–ω

T(t2 – s)F
(
s, u(s), us

)
ds

–
(
I – T(ω)

)–1
∫ t1

t1–ω

T(t1 – s)F
(
s, u(s), us

)
ds

=
(
I – T(ω)

)–1
∫ t1

t2–ω

(
T(t2 – s) – T(t1 – s)

)
F
(
s, u(s), us

)
ds

–
(
I – T(ω)

)–1
∫ t2–ω

t1–ω

T(t1 – s)F
(
s, u(s), us

)
ds

+
(
I – T(ω)

)–1
∫ t2

t1

T(t2 – s)F
(
s, u(s), us

)
ds

:= I1 + I2 + I3.

It is clear that

∥
∥Q1u(t2) – Q1u(t1)

∥
∥ ≤ ‖I1‖ + ‖I2‖ + ‖I3‖. (3.8)

Thus, we only need to check ‖Ii‖ tend to 0 independently of u ∈ ΩR when t2 – t1 → 0,
i = 1, 2, 3.

From the condition (H1), it follows that there is a constant M′ > 0 such that

∥
∥F

(
t, u(t), us

)∥
∥ ≤ M′, u ∈ ΩR, t ∈R.

Combining this fact with the equicontinuity of the semigroup T(t) (t ≥ 0), we have

‖I1‖ ≤ C ·
∫ t1

t2–ω

∥
∥
(
T(t2 – s) – T(t1 – s)

)∥
∥ · ∥∥F

(
s, u(s), us

)∥
∥ds

≤ CM′
∫ t1

t2–ω

∥
∥
(
T(t2 – s) – T(t1 – s)

)∥
∥ds

→ 0, as t2 – t1 → 0,
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‖I2‖ ≤ C ·
∫ t2–ω

t1–ω

∥
∥T(t1 – s)

∥
∥ · ∥∥F

(
s, u(s), us

)∥
∥ds

≤ CMM′(t2 – t1)

→ 0, as t2 – t1 → 0,

‖I3‖ ≤ C ·
∫ t2

t1

∥
∥T(t2 – s)

∥
∥ · ∥∥F

(
s, u(s), us

)∥
∥ds

≤ CMM′(t2 – t1) ds

→ 0, as t2 – t1 → 0.

Hence, ‖Q1u(t2)–Q1u(t1)‖ tends to 0 independently of u ∈ ΩR as t2 – t1 → 0, which means
that Q1(ΩR) is equicontinuous.

It remains to show that (Q1ΩR)(t) is relatively compact in X for all t ∈R. To do this, we
define a set (QεΩr)(t) by

(QεΩr)(t) :=
{

(Qεu)(t) | u ∈ Ωr , 0 < ε < ω, t ∈R
}

, (3.9)

where

(Qεu)(t) =
(
I – T(ω)

)–1
∫ t–ε

t–ω

T(t – s)F
(
s, u(s), us

)
ds

= T(ε)
(
I – T(ω)

)–1
∫ t–ε

t–ω

T(t – s – ε)F
(
s, u(s), us

)
ds.

Since the operator T(ε) is compact in X, thus, the set (QεΩR)(t) is relatively compact in X.
For any u ∈ ΩR and t ∈R, from the inequality

∥
∥Q1u(t) – Qεu(t)

∥
∥ ≤ C

∫ t

t–ε

∥
∥T(t – s)F

(
s, u(s), us

)∥
∥ds

≤ C
∫ t

t–ε

∥
∥T(t – s)F

(
s, u(s), us

)∥
∥ds

≤ CMM′ε,

which implies that the set (Q1ΩR)(t) is relatively compact in X for all t ∈R.
Thus, the Arzela–Ascoli theorem guarantees that Q1 is a compact operator.
Secondly, we prove that Q2 is a contraction. Let u, v ∈ ΩR, by the condition (H2), we

have

∥
∥Q2u(t) – Q2v(t)

∥
∥

≤ ∥
∥
(
I – T(ω)

)–1∥∥ ·
∥
∥
∥
∥

∑

t–ω≤tk<t
T(t – tk)

(
Ik

(
u(tk)

)
– Ik

(
v(tk)

))
∥
∥
∥
∥

≤ 1
1 – eν0ω

·
p∑

k=1

Meν0(t–tk )ak
∥
∥u(tk) – v(tk)

