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Abstract
In this paper, we study the admissible meromorphic solutions to the algebraic
differential equation f nf ′ + Pn–1(f ) = uev in an angular domain instead of the whole
complex plane, where Pn–1(f ) is a differential polynomial in f of degree ≤ n – 1 with
small function coefficients, u is a non-vanishing small function of f and v is an entire
function. Herein, mainly, we are able to show that the equation does not admit any
meromorphic solution f under some conditions unless Pn–1(f ) ≡ 0. Using this result,
we are able to extend or generalize a well-known result of Hayman.
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1 Introduction
In a recent paper, Liao and Ye considered meromorphic solutions f to

f nf ′ + Qd(z, f ) = uev, (1.1)

where Qd(z, f ) denotes a differential polynomial in f of degree d with rational function
coefficients. More precisely, they obtained the following result.

Theorem 1.1 ([1]) Let Qd(z, f ) be a differential polynomial in f of degree d with rational
function coefficients. Suppose that u is a non-zero rational function and v is a non-constant
polynomial. If n ≥ d + 1 and the differential equation (1.1) admits a meromorphic solution
f with finitely many poles, then f has the following form:

f = sev/(n+1) and Qd(z, f ) ≡ 0,

where s is a rational function with sn((n + 1)s′ + v′s) = (n + 1)u.

It becomes natural for us to ask the following question: Does the conclusion of Theo-
rem 1.1 remains valid if the condition “u is a non-zero rational function and v is a non-
constant polynomial” is replaced by a weaker one, such as “u and v are entire functions”
in the above theorem?
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In this paper, we consider a slightly more general case of Eq. (1.1), where u and the coef-
ficients of Qd(z, f ) are meromorphic functions, not necessarily rational functions. Further-
more, v is an entire function. In this case, we will show that there exists an angular domain
Ω(α,β) = {z : α ≤ arg z ≤ β} such that the conclusion of Theorem 1.1 remains valid, where
α,β ∈ [0, 2π ] and 0 < β – α ≤ 2π .

The technique developed here will be different from what has been employed in [1].
Now, we first introduce the Nevanlinna theory on an angular domain, which can be found
in Goldberg–Ostrovskii [2] and the references therein.

Herein let f denote a non-constant meromorphic function on the closed angular domain
Ω(α,β) = Ω(α,β) ∪ {0} ∪ {∞}, and let k = π (β – α)–1, 1 ≤ r < ∞. Following Goldberg–
Ostrovskii [2, pp. 23–26], we introduce the following notations [3]:

Aαβ (r, f ) =
k
π

∫ r

1

(
1
tk –

tk

r2k

)[
log+∣∣f (teiα)∣∣ + log+∣∣f (teiβ)∣∣]dt

t
;

Bαβ (r, f ) =
2k
πrk

∫ β

α

log+∣∣f (reiφ)∣∣ sin k(φ – α) dφ;

Cαβ (r, f ) = 2k
∫ r

1
cαβ (t, f )

(
1
tk +

tk

r2k

)
dt
t

,

where

cαβ (r, f ) =
∑

1<ρn≤r,α≤ϕn≤β

sin k(ϕn – α),

and the ρneiϕn are poles of f counted according to their multiplicity. The function Cαβ(r, f )
is called the angular counting function of the poles of f on Ω(α,β) and the Nevanlinna
angular characteristic function is defined as Sαβ (r, f ):

Sαβ(r, f ) = Aαβ (r, f ) + Bαβ (r, f ) + Cαβ (r, f ).

Similarly, for any finite value a, we define here Aαβ (r, fa), Bαβ(r, fa), Cαβ (r, fa) and Sαβ (r, fa),
where fa = 1/(f – a). In what follows, when there is no danger of confusion, next we omit
the subscript of all the above notations and, respectively, use the notations A(r, fa), B(r, fa),
C(r, fa) and S(r, fa) instead of Aαβ (r, fa), Bαβ (r, fa), Cαβ (r, fa) and Sαβ (r, fa) for any finite
value a.

In this paper, unless otherwise stated, we address a meromorphic function that is defined
and meromorphic in the whole complex plane. It is assumed the reader is familiar with the
basic theory of the Nevanlinna value distribution and its standard symbols and notations
(see e.g., [4, 5]).

