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Abstract
In this paper, the implicit midpoint method is presented for solving Riesz tempered
fractional diffusion equation with a nonlinear source term, where the tempered
fractional partial derivatives are evaluated by the modified second-order Lubich
tempered difference operator. Stability and convergence analyses of the numerical
method are given. The numerical experiments demonstrate that the proposed
method is effective.
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1 Introduction
In this paper, we consider Riesz tempered fractional diffusion equation with a nonlinear
source term

∂u(x, t)
∂t

= κ
∂α,λu(x, t)

∂|x|α + g
(
x, t, u(x, t)

)
, (x, t) ∈ (a, b) × (0, T], (1.1)

with the initial and boundary conditions

u(x, 0) = ϕ(x), x ∈ [a, b], (1.2)

u(a, t) = 0, u(b, t) = 0, t ∈ [0, T], (1.3)

where 1 < α < 2, λ ≥ 0, the diffusion coefficient κ is a positive constant, ϕ(x) is a known
sufficiently smooth function, g(x, t, u) satisfies the Lipschitz condition

∣∣g(x, t, u) – g(x, t,υ)
∣∣ ≤ L|u – υ|, ∀u,υ ∈R, (1.4)

here L is Lipschitz constant, and the Riesz tempered fractional derivative ∂α,λu(x,y,t)
∂|x|α is ex-

pressed as [1, 2]

∂α,λu(x, t)
∂|x|α = cα

(R
aDα,λ

x + R
x Dα,λ

b
)
u(x, t), (1.5)
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where cα = – 1
2 cos( πα

2 ) , R
aDα,λ

x and R
x Dα,λ

b stand for the left and right Riemann–Liouville tem-
pered fractional derivatives which are defined as

R
aDα,λ

x u(x, t) = R
aD(α,λ)

x u(x, t) – λαu(x, t) – αλα–1 ∂u(x, t)
∂x

, (1.6)

R
x Dα,λ

b u(x, t) = R
x D(α,λ)

b u(x, t) – λαu(x, t) + αλα–1 ∂u(x, t)
∂x

, (1.7)

where the symbols R
aD(α,λ)

x and R
x D(α,λ)

b are defined by

R
aD(α,λ)

x u(x, t) = e–λxR
aDα

x eλxu(x, t) =
e–λx

Γ (2 – α)
∂2

∂x2

∫ x

a
eλξ u(ξ , t)(x – ξ )1–α dξ ,

R
x D(α,λ)

b u(x, t) = eλxR
x Dα

b e–λxu(x, t) =
eλx

Γ (2 – α)
∂2

∂x2

∫ b

x
e–λξ u(ξ , t)(ξ – x)1–α dξ ,

where Γ (·) is Gamma function.
Moreover, if λ = 0, then the Riesz tempered fractional derivative will reduce to the usual

Riesz fractional derivative (see e.g. [3–8]).
In recent years, differential equations with tempered fractional derivatives have widely

been used for modeling many special phenomena, such as geophysics [9–11] and finance
[12, 13] and so on. It has attracted many authors’ attention in constructing the numeri-
cal algorithm for tempered fractional partial differential equation (see e.g., [1, 2, 14–24]).
Li and Deng proposed the tempered weighted and shifted Grünwald–Letnikov formula
with second-order accuracy for Riemann–Liouville tempered fractional derivative in [24],
and its approximation is applied in the numerical simulation of the tempered fractional
Black–Scholes equation for European double barrier option by Zhang et al. [14]. Based on
this approximation, Qu and Liang [15] constructed a Crank–Nicolson scheme for a class
of variable-coefficient tempered fractional diffusion equation, and disscussed the stabil-
ity and convergence. Yu et al. [16] proposed a third-order difference scheme for one side
Riemann–Liouville tempered fractional diffusion equation and given the stability and con-
vergence analysis. Yu et al. [19] constructed a fourth-order quasi-compact difference oper-
ator for Riemann–Liouville tempered fractional derivative and tested its effectiveness by
numerical experiment. Zhang et al. [1] presented a modified second-order Lubich tem-
pered difference operator for approximating the Riemann–Liouville tempered fractional
derivative and verified its effectiveness by theoretical analysis and numerical results. The
aim of this paper is to try to use the implicit midpoint method and the modified second-
order Lubich tempered difference operator to construct a new numerical scheme, and to
give a theoretical analysis of the numerical method.