∥
∥

≤ –
M
ν0ω

p∑

k=1

ak‖u – v‖PC ,
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therefore,

‖Q2u – Q2v‖PC ≤ –
M
ν0ω

p∑

k=1

ak‖u – v‖PC . (3.10)

From the condition (H3), we can deduce Q2 is a contraction.
Therefore, by the famous Sadovskii fixed point theorem [19], we know that Q has a fixed

point u ∈ ΩR, that is, Eq. (1.1) has an ω-periodic mild solution. The proof is completed.
�

Furthermore, we assume that F satisfies Lipschitz condition, namely,
(H1′) there are positive constants c1, c2, such that for every t ∈ R, x0, x1 ∈ X and φ,ψ ∈

PC([–r, 0], X)

∥
∥F(t, x,φ) – F(t, y,ψ)

∥
∥ ≤ c1‖x – y‖ + c2‖φ – ψ‖Pr,

then we can obtain the following result.

Theorem 3.2 Let X be a Banach space, –A generates an exponentially stable compact
semigroup T(t) (t ≥ 0) in X. Assume that F : R×X ×PC([–r, 0], X) → X is continuous and
F(t, ·, ·) is ω-periodic in t, Ik ∈ C(X, X) (k ∈ Z). If the conditions (H1′), (H2) and (H3) hold,
then Eq. (1.1) has unique ω-periodic mild solution u.

Proof From (H1′) we easily see that (H1) holds. In fact, for any t ∈ R, x ∈ X and φ ∈
PC([–r, 0], X), by the condition (H1′),

∥
∥F(t, x,φ)

∥
∥ ≤ ∥

∥F(t, x,φ) – F(t, θ , θ )
∥
∥ +

∥
∥F(t, θ , θ )

∥
∥

≤ c1‖x‖ + c2‖φ‖Pr +
∥
∥F(t, θ , θ )

∥
∥.

From the continuity and periodicity of F , we can choose c0 = maxt∈[0,ω] ‖F(t, θ , θ )‖, thus,
the condition (H1) holds. Hence by Theorem 3.1, Eq. (1.1) has ω-periodic mild solutions.

Let u, v ∈ PCω(R, X) be the ω-periodic mild solutions of Eq. (1.1), then they are the fixed
points of the operator Q which is defined by (3.1). Hence,

∥
∥u(t) – v(t)

∥
∥ =

∥
∥Qu(t) – Qv(t)

∥
∥

≤
∥
∥
∥
∥

(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)
(
F
(
s, u(s), us

)
– F

(
s, v(s), vs

))
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

(
I – T(ω)

)–1 ∑

t–ω≤tk <t
T(t – tk)

(
Ik

(
u(tk)

)
– Ik

(
v(tk)

))
∥
∥
∥
∥

≤ 1
1 – eν0ω

·
∫ t

t–ω

Meν0(t–s) · ∥∥F
(
s, u(s), us

)
– F

(
s, v(s), vs

)∥
∥ds

+
1

1 – eν0ω

∑

t–ω≤tk<t
Meν0(t–tk ) · ∥∥Ik

(
u(tk)

)
– Ik

(
v(tk)

)∥
∥
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≤ –
M
ν0

∫ t

t–ω

c1
∥
∥u(s) – v(s)

∥
∥ + c2‖us – vs‖Pr ds

–
M
ν0ω

p∑

k=1

ak
∥
∥u(tk) – v(tk)

∥
∥

≤
(

–
M
ν0

(c1 + c2) –
M
ν0ω

p∑

k=1

ak

)

‖u – p‖PC ,

which implies that

‖u – v‖PC = ‖Qu – Qv‖PC ≤
(

–
M
ν0

(c1 + c2) –
M
ν0ω

p∑

k=1

ak

)

‖u – v‖PC .

From this and the condition (H3), it follows that u2 = u1. Thus, Eq. (1.1) has only one
ω-periodic mild solution. �

4 Asymptotic stability
In order prove the asymptotic stability of ω-periodic solutions for Eq. (1.1), we need dis-
cuss the existence and uniqueness of the following initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) + Au(t) = F(t, u(t), ut), t ≥ 0, t �= ti,

�u(ti) = Ii(u(ti)), i = 1, 2, . . . ,

u0 = ϕ,

(4.1)

where F : J × X × PC([–r, 0], X) → X is continuous and ϕ ∈ PC([–r, 0], X).
Define

PC
(
[–r,∞), X

)
:=

{
u : [–r,∞) → X | u is continuous at t ∈ [–r,∞) \ {tj},

u is continuous from left and has right limits at tj, j ∈N
}

.

