
Qi et al. Advances in Difference Equations        (2019) 2019:114 
https://doi.org/10.1186/s13662-019-1992-9

R E S E A R C H Open Access

A note on entire functions sharing a finite set
with their difference operators
Jianming Qi1,2*, Yanfeng Wang3 and Yongyi Gu4

*Correspondence:
qijianmingsdju@163.com
1Business College, Shanghai Dianji
University, Shanghai, P.R. China
2Department of Physics and
Mathematics, University of Eastern
Finland, Joensuu, Finland
Full list of author information is
available at the end of the article

Abstract
In this note, we will show that an entire function is equal to its difference operator if it
has a growth property and shares a set, where the set consists of two entire functions
of smaller orders. This result generalizes a result of Li (Comput. Methods Funct. Theory
12:307–328, 2012 and partially answers Liu’s (J. Math. Anal. Appl. 359:384–393, 2009)
question.
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1 Introduction and main result
A set is called a unique range set (URSE) for a certain class of entire functions if each
inverse image of the set uniquely determines a function from the given class. Let S be a
finite set of some entire functions and f an entire function. Then, a set E(f , S) is defined as

E(f , S) =
{

(z, m) ∈C× Z, f (z) – a(z) = 0 with multiplicity m, a ∈ S
}

.

Assume that g is another entire function. We say that f and g share S CM if E(f , S) = E(g, S).
Thus, a set S is called URSE if E(f , S) = E(g, S) where f and g are two entire functions; then
f = g .

The first example of a URSE was given by Gross and Yang [3], who considered the zero
set of equation z + ez = 0. In view of the fact that this set has infinitely many elements, it is
natural to ask whether there exists a finite unique range set or not; the question is proposed
by Gross in [4]. In 1995, Yi [5] gave a straightforward answer to Gross’ question and found
the URSE wn + awm + b = 0, where n > 2m + 4 and a, b satisfy a certain condition. Since
then, there have been many efforts to study the problem of constructing unique range sets;
see e.g. [6, 7, 24]. There is another study direction on the URSE of entire functions, which
is to seek a set S such that if E(f , S) = E(f ′, S), then f = f ′ for an entire function f . Li and
Yang [8] deduced that if E(f , S) = E(f ′, S) with S consisting of two distinct constants, then f
has specific forms. Later, based on the theory of the normal family, Fang and Zalcman [9]
answered the question by proving that there exists a finite set S including three elements
such that if E(f , S) = E(f ′, S), then f = f ′.

In recent years, the Nevanlinna characteristic of f (z + ω), the value distribution theory
for difference polynomials, the Nevanlinna theory of the difference operator and the dif-
ference analogue of the lemma on the logarithmic derivative had been established; see

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-1992-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-1992-9&domain=pdf
mailto:qijianmingsdju@163.com


Qi et al. Advances in Difference Equations        (2019) 2019:114 Page 2 of 7

e.g. [2, 10, 11, 16–23]. Due to these theories, there has been recent study of whether the
derivative f ′ can be replaced by the difference operator �cf (z) = f (z + c) – f (z) in the above
question. In 2009, Liu [2] considered the problem and obtained the result as follows.

Theorem A Suppose that a is a nonzero complex number, and f is a transcendental entire
function with finite order. If f and �cf share {a, –a} CM, then �cf (z) = f (z) for all z ∈C.

Liu also proposed the question as follows [2]: Let a and b be two small functions of f
with period c. When a transcendental entire function f of finite order and its difference
operator �cf share the set {a, b} CM, what can we say about the relationship between f
and �cf ?

In 2012, Li [1] considered the problem and proved the following.

Theorem B Suppose that a, b are two distinct entire functions, and f is a nonconstant
entire function with ρ(f ) �= 1 and λ(f ) < ρ(f ) < ∞ such that ρ(a) < ρ(f ) and ρ(b) < ρ(f ). If
f and �cf share {a, b} CM, then f (z) = �cf (z) for all z ∈C.

Here, the order ρ(f ) is defined by

ρ(f ) = lim sup
r→∞

log T(r, f )
log r

,

and the exponent of convergence of zeros λ(f ) is defined by

λ(f ) = lim sup
r→∞

log N(r, 1
f )

log r
.

In Theorem B, the condition ρ(f ) �= 1 seems not natural. So one may ask whether it can
be removed or not. In this paper, we consider the question and show that the theorem still
holds without the condition ρ(f ) �= 1. More precisely, we give the specific form of f in a
simple way.