The outline of this paper is arranged as follows. In Sect. 2, numerical scheme is proposed
for solving Riesz tempered fractional diffusion equation with a nonlinear source term.
Section 3 is devoted into the stability and convergence analysis. In Sect. 4, we use the
proposed method (abbr. T-ML2) and the method (abbr. T-WSGL) in literature [24] to solve
the test problems. Finally, we draw the conclusion in Sect. 5.

2 Numerical method
Let xi = a + ih, i = 0, 1, 2, . . . , M, tn = nτ , n = 0, 1, 2, . . . , N , where h = (b – a)/M is spatial step
size, τ = T/N denotes the time step size. The exact solution and numerical solution at the
point (xi, tn) are denoted by u(xi, tn) and un

i , respectively.
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To discretize the Riemann–Liouville tempered fractional derivatives, we would intro-
duce the modified second-order Lubich tempered difference operators δα

x– and δα
x+ at the

point (xi, tn), which are defined as

δα
x–u(xi, tn) =

1
hα

i+1∑

k=0

g(α,λ)
k u(xi–k+1, tn) –

ehλ

hα

(
3α – 2

2α
–

2(α – 1)
α

e–hλ

+
α – 2

2α
e–2hλ

)α

u(xi, tn),

δα
x+u(xi, tn) =

1
hα

M–i+1∑

k=0

g(α,λ)
k u(xi+k–1, tn) –

ehλ

hα

(
3α – 2

2α
–

2(α – 1)
α

e–hλ

+
α – 2

2α
e–2hλ

)α

u(xi, tn),

where g(α,λ)
k are given as

g(α,λ)
k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ehλ( 3α–2
2α

)α , k = 0,
4α(1–α)

3α–2 e–hλg(α,λ)
0 , k = 1,

1
(3α–2)k {4(1 – α)(α – k + 1)e–hλg(α,λ)

k–1 + (α – 2)(2α

– k + 2)e–2hλg(α,λ)
k–2 }, k ≥ 2,

then we have the following lemma.

Lemma 2.1 ([1]) If ũ(x, tn) ∈ C 2+α
λ (R) (1 ≤ n ≤ N ), for the fixed step size h, we have

R
a D(α,λ)

x u(xi, tn) – λαu(xi, tn) = δα
x–u(xi, tn) + O

(
h2), 1 ≤ i ≤ M – 1, 0 ≤ n ≤ N ,

R
x D(α,λ)

b u(xi, tn) – λαu(xi, tn) = δα
x+u(xi, tn) + O

(
h2), 1 ≤ i ≤ M – 1, 0 ≤ n ≤ N ,

where ũ(x, tn) is a zero-extension of u(x, tn) with respect to x on R which is defined as

ũ(x, tn) =

⎧
⎨

⎩
u(x, tn), x ∈ [a, b],

0, R\[a, b].

The fractional Sobolev space C 2+α
λ (R) is defined by

C 2+α
λ (R) =

{
v
∣∣
∣v ∈ L1(R),

∫ +∞

–∞

(
λ2 + 
 2) 2+α

2
∣
∣̂v(
 )

∣
∣d
 < ∞

}
,

where v̂(
 ) is represented as the Fourier transformation of v(x) defined by

v̂(
 ) =
∫ +∞

–∞
e–i
xv(x) dx, i2 = –1.

According to (1.5)–(1.7), we have

κ
∂α,λu(xi, tn)

∂|x|α = δα
x u(xi, tn) + O

(
h2), (2.1)
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where

δα
x = κcα

(
δα

x– + δα
x+

)
. (2.2)

Using the implicit midpoint method to solve (1.1) at the point (xi, tn), we find

u(xi, tn+1) = u(xi, tn) + τκ
∂α,λ

∂|x|α
(

u(xi, tn+1) + u(xi, tn)
2

)

+ τg
(

xi, tn+ 1
2

,
u(xi, tn+1) + u(xi, tn)

2

)
+ O

(
τ 3),

1 ≤ i ≤ M – 1, 0 ≤ n ≤ N . (2.3)

Applying (2.1) to discretize the Riesz tempered fractional derivative, we get

u(xi, tn+1) = u(xi, tn) + τδα
x

(
u(xi, tn+1) + u(xi, tn)

2

)

+ τg
(

xi, tn+ 1
2

,
u(xi, tn+1) + u(xi, tn)