For the order ρ(f ) = ∞, we use the following concept of a proximate order as introduced
in [6].

Theorem 1.2 ([6]) Let B(r) be a positive and continuous function in [0, +∞), which satisfies
lim supr→∞

log B(r)
log r = ∞, then there exists a continuously differentiable function ρ(r), which

satisfies the following conditions.
(i) ρ(r) is continuous and nondecreasing for r > r0 (r0 > 0)and tends to +∞ as r → +∞.
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(ii) The function U(r) = rρ(r) (r ≥ r0) satisfies the condition

lim
r→+∞

log U(R)
log U(r)

= 1, R = r +
r

log U(r)
.

(iii)

lim sup
r→+∞

log B(r)
log U(r)

= 1.

We define ρ(r) and U(r) in Theorem 1.2 by the proximate order and type function of
B(r), respectively. For a transcendental meromorphic function f of infinite order, we define
its proximate order and type function as the proximate order and type function of T(r, f ).
We denote M(ρ(r)) by the set of all meromorphic functions f in the complex plane such
that

lim sup
r→∞

log T(r, f )
log U(r)

= 1.

For the sake of simplicity, we use the Landau symbols O(· · · ) and o(· · · ) as r → ∞, where
and in what follows, Q(r, f ) is such a quantity that if the order ρ(f ) < ∞, then Q(r, f ) = O(1),
as r → ∞; if the order ρ(f ) = ∞, then Q(r, f ) = O(log U(r)). It is not necessarily the same
for every occurrence in the context.

Throughout the paper, given a meromorphic function f , we define

Sf :=
{

h | meromorphic, S(r, h) = Q(r, f )
}

,

as r → ∞, possibly outside a set of r values of finite linear measure.
In addition, we need the following concept (see, e.g., [7] and [8]).

Definition 1.3 Let R(z,ω) be rational in ω with meromorphic coefficients. A meromor-
phic solution ω of (ω′)n = R(z,ω) is called admissible, if S(r, a) = Q(r,ω) holds for all coef-
ficients a of R(z,ω).

Of course, admissibility makes sense relative to any family of meromorphic functions,
without any reference to differential equations.

Before proceeding further, we recall the following result. Recently, Liu–Lü–Yang con-
sidered the possible admissible solution to the following equation.

Theorem 1.4 ([9]) Let p, q and u be non-vanishing meromorphic functions in complex
plane, v be an entire function. Then the differential equation

pff ′ – q = uev (1.2)

has no transcendental meromorphic solutions in the complex plane.

Motivated by the preceding, as a continuation and further studies on some of the related
results in the complex plane, we will state our main results in Sect. 3, which extend some
results earlier; see, e.g., [10–13] and the references therein.
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2 Preliminary lemmas
To prove our results, the following lemmas are needed.

Lemma 2.1 ([2, pp. 23–26] and [2, Theorem 3.1]) Let f be a non-constant meromorphic
function and Ω(α,β) be a domain, where 0 < β – α ≤ 2π . Then, for an arbitrary complex
number a ∈C and any integer k ≥ 0, we have

S
(

r,
1

f – a

)
= S(r, f ) + O(1),

S
(
r, f (k)) ≤ 2kS(r, f ) + Q(r, f ),

and

A
(

r,
f (k)

f

)
+ B

(
r,

f (k)

f

)
= Q(r, f ).

Lemma 2.2 ([2, Theorem 3.3]) Let f be a meromorphic function. Then, for arbitrary q
distinct values aj ∈C∪ {∞} (1 ≤ j ≤ q),

(q – 2)S(r, f ) ≤
q∑

j=1

C
(

r,
1

f – aj

)
+ Q(r, f ),

where C(r, 1
f –aj

) is the reduced form of C(r, 1
f –aj

).

Lemma 2.3 ([2]) Let f be a meromorphic function. By D(r, f ), we denote any of the char-
acteristics A(r, f ), B(r, f ), and C(r, f ). Then

D(r, f + g) ≤ D(r, f ) + D(r, g) + log 2,

D(r, f · g) ≤ D(r, f ) + D(r, g),

and

D
(
r, f k) = kD(r, f )

for any positive integer k.