Main theorem Suppose that a, b are two distinct entire functions, and f is a nonconstant
entire function of finite order with λ(f ) < ρ(f ) < ∞ such that ρ(a) < ρ(f ) and ρ(b) < ρ(f ). If f
and �cf share {a, b} CM, then f (z) = Aeμz , where A, μ are two nonzero constants satisfying
eμc = 2. Furthermore, f (z) = �cf (z).

Using the almost same method, we generalize the above result from entire functions to
meromorphic functions after the above theorem. Due to the use of almost the same method,
we omit the detailed proof.

Corollary Suppose that a, b are two distinct entire functions, and f is a nonconstant fi-
nite order meromorphic function which has finite poles and with λ(f ) < ρ(f ) < ∞ such that
ρ(a) < ρ(f ) and ρ(b) < ρ(f ). If f and �cf share {a, b} CM, then f (z) = Aeμz , where A, μ are
two nonzero constants satisfying eμc = 2. Furthermore, f (z) = �cf (z).

A similar result can be found in [11]. Before we proceed, we suppose that the reader is
familiar with Nevanlinna theory, for example, the first and second main theorems, and the
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common notations such as T(r, f ), m(r, f ) and N(r, f ). S(r, f ) denotes any quantity which
satisfies S(r, f ) = o(T(r, f )) as r → ∞, except possibly on a set of finite logarithmic measure;
see e.g. [12–14].

2 Proof of Main theorem
We will prove our theorem in this section. Before we turn to its proof, we first give the
following results, where the first one is Corollary 2.6 of Chiang and Feng in [10], and the
second one is Lemma 3.3 of Bergweiler and Langley in [15].

Lemma 2.1 Let f be a meromorphic function of finite order and let ω1, ω2 be two arbitrary
complex numbers such that ω1 �= ω2. Assume that σ is the order of f , then for each ε > 0, we
have

m
(

r,
f (z + ω1)
f (z + ω2)

)
= O

(
rσ–1+ε

)
.

Lemma 2.2 Let g be a function transcendental and meromorphic in the plane of order less
than 1. Set h > 0. Then there exists an ε-set E such that

g(z + ω)
g(z)

→ 1, when z → ∞ in C \ E,

uniformly in ω for |ω| ≤ h.

Proof of main theorem Note that f and �cf share {a, b} CM. So we can set

(�cf – a)(�cf – b)
(f – a)(f – b)

= eQ (2.1)

in which Q is an entire function. Furthermore, it follows from (2.1) and max{ρ(a),ρ(b)} <
ρ(f ) < ∞ that Q is a polynomial.

By the Hadamard factorization theorem, we suppose that f (z) = h(z)eP(z), where h ( �≡ 0)
is an entire function and P is a polynomial satisfying

λ(f ) = ρ(h) < ρ(f ) = deg(P).

Then

�cf = f (z + c) – f (z) =
(
h(z + c)eP(z+c)–P(z) – h(z)

)
eP(z).

We substitute the forms of f and �cf into (2.1) to find

[(
h(z + c)eP(z+c)–P(z) – h(z)

)
eP(z) – a(z)

][(
h(z + c)eP(z+c)–P(z) – h(z)

)
eP(z) – b(z)

]

=
(
h(z)eP(z) – a(z)

)(
h(z)eP(z) – b(z)

)
eQ(z). (2.2)

Set w1 = (h(z + c)eP(z+c)–P(z) – h(z)). Suppose that w1 ≡ 0. Then,

h(z + c)eP(z+c) = h(z)eP(z),
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which means �cf ≡ 0. It contradicts with Eq. (2.1). Thus, we suppose that w1 �≡ 0 below.
Obviously, w1 is a small function of eP . Rewrite (2.2) as

eQ =
w2

1[eP – a
w1

][eP – b
w1

]

h2[eP – a
h ][eP – b

h ]
. (2.3)

Note that a �≡ b. Without loss of generality, we suppose that a �≡ 0. Assume that z0 is a
zero of eP – a

h , but not a zero of w1. It follows from (2.3) and the assumption about sharing
that z0 is a zero of eP – a

w1
or eP – b

w1
. We denote by N1(r, eP) the reduced counting func-

tion of those common zeros of eP – a
h and eP(z) – a

w1
. Similarly, we denote by N2(r, eP) the

reduced counting function of those common zeros of eP – a
h and eP – b

w1
. Note that h is a

small function respect to eP; applying the second fundamental theorem to eP and the first
fundamental theorem to eP – a

h yields

T
(
r, eP)

= N
(

r,
1

eP(z) – a
h

)
+ S

(
r, eP)

= N1
(
r, eP)

+ N2
(
r, eP)

+ S
(
r, eP)

, (2.4)

which implies that either N1(r, eP) �= S(r, eP) or N2(r, eP) �= S(r, eP). We consider the follow-
ing two cases.