If there exists u ∈ PC([–r,∞), X) satisfying u(t) = ϕ(t) for –r ≤ t ≤ 0 and

u(t) = T(t)u(0) +
∫ t

0
T(t – s)F

(
s, u(s), us

)
ds +

∑

0<tk<t

T(t – tk)Ik
(
u(tk)

)
, t ≥ 0, (4.2)

then u is called a mild solution of the initial value problem (4.1).
In order to obtain the results as regards asymptotic stability, we need the following in-

tegral inequality of Gronwall–Bellman type with delay and being impulsive.

Lemma 4.1 Assume that φ ∈ PC([–r,∞), J), and there exist constants α1 ≥ 0, α2 ≥ 0 and
βi ≥ 0 (i = 1, 2, . . .) such that, for every t ≥ 0, φ satisfies the integral inequality

φ(t) ≤ φ(0) + α1

∫ t

0
φ(s) ds + α2

∫ t

0
sup

τ∈[–r,0]
φ(s + τ ) ds +

∑

0<tk<t

βkφ(tk). (4.3)

Then φ(t) ≤ ‖φ‖Pr · ∏0<tk <t(1 + βk)e(α1+α2)t for every t ≥ 0.
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Proof Define a function ψ : [–r,∞) → R as follows:

ψ(t) = sup
s∈[–r,t]

φ(s), t ∈ [–r,∞).

Then ψ ∈ PC([–r,∞), J) and φ(t) ≤ ψ(t) for t ∈ [–r,∞). Similar to the proof of [10,
Lemma 4.1], we can get the following inequality:

ψ(t) ≤ ‖φ‖Pr + (α1 + α2)
∫ t

0
ψ(s) ds +

∑

0<tk <t

βkψ(tk), t ≥ 0.

By [20, Lemma 1, p. 12], ψ(t) ≤ ‖φ‖Pr
∏

0<tk<t(1 + βk)e(α1+α2)t for every t ≥ 0. Therefore,
φ(t) ≤ ‖φ‖Pr

∏
0<tk<t(1 + βk)e(α1+α2)t for every t ≥ 0. �

For the initial value problem (4.1), we have the following result.

Theorem 4.1 Let X be a Banach space, –A generates a C0-semigroup T(t) (t ≥ 0) in X.
Assume that F : J × X × PC([–r, 0], X) → X is continuous, Ik ∈ C(X, X) (k = 1, 2, . . .), and
ϕ ∈ PC([–r, 0], X). If the conditions (H1′) and (H2) hold, then the initial value problem (4.1)
has a unique mild solution u ∈ PC([–r,∞), X).

Proof For t ∈ [–r, t1], the initial value problem (4.1) is in the following form:

⎧
⎨

⎩

u′(t) + Au(t) = F(t, u(t), ut), t ∈ [0, t1],

u(t) = ϕ(t), t ∈ [–r, 0].
(4.4)

Write

PC
(
[–r, t1], X

)
:=

{
u | u : [–r, t1] → X with u|[0,t1] ∈ C

(
[0, t1], X

)

and u|[–r,0] ∈ PC
(
[–r, 0], X

)}
,

then PC([–r, t1], X) is a Banach space under the norm

‖u‖1 = sup
t∈[0,t1]

∥
∥u(t)

∥
∥ + ‖u|[–r,0]‖Pr.

For any ϕ ∈ PC([–r, 0], X), let PCϕ([–r, t1], X) = {u ∈ PC([–r, t1], X) | u|[–r,0] = ϕ}, then
PCϕ([–r, t1], X) is a closed convex subset of PC([–r, t1], X). For each ϕ ∈ PC([–r, 0], X) and
u ∈ PCϕ([–r, t1], X), define an operator as follows:

(Q̃u)(t) =

⎧
⎨

⎩

T(t)u(0) +
∫ t

0 T(t – s)F(s, u(s), us) ds, t ∈ [0, t1],

ϕ(t), t ∈ [–r, 0].
(4.5)