Lemma 2.4 Let f be a meromorphic solution of

f nP1(z, f ) = P2(z, f ),

where P1(z, f ) and P2(z, f ) are polynomials in f and its derivatives with meromorphic coef-
ficients {aλ | λ ∈ I} such that S(r, aλ) = Q(r, f ) for all r ∈ I . If the total degree of Q(z, f ) as a
polynomial in f and its derivatives is less than or equal to n, then

A
(
r, P(r, f )

)
+ B

(
r, P(r, f )

)
= Q(r, f ).

We omit the proof of Lemma 2.4, since it is similar to the proof of Clunie’s theorem [4,
p. 68, Lemma 3.3] and [14, 15] in the plane.
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3 Main results
In this section, we give our main results as follows.

Theorem 3.1 Let f be a transcendental meromorphic function, Pn–1(f ) be a differential
polynomial in f such that its coefficients are in Sf and deg Pn–1(f ) ≤ n – 1. Assume further
that v is a non-constant entire function of finite order and u (u ∈ Sf ) is a meromorphic
function. Then, for any positive integer n, and any ε (0 < ε < π/2), there exists a direction
arg z = θ such that the equation

f nf ′ + Pn–1(f ) = uev, (3.1)

does not admit any non-constant meromorphic solution f on the domain Ω(θ – ε, θ + ε)
with C(r, f ) = Q(r, f ) unless Pn–1(f ) = 0. Moreover, if (3.1) admits a meromorphic solution
f on Ω(θ – ε, θ + ε) with C(r, f ) = Q(r, f ), then (3.1) will become f nf ′ = uev and f must have
the form f = ψ exp(v/(n + 1)) as the only possible admissible solution of (3.1), where ψ is
in Sf .

Proof First of all, we suppose that f ∈ M(ρ(r)). In this case, we show that f nf ′ + Pn–1(f )
cannot be Sf . Otherwise, from C(r, f ) = Q(r, f ) and Lemma 2.4, we get A(r, f ′) + B(r, f ′) =
Q(r, f ) and then S(r, f ′) = Q(r, f ). A contradiction S(r, f ) = Q(r, f ) now follows by relying on
Theorem 2.6.5 in [16, p. 91]. Thus, for any meromorphic function f under the condition:
C(r, f ) = Q(r, f ),

S
(
r, f nf ′ + Pn–1(f )

) 
= Q(r, f ). (3.2)

Therefore (3.2) shows that uev is not in Sf .
It is well known that a meromorphic function f ∈ M(ρ(r)) has at least one Borel direction

arg z = θ of order ρ(r). In the following, we prove that the direction arg z = θ satisfies the
theorem. For any ε (0 < ε < π/2), then

lim sup
r→∞

log S(r, f )
log rρ(r) = 1

holds on Ω(θ – ε, θ + ε) ∪ {0} ∪ {∞}.
To prove the theorem, we first assume that Pn–1(f ) 
≡ 0. By examining carefully the proof

of the Milloux estimate in [4, p. 55], we deduce from the assumption C(r, f ) = Q(r, f ) and
(3.1) that

S
(
r, ev) ≤ (n + 1)S(r, f ) + Q(r, f ),

which shows that v and v′ are in Sf .
Taking the logarithmic derivative on both sides of (3.1) yields

nf n–1(f ′)2 + f nf ′′ + P′
n–1(f )

f nf ′ + Pn–1(f )
=

u′

u
+ v′,

which gives the equality

–
(

u′

u
+ v′

)
f nf ′ + nf n–1(f ′)2 + f nf ′′ =

(
u′

u
+ v′

)
Pn–1(f ) – P′

n–1(f ). (3.3)
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Now, we set

ϕ = –
(

u′

u
+ v′

)
ff ′ + n

(
f ′)2 + ff ′′. (3.4)

It follows by (3.3) that

f n–1ϕ =
(

u′

u
+ v′

)
Pn–1(f ) – P′

n–1(f ) := P∗
n–1(f ). (3.5)