Case 1. N1(r, eP) �= S(r, eP).
Let a0 be a common zero of eP – a

h and eP – a
w1

. Then it is clear that a0 is a zero of a
h – a

w1
.

If a
h – a

w1
�≡ 0, then

S
(
r, eP) �= N1

(
r, eP) ≤ N

(
r,

1
a
h – a

w1

)
≤ T

(
r,

a
h

–
a

w1

)
= S

(
r, eP)

,

a contradiction. Thus

h ≡ w1. (2.5)

It leads to

2
h(z)

h(z + c)
= eP(z+c)–P(z). (2.6)

Then, by Lemma 2.1, one has, for any ε > 0,

m
(
r, eP(z+c)–P(z)) = m

(
r,

h(z)
h(z + c)

)
+ O(1) = O

(
rρ(h)–1+ε

)
+ O(1).

On the other hand, m(r, eP(z+c)–P(z)) = [A + o(1)]rρ(f )–1, where A is a fixed positive constant.
If ρ(f ) > 1, by ρ(f ) > ρ(h) and the above estimates of m(r, eP(z+c)–P(z)), we can easily get

a contradiction. So, ρ(f ) ≤ 1, which means that eP(z+c)–P(z) is a nonzero constant, say c0.
Then (2.6) reduces to

2
h(z)

h(z + c)
= c0.
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Note that 1 ≥ ρ(f ) > ρ(h). Then by Lemma 2.2, we know that there exists an ε-set E, as
z /∈ E and |z| → ∞ such that

h(z + c)
h(z)

→ 1.

So, c0 = 2 and h(z) = h(z+c), which means that h is a periodic function. If h is a nonconstant
function, then ρ(h) ≥ 1, a contradiction. Therefore, h is a constant. Note that deg(P) =
ρ(f ) ≤ 1 and f is a nonconstant entire function. Then deg(P) = 1. Thus, we can set f = Aeμz ,
where A, μ are two nonzero constants.

By the assumption of Case 1, one sees that f – a and �cf – a have common zeros, which
are not zeros of a. Assume that α0 is a common zero of f – a and �cf – a, and not a zero
of a. Then z0 is a zero of f (z + c) – 2a(z). Furthermore,

Aeμα0 – a(α0) = 0, Aeμceμα0 – 2a(α0) = 0,

which implies that eμc = 2. Thus, we get �cf = f , which is the desired result.
Case 2. N2(r, eP) �= S(r, eP).
Let b0 be a common zero of eP – a

h and eP – b
w1

. Then it is clear that b0 is a zero of a
h – b

w1
.

If a
h – b

w1
�≡ 0, then

S
(
r, eP) �= N2

(
r, eP) ≤ N

(
r,

1
a
h – b

w1

)
≤ T

(
r,

a
h

–
b

w1

)
= S

(
r, eP)

,

a contradiction. Thus

a
h

–
b

w1
≡ 0. (2.7)

If b ≡ 0, then a
h ≡ 0, a contradiction. Thus, b �≡ 0.

We assume that c0 is a zero of eP – b
h , but not a zero of w1. It follows from (2.3) that c0

is a zero of eP – a
w1

or eP – b
w1

. We denote by N3(r, eP) the reduced counting function of
those common zeros of eP – b

h and eP – a
w1

. Similarly, we denote by N4(r, eP) the reduced
counting function of those common zeros of eP – b

h and eP – b
w1

. Then

T
(
r, eP)

= N
(

r,
1

eP – b
h

)
+ S

(
r, eP)

= N3
(
r, eP)

+ N4
(
r, eP)

+ S
(
r, eP)

, (2.8)

which implies that either N3(r, eP) �= S(r, eP) or N4(r, eP) �= S(r, eP). If N4(r, eP) �= S(r, eP),
similar to Case 1, we get the desired result. So, we assume that N3(r, eP) �= S(r, eP) below.
Similar to Case 2, we can deduce that

b
h

–
a

w1
≡ 0. (2.9)

It follows from (2.7) and (2.9) that

a2 = b2.
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Note that a �≡ b. Thus, a ≡ –b. Again by (2.9), one has w1 = –h. We can rewrite it as

h(z + c)eP(z+c)–P(z) ≡ 0, (2.10)

a contradiction.
Therefore, the proof of the main theorem is finished. �
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