It is easy to see that Q̃ is well defined, Q̃u ∈ PCϕ([–r, t1], X), and the mild solution of
Eq. (4.4) for ϕ is equivalent to the fixed point of Q̃ in PCϕ([–r, t1], X).
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Now, we prove that Q̃ has a fixed point in PCϕ([–r, t1], X). From the condition (H1′) and
(4.5), it follows that for any u, v ∈ PCϕ([–r, t1], X), n = 1, 2, . . . ,

∥
∥
(
Q̃nu

)
(t) –

(
Q̃nv

)
(t)

∥
∥ ≤ (M1(c1 + c2)t)n

n!
‖u – v‖1,

where M1 is the bound of ‖T(t)‖ on [0, t1]. By the contraction principle, one shows that Q̃
has a unique fixed point u1 in PCϕ([–r, t1], X), which means the initial value problem (4.4)
has a mild solution and

u1(t) =

⎧
⎨

⎩

T(t)u(0) +
∫ t

0 T(t – s)F(s, u(s), us) ds,

ϕ(t), t ∈ [–r, 0].
(4.6)

For t ∈ [–r, t2], the initial value problem (4.1) is in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) + Au(t) = F(t, u(t), ut), t ∈ (t1, t2],

u(t+
1 ) = I1(u(t1)) + u(t1),

u(t) = u1(t), t ∈ [–r, t1].

(4.7)

Similar to the proof of (4.4), we can prove that the initial value problem (4.7) has a mild
solution u2 ∈ PCϕ([–r, t2], X),

u2(t) =

⎧
⎨

⎩

T(t – t1)u(t+
1 ) +

∫ t
t1

T(t – s)F(s, u(s), us) ds, t ∈ (t1, t2],

u1(t), t ∈ [–r, t1]

=

⎧
⎨

⎩

T(t)u(0) +
∫ t

0 T(t – s)F(s, u(s), us) ds + T(t – t1)I1(u(t1)), t ∈ [0, t2],

ϕ(t), t ∈ [–r, 0].

Doing this interval by interval, we see that there exists u ∈ PCϕ([–r,∞), X) satisfying u(t) =
ϕ(t) for –r ≤ t ≤ 0 and

u(t) = T(t)u(0) +
∫ t

0
T(t – s)F

(
s, u(s), us

)
ds +

∑

0<tk<t

T(t – tk)Ik
(
u(tk)

)
, t ≥ 0, (4.8)

which is a mild solution of the initial value problem (4.1).
Next, we show the uniqueness. Let u, v ∈ PC([–r,∞), X) be the mild solutions of the

initial value problem (4.1), hence they satisfy the initial value condition u(t) = v(t) = ϕ(t)
for –r ≤ t ≤ 0 and (4.2). By the condition (H1′) and (H2), for every t ≥ 0, one has

∥
∥u(t) – v(t)

∥
∥

≤
∥
∥
∥
∥

∫ t

0
T(t – s)

(
F
(
s, u(s), us

)
– F

(
s, v(s), vs

))
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∑

0<tk<t

T(t – tk)
(
Ik

(
u(tk)

)
– Ik

(
v(tk)

))
∥
∥
∥
∥

≤
∫ t

0

∥
∥T(t – s)

∥
∥ · ∥∥F

(
s, u(s), us

)
– F

(
s, v(s), vs

)∥
∥ds
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+
∑

0<tk<t

∥
∥T(t – tk)

∥
∥ · ∥∥Ik

(
u(tk)

)
– Ik

(
v(tk)

)∥
∥

≤ M
∫ t

0
c1

∥
∥u(s) – v(s)

∥
∥ + c2‖us – vs‖Pr ds

+ M
∑

0<tk<t

ak
∥
∥u(tk) – v(tk)

∥
∥

≤ M
∫ t

0
c1

∥
∥u(s) – v(s)

∥
∥ + c2 sup

τ∈[–r,0]

∥
∥u(s + τ ) – v(s + τ )

∥
∥ds

+ M
∑

0<tk<t

ak
∥
∥u(tk) – v(tk)

∥
∥.

From Lemma 4.1, it follows that ‖u(t) – v(t)‖ = 0 for every t ≥ 0. Hence, u ≡ v. This
completes the proof of Theorem 4.1. �

Theorem 4.2 Let X be a Banach space, –A generates an exponentially stable compact
semigroup T(t) (t ≥ 0) in X. Assume that F : R×X ×PC([–r, 0], X) → X is continuous and
F(t, ·, ·) is ω-periodic in t, Ik ∈ C(X, X) (k ∈ Z). If the conditions (H1′), (H2) and

(H3′) (c1 + c2e–ν0r) + 1
ω

∑p
k=1 ak < |ν0|

M ,
hold, then the unique ω-periodic mild solution of the periodic problem (1.1) is globally
asymptotically stable.