Clearly, P∗
n–1(f ) is a differential polynomial in f with deg P∗

n–1(f ) ≤ n – 1. First of all, let
us show that ϕ 
≡ 0. Assume the contrary, that is, ϕ ≡ 0. Then P∗

n–1(f ) ≡ 0, and accord-
ingly (3.5) gives BPn–1(f ) ≡ uev with a constant B. Since f is a non-constant meromorphic
function, (3.1) shows that B 
= 1, and

f nf ′ = (B – 1)Pn–1(f ),

which together with Lemma 2.4 implies A(r, f ′) + B(r, f ′) = Q(r, f ). Thereby we have
S(r, f ′) = Q(r, f ) from the assumption C(r, f ) = Q(r, f ). This is a contradiction. Hence ϕ 
≡ 0.
Moreover, applying Lemma 2.4 to (3.5) again, we can derive A(r,ϕ) + B(r,ϕ) = Q(r, f ) and
so S(r,ϕ) = Q(r, f ). That is ϕ ∈ Sf .

Note that (3.4) can be represented in the form

ϕ

f 2 = –
(

u′

u
+ v′

)
f ′

f
+ n

(
f ′

f

)2

+
f ′′

f
,

which and Lemma 2.1 yield A(r, ϕ

f 2 ) + B(r, ϕ

f 2 ) = Q(r, f ). Thus, we obtain

A
(

r,
1
f

)
+ B

(
r,

1
f

)
= Q(r, f ). (3.6)

On the other hand, it is clear that (3.4) shows that

C(2

(
r,

1
f

)
≤ C

(
r,

1
ϕ

)
+ Q(r, f ) ≤ S(r,ϕ) + Q(r, f ) = Q(r, f ),

which implies that the zeros of f are mainly simple zeros on Ω(θ – ε, θ + ε). This observa-
tion will be repeatedly used later on. Thus, by (3.6) and the definition of S(r, f ), we obtain

S(r, f ) = C
(

r,
1
f

)
+ Q(r, f ) = C1)

(
r,

1
f

)
+ Q(r, f ), (3.7)

where in C1)(r, 1/f ) only the simple zeros of f are to be considered on Ω(θ – ε, θ + ε).
Without loss of generality we may assume that z0 be a simple zero of f such that u(z0) 
= 0.

Then we find by (3.4) that

n
(
f ′)2(z0) = ϕ(z0). (3.8)
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If ϕ is a constant, and set

h(z) =
f ′(z) –

√
ϕ

n

f (z)
. (3.9)

Obviously h 
≡ 0 since f is transcendental. It follows by (3.6), (3.8), (3.9) and Lemma 2.1
that

A(r, h) + B(r, h) = Q(r, f ). (3.10)

From (3.7) and (3.9), we arrive at C(r, h) = Q(r, f ), which and (3.10) show that h ∈ Sf . Now,
we rewrite (3.9) as

f ′(z) = h(z)f (z) +
√

ϕ

n
. (3.11)

By (3.11) and (3.4), we obtain

[
(n + 1)h2 + h′ – h

(
u′

u
+ v′

)]
f 2 +

[
2nh –

(
u′

u
+ v′

)]√
ϕ

n
f + h

√
ϕ

n
= 0,

this and Lemma 2.3 (or [2, p. 33, Theorem 6.3]) imply h
√

ϕ

n ≡ 0, a contradiction. Thus
ϕ′ 
≡ 0. Again, by taking the logarithmic derivative on both sides of (3.4), we conclude

ϕ′ = –t′ff ′ – t
(
f ′)2 – tff ′′ + (2n + 1)f ′f ′′ + ff ′′′, (3.12)

where t = u′
u + v′. By (3.12) and (3.8), we see that a simple zero z0 of f (z) such that u(z0) 
= 0,

is a zero of (2n + 1)ϕf ′′(z) – (tϕ + nϕ′)f ′(z).
Two cases will now be considered below, depending on whether or not (2n + 1)ϕf ′′(z) –

(tϕ + nϕ′)f ′(z) vanishes identically.
Case 1. (2n + 1)ϕf ′′(z) – (tϕ + nϕ′)f ′(z) 
≡ 0. Set

g(z) =
(2n + 1)ϕf ′′(z) – (tϕ + nϕ′)f ′(z)

f (z)
.