2

)
+ τR

n+ 1
2

i ,

1 ≤ i ≤ M – 1, 0 ≤ n ≤ N – 1, (2.4)

where there exists a constant c1 such that

∣
∣R

n+ 1
2

i
∣
∣ ≤ c1

(
τ 2 + h2), 1 ≤ i ≤ M – 1, 0 ≤ n ≤ N – 1. (2.5)

Omitting the error term R
n+ 1

2
i , we obtain the following numerical scheme for solving

(1.1)–(1.3):

un+1
i = un

i + τδα
x un+ 1

2
i + τgn+ 1

2
i , 1 ≤ i ≤ M1 – 1, 0 ≤ n ≤ N – 1, (2.6)

u0
i = ϕ(xi), 0 ≤ i ≤ M, (2.7)

un
0 = 0, un

M = 0, 0 ≤ n ≤ N , (2.8)

where un+ 1
2

i = un+1
i +un

i
2 , gn+ 1

2
i = g(xi, tn+ 1

2
, un+ 1

2
i ).

Furthermore, the matrix form of (2.6) can be written as

(I – A)Un+1 = (I + A)Un + τgn+ 1
2 , 0 ≤ n ≤ N – 1, (2.9)

where

Un =
(
un

1, un
2, . . . , un

M–1
)T , gn+ 1

2 =
(
gn+ 1

2
1 , gn+ 1

2
2 , . . . , gn+ 1

2
M–1

)T ,
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here A is a Toeplitz matrix, which can be written as A = B + BT , where the matrix B is
defined as

B =
κcατ

2hα

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

g(α,λ)
1 + d g(α,λ)

0

g(α,λ)
2 g(α,λ)

1 + d g(α,λ)
0

...
...

. . . . . .
...

...
...

. . . . . .
g(α,λ)

M–2 g(α,λ)
M–3 g(α,λ)

M–4 · · · g(α,λ)
1 + d g(α,λ)

0

g(α,λ)
M–1 g(α,λ)

M–2 g(α,λ)
M–3 · · · g(α,λ)

2 g(α,λ)
1 + d

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

where d = –ehλ( 3α–2
2α

– 2(α–1)
α

e–hλ + α–2
2α

e–2hλ)α .

Remark 2.1 In [24], Li and Deng combined the Crank–Nicolson method with a tem-
pered weighted and shifted Grünwald–Letnikov operator to propose a numerical method
with the accuracy of O(τ 2 + h2) for tempered fractional diffusion equation with a lin-
ear source term, where the tempered weighted and shifted Grünwald–Letnikov operators
with second-order accuracy are defined as

δ̂α
x–u(xi, tn) =

1
hα

i+1∑

k=0

ĝ(α,λ)
k u(xi–k+1, tn) –

1
hα

(
γ1ehλ + γ2 + γ3e–hλ

)(
1 – e–hλ

)αu(xi, tn),

δ̂α
x+u(xi, tn) =

1
hα

M1–i+1∑

k=0

ĝ(α,λ)
k u(xi+k–1, tn) –

1
hα

(
γ1ehλ + γ2 + γ3e–hλ

)(
1 – e–hλ

)αu(xi, tn),

where the weights ĝ(α,λ)
k are given as

ĝ(α,λ)
k =

⎧
⎪⎪⎨

⎪⎪⎩

γ1w(α)
0 ehλ, k = 0,

γ1w(α)
1 + γ2w(α)

0 , k = 1,

(γ1w(α)
k + γ2w(α)

k–1 + γ3w(α)
k–2)e–(k–1)hλ, k ≥ 2,

the weights w(α)
0 = 1, w(α)

k = (1 – 1+α
k )w(α)

k–1, k ≥ 1. The values of γ1, γ2 and γ3 can be selected
in the following three sets:

(1) Sα
1 (γ1,γ2,γ3) = {max{ 2(α2+3α–4)

α2+3α+2 , α2+3α

α2+3α+4 } ≤ γ1 ≤ 3(α2+3α–2)
2(α2+3α+2) ,γ2 = 2+α

2 – 2γ1,
γ3 = γ1 – α

2 }.
(2) Sα

2 (γ1,γ2,γ3) = {γ1 = 2+α
4 – γ2

2 , (α–4)(α2+3α+2)
2(α2+3α+2) ≤ γ2 ≤ min{ (α–2)(α2+3α+4)+16

2(α2+3α+4) ,
(α–6)(α2+3α+2)+48

2(α2+3α+2) },γ3 = 2–α
4 – γ2

2 }.