Proof From the condition (H3′), it follows that the condition (H3) holds. By Theorem 3.2,
the periodic problem (1.1) has a unique ω-periodic mild solution u∗ ∈ PCω(R, X). For any
φ ∈ PC([–r, 0], X), the initial value problem (4.1) has a unique global mild solution u =
u(t,φ) ∈ PC([–r,∞), X) by Theorem 4.1.

By the semigroup representation of the solutions, u∗ and u satisfy the integral equation
(4.2). Thus, by (4.2) and condition (H1′), (H2), for any t ≥ 0, we have

∥
∥u(t) – u∗(t)

∥
∥

≤ ∥
∥T(t)

(
u(0) – u∗(0)

)∥
∥

+
∥
∥
∥
∥

∫ t

0
T(t – s)

(
c1

(
u(s) – u∗(s)

)
+ c2

(
us – u∗

s
))

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∑

0<tk<t

T(t – tk)
(
Ik

(
u(tk)

)
– Ik

(
u∗(tk)

))
∥
∥
∥
∥

≤ Meν0t∥∥u(0) – u∗(0)
∥
∥ +

∫ t

0
Meν0(t–s)c1

∥
∥u(s) – u∗(s)

∥
∥ds

+
∫ t

0
Meν0(t–s)c2 sup

τ∈[–r,0]

∥
∥u(s + τ ) – u∗(s + τ )

∥
∥ds

+
∑

0<tk<t

Meν0(t–tk )ak
∥
∥u(tk) – u∗(tk)

∥
∥ds

≤ Meν0t∥∥u(0) – u∗(0)
∥
∥ + eν0t

∫ t

0
Mc1e–ν0s∥∥u(s) – u∗(s)

∥
∥
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+ eν0t
∫ t

0
Mc2e–ν0r sup

τ∈[–r,0]
e–ν0(s+τ )∥∥u(s + τ ) – u∗(s + τ )

∥
∥ds

+ eν0t
∑

0<tk <t

Make–ν0tk
∥
∥u(tk) – u∗(tk)

∥
∥.

Then

e–ν0t∥∥u(t) – u∗(t)
∥
∥

≤ M
∥
∥u(0) – u∗(0)

∥
∥ +

∫ t

0
Mc1e–ν0s∥∥u(s) – u∗(s)

∥
∥

+
∫ t

0
Mc2e–ν0r sup

τ∈[–r,0]
e–ν0(s+τ )∥∥u(s + τ ) – u∗(s + τ )

∥
∥ds

+
∑

0<tk<t

Make–ν0tk
∥
∥u(tk) – u∗(tk)

∥
∥,

for t ∈ [–r,∞), let φ(t) = e–ν0t‖u(t) – u∗(t)‖, one can obtain

φ(t) ≤ Mφ(0) + Mc1

∫ t

0
φ(s) + Mc2e–ν0r

∫ t

0
sup

τ∈[–r,0]
φ(s + τ ) ds +

∑

0<tk<t

Makφ(tk),

hence, from Lemma 4.1, it follows that

e–ν0t∥∥u(t) – u∗(t)
∥
∥ = φ(t) ≤ C(ϕ)

∏

0<tk<t

(1 + Mak)eM(c1+c2e–ν0r)t , (4.9)

where C(ϕ) = sups∈[–τ ,0]{e–ν0s‖ϕ(s) – u∗(s)‖Pr}. Set k = np + q (q = 1, 2, . . . , p – 1, n =
0, 1, 2, . . .), by the periodicity of ak , one can obtain

∑

0<tk<t

ln(1 + Mak) ≤ (n + 1)
p∑

k=1

ln(1 + Mak),

thus,

lim
t→∞

∑
0<tk <t ln(1 + Mak)

t
≤ lim

n→∞
(n + 1)

∑p
k=1 ln(1 + Mak)

nω

=
1
ω

p∑

k=1

ln(1 + Mak)

≤ M
ω

p∑

k=1

ak .