Trivially, g(z) ∈ Sf . Thus, we have

f ′′ =
g

(2n + 1)ϕ
f +

tϕ + nϕ′

(2n + 1)ϕ
f ′ := s1f + s2f ′ (3.13)

and

f ′′′ =
(
s′

1 + s1s2
)
f +

(
s1 + s′

2 + s2
2
)
f ′. (3.14)

It follows by (3.14), (3.13), (3.12) and (3.4) that

(
(2n + 1)s1 – t′ – ts2 + s1 + s′

2 + s2
2 + t

ϕ′

ϕ
– s2

ϕ′

ϕ

)
f ′

+
(

s′
1 + s1s2 – ts1 – s1

ϕ′

ϕ

)
f = 0. (3.15)



Zhang et al. Advances in Difference Equations         (2019) 2019:91 Page 8 of 11

In this case, (3.15) and (3.7) imply

s′
1 + s1s2 – ts1 – s1

ϕ′

ϕ
≡ 0.

Since g 
≡ 0, we know that s1 
≡ 0. Thus, we can rewrite the above equation as

s′
1

s1
+ s2 – t –

ϕ′

ϕ
≡ 0,

hence we have (2n + 1) log s1 = 2n(log u + v) + (3n + 1) logϕ + L with a constant L, which
implies (uev)2neLϕ3n+1 = s2n+1

1 , we see that uev is in Sf , this contradicts (3.2).
Case 2. (2n + 1)ϕf ′′(z) – (tϕ + nϕ′)f ′(z) ≡ 0. In this case, we conclude

f ′′ = ξ f ′ (3.16)

with ξ = nϕ′
(2n+1)ϕ + t

2n+1 . Thus (3.16) gives

f ′′′ =
(
ξ ′ + ξ 2)f ′. (3.17)

It follows by (3.17), (3.16), (3.12) and (3.4) that

(
ξ ′ + ξ 2)f ′ =

(
t′ – t

ϕ′

ϕ

)
f ′ +

(
t +

ϕ′

ϕ

)
ξ f ′.

Thus, we have

ξ ′ – t′ ≡ –ξ (ξ – t) + (ξ – t)
ϕ′

ϕ
. (3.18)

If ξ – t ≡ 0, then, by the definitions of t and ξ , we see that (uev)2 = ηϕ, η is a constant. So
uev is in Sf , this contradicts (3.2). Hence ξ – t 
≡ 0. In this case, again, by (3.18), we obtain
(2n + 1) log(ξ – t) = n logϕ + log u + v + τ with a constant τ . This gives uev ∈ Sf , this also
contradicts (3.2).

This completes the proof of our conclusion, namely f nf ′ + Pn–1(f ) = uev does not admit
any meromorphic solution f on Ω(θ – ε, θ + ε) with C(r, f ) = Q(r, f ) unless Pn–1(f ) ≡ 0.

Assume that ρ(f ) < +∞. Note v is a non-constant entire function, so we have ρ(f ) > 0.
Let σ satisfy 0 < σ < ρ(f ). For a given angular domain Ω(α,β), β – α = π

σ
. Without loss of

generality, we may assume that f has at least one Borel direction in the angular domain
Ω(α + ε,β – ε) (0 < ε < π/2). Hence, there exists a finite complex number a such that

lim sup
r→∞

log n(r,Ω(α + ε,β – ε), f = a)
log r

> σ =
π

β – α
.

The Hadamard factorization theorem and (3.1) give f = ψ exp(v/(n + 1)), where ψ is in Sf .
Then the conclusion of the theorem follows. The proof is finished. �

Corollary 3.2 Let f be a transcendental meromorphic function, Pn–1(f ) (Pn–1(0) 
= 0) de-
note a differential polynomial in f with its coefficients are in Sf and deg Pn–1(f ) ≤ n – 1.
Then, for any positive integer n, and any ε (0 < ε < π/2), there exists a direction arg z = θ

such that f nf ′ + Pn–1(f ) has infinitely many zeros on Ω(θ – ε, θ + ε) with C(r, f ) = Q(r, f ).
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Remark 3.3 Take f (z) = ez + e–z, and P0(f ) = –2. Obviously, ff ′′ + P0(f ) = e2z + e–2z has
infinitely many zeros.

Based on Corollary 3.2 and Remark 3.3, we present the following more general conjec-
ture; see, e.g., [3] and [17].

Conjecture 3.4 Let f be a transcendental meromorphic function, and assume further that
Pn–1(f ) is a differential polynomial in f with its coefficients are in Sf and deg Pn–1(f ) ≤ n – 1
such that Pn–1(0) 
= 0. Then, for any positive integers n, k, and any ε (0 < ε < π/2), there
exists a direction arg z = θ such that

C
(

r,
1

f nf (k) + Pn–1(f )

)

= Q(r, f )

on Ω(θ – ε, θ + ε) with C(r, f ) = Q(r, f ).

Remark 3.5 We will give some examples below to show that the restricted conditions in
Corollary 3.2 are sharp.

Example 3.6 Take f (z) = eez – 1, and P2(f ) = 2ezf 2 + 3ezf + ez . Obviously, ez ∈ Sf , and f 2f ′ +
P2(f ) = eze3ez has no zeros on Ω(θ – ε, θ + ε).

Example 3.7 Let f (z) = ez2 – 1, and P1(f ) = 2zf + 2z. Obviously, ff ′ + P1(f ) = 2ze2z2 has only
one zero on Ω(θ – ε, θ + ε).

Examples 3.6 and 3.7 tell us that the conclusion of Corollary 3.2 is false, if we replace the
restricted condition “deg Pn–1(f ) ≤ n – 1” by “deg Pn(f ) ≤ n”.

Example 3.8 If we take f (z) = z2ez , P2(f ) = ff ′ –( 2
z +1)f 2, then 2/z+1 ∈ Sf , and f 3f ′ +P2(f ) =

(2 + z)z7e4z has only finitely many zeros on Ω(θ – ε, θ + ε).

Example 3.8 shows that the restricted condition “Pn–1(0) 
= 0” in Corollary 3.2 is neces-
sary.

Corollary 3.2 may be false if the condition “C(r, f ) = Q(r, f )” is violated. There is no dif-
ficulty in showing that Example 3.9 below is a counterexample.

Example 3.9 We take α = –π , β = π , f (z) = ez

ez–1 , P1(f ) = 3
2 f ′′ + 3

2 f ′ + f – 1.

Indeed, a calculation yields C(r, 1/f ) = 0, C(r, 1/(f – 1)) = 0. It follows by Lemma 2.2 that
C(r, f ) = S(r, f ) + Q(r, f ). Further, we would like to mention that f 2f ′ + P1(f ) = – 1

(ez–1)4 has
no zeros on Ω(θ – ε, θ + ε).

By noting that f in the above counterexample (Example 3.9) satisfies “C(r, f ) = S(r, f ) +
Q(r, f )”, we can see that it would be interesting if one could characterize all the solutions
on some Ω(θ – ε, θ + ε) to the equation

f nf (k) + Pn–1(f ) = uev

with C(r, f ) 
= S(r, f ) + Q(r, f ), where n, k are positive integers.
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From Theorem 3.1, we also obtain the following result, which complements the corre-
sponding results in [1].

Theorem 3.10 Let f ∈ M(ρ(r)) of finite order with C(r, f ) = Q(r, f ), qm(f ) = bmf m + · · · +
b1f + b0 a polynomial of degree m with bj ∈ Sf (j = 0, 1, . . . , m), and let n be an integer
with n ≥ m + 1. Then, for any ε (0 < ε < π/2), there exists a direction arg z = θ such that
f ′f n + qm(f ) assumes every function γ ∈ Sf infinitely many times on Ω(θ – ε, θ + ε), except
for a possible function b0 = qm(0). On the other hand, if f ′f n + qm(f ) assumes b0 = qm(0)
finitely many times on Ω(θ – ε, θ + ε), then qm(z) ≡ b0.

Proof This theorem can be proved in the same manner as that in the proof of Theorem 3.1,
so it is omitted here. �

4 Conclusions
Using the different and much simpler proofs, this paper provides two main results on
Ω(α,β), which extend the main results that were derived in [1]. To bring about our results
from the more general hypotheses without complicated calculations will probably be the
most interesting feature of this note. And then some examples show that the restrict con-
ditions are necessary. Finally, one more general conjecture was posed in this note.
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