Therefore, from the assumption (H3), it follows that

σ := –ν0 – lim
t→∞

∑
0<tk <t ln(1 + Mak)

t
– M

(
c1 + c2e–ν0r) > 0. (4.10)

Combining (4.9) with (4.10), we can obtain

∥
∥u(t) – u∗(t)

∥
∥ ≤ C(ϕ)e–σ t → 0 (t → ∞). (4.11)
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Thus, the ω-periodic solution u∗ is globally asymptotically stable and it exponentially at-
tracts every mild solution of the initial value problem. This completes the proof of Theo-
rem 4.2. �

5 Application
In this section, we present one example, which does not aim at generality, but indicates
how our abstract results can be applied to concrete problems.

Let Ω ∈R
n be a bounded domain with a C2-boundary ∂Ω for n ∈ N . Let ∇2 is a Laplace

operator, and λ1 is the smallest eigenvalue of operator –∇2 under the Dirichlet boundary
condition u|∂Ω = 0. It is well known [3, Theorem 1.16], that λ1 > 0.

Under the above assumptions, we discuss the existence, uniqueness and asymptotic sta-
bility of time 2π-periodic solutions of the semilinear parabolic boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ∇2u = λ1

4 sin t · u(x, t) +
∫ t

t–r e
4
λ1

(s–t) · u(x, s) ds, x ∈ Ω , t �= tk ,

�u(x, tk) = λ1π

p (esin u(x,tk ) – 1), x ∈ Ω , tk = 2k–1
p π , k ∈ Z,

u|∂Ω = 0,

(5.1)

where p > 0 is an integer, r > 0 is a real number.
Let X = L2(Ω) with the norm ‖ · ‖2, then X is a Banach space. Define an operator A :

D(A) ⊂ X → X by

D(A) = W 2,2(Ω) ∩ W 1,2
0 (Ω), Au = –∇2u. (5.2)

From [4], we know that –A is a selfadjoint operator in X, and generates an exponentially
stable analytic semigroup Tp(t) (t ≥ 0), which is contractive in X. From the operator A
being compact resolvent in L2(Ω), Tp(t) (t ≥ 0) is a compact semigroup (see [18]), which
implies that the growth exponent of the semigroup T(t) (t ≥ 0) satisfies ν0 = –λ1. There-
fore, for every t > 0, ‖T(t)‖2 ≤ M := 1 and ‖(I – T(2π ))‖ ≤ 1

1–e–2λ1π .
Now, we define u(t) = u(·, t), Ik(u(tk)) = (esin u(·,tk ) – 1), and since for u ∈ PC2π (R, X),

∫ t

t–r
e

4
λ1

(s–t) · u(s) ds =
∫ 0

–r
e

4
λ1

s · u(t + s) ds =
∫ 0

–r
e

4
λ1

s · ut(s) ds,

we define F : R× X × PC([–r, 0], X) → X by

F(t, ξ ,φ) =
λ1

4
sin t · ξ +

∫ 0

–r
e

4
λ1

s
φ(s) ds, (5.3)

thus, it is east to see that tk+p = tk + 2π , Ik : X → X (k ∈ Z) are continuous functions sat-
isfying Ik+p = Ik and F : R × X × PC([–r, 0], X) → X is continuous function which is 2π-
periodic in t. Hence, the impulsive and delay parabolic boundary value problem (5.1) can
be reformulated as the abstract evolution equation (1.1) in X.

From the definition of F and Ik , for every t ∈R, ξ1, ξ2 ∈ X and φ1,φ2 ∈ PC([–r, 0], X), we
have

∥
∥F(t, ξ1,φ1) – F(t, ξ2,φ2)

∥
∥

2 ≤ λ1

4
‖ξ1 – ξ2‖2 +

λ1

4
(
1 – e– 4r

λ1
)‖φ1 – φ2‖Pr,
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∥
∥Ik(ξ1) – Ik(ξ2)

∥
∥

2 ≤ λ1π

p
‖ξ1 – ξ2‖2, k ∈ Z,

which implies that the conditions (H1′), (H2) and (H3) hold. Thus, by Theorem 3.2, the
parabolic boundary value problem (5.1) has only one time 2π-periodic mild solution.
Moreover, if 0 < r < λ1 ln 4

λ2
1+4 , then we can deduce that the condition (H3′) holds. From Theo-

rem 4.2, one can see that the unique 2π-periodic mild solution of problem (5.1) is globally
asymptotically stable.
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