(3) Sα
3 (γ1,γ2,γ3) = {γ1 = α

2 + γ3,γ2 = 2–α
2 – 2γ3, max{ (2–α)(α2+α–8)

α2+3α+2 , (1–α)(α2+2α)
2(α2+3α+4) } ≤ γ3 ≤

(2–α)(α2+2α–3)
2(α2+3α+2) }.

3 Stability and convergence analysis
In order to analyze the stability and convergence of the numerical method, we would in-
troduce some notations and lemmas.

Let

γh =
{
ζ n|ζ n =

(
ζ n

0 , ζ n
1 , . . . , ζ n

M
)}

, γ̂h =
{
ζ n|ζ n ∈ γh, ζ n

0 = ζ n
M = 0

}
,
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for any un, vn ∈ γ̂h, we define the following discrete inner product and corresponding
norm:

(
un, vn) = h

M–1∑

i=1

un
i vn

i ,
∥∥un∥∥ =

√(
un, un

)
.

Remark 3.1 From [1], we note that the matrix A is negative definite, i.e. for any χ ∈R
M–1,

χAχT ≤ 0, therefore, we have Lemma 3.1.

Lemma 3.1 For any un ∈ γ̂h, we have

(
δα

x un, un) ≤ 0.

Assuming ûn
i is the numerical solution for (2.6)–(2.8) starting from another initial value

ϕ̂(x), denote ηn = (0,ηn
1 ,ηn

2 , . . . ,ηn
M–1, 0), where ηn

i = un
i – ûn

i , then we have the following
consequences.

Theorem 3.1 For any given positive number μ ∈ (0, 1), if 0 < τ ≤ τ0 = 1–μ

L , then the nu-
merical scheme (2.6)–(2.8) is stable, i.e. there exists a constant c2, such that

max
1≤n≤N

∥
∥ηn∥∥ ≤ c2

∥
∥η0∥∥.

Proof According to (2.6), we obtain the following equation:

ηn+1
i = ηn

i + τδα
x η

n+ 1
2

i + τ
(
gn+ 1

2
i – ĝn+ 1

2
i

)
, 1 ≤ i ≤ M – 1, 0 ≤ n ≤ N – 1, (3.1)

where ĝn+ 1
2

i = g(xi, tn+ 1
2

, ûn+ 1
2

i ).

Multiplying by hηn+ 1
2 in (3.1), summing up from 1 to M – 1 on i, we have

h
M–1∑

i=1

ηn+1
i η

n+ 1
2

i = h
M–1∑

i=1

ηn
i η

n+ 1
2

i + τh
M–1∑

i=1

(
δα

x η
n+ 1

2
i

)
η

n+ 1
2

i

+ τh
M–1∑

i=1

(
gn+ 1

2
i – ĝn+ 1

2
i

)
η

n+ 1
2

i . (3.2)

Noticing that

h
M–1∑

i=1

(
ηn+1

i η
n+ 1

2
i – ηn

i η
n+ 1

2
i

)
= h

M–1∑

i=1

(
ηn+1

i – ηn
i
) (ηn+1

i + ηn
i )

2

=
h
2

M–1∑

i=1

(
ηn+1

i
)2 –

h
2

M–1∑

i=1

(
ηn

i
)2

=
1
2
∥∥ηn+1∥∥2 –

1
2
∥∥ηn∥∥2. (3.3)



Hu and Cao Advances in Difference Equations         (2019) 2019:66 Page 7 of 14

Employing Lemma 3.1, we find

τh
M–1∑

i=1

(
δα

x η
n+ 1

2
i

)
η

n+ 1
2

i = τ
(
δα

x ηn+ 1
2 ,ηn+ 1

2
) ≤ 0. (3.4)

Substituting (3.3) and (3.4) into (3.2), we obtain

1
2
∥∥ηn+1∥∥2 ≤ 1

2
∥∥ηn∥∥2 +

∣
∣∣
∣∣
τh

M–1∑

i=1

(
gn+ 1

2
i – ĝn+ 1

2
i

)
η

n+ 1
2

i

∣
∣∣
∣∣

≤ 1
2
∥
∥ηn∥∥2 + τh

M–1∑

i=1

∣
∣(gn+ 1

2
i – ĝn+ 1

2
i

)∣∣
∣
∣η

n+ 1
2

i
∣
∣.

Since g satisfies Lipschitz condition with respect to u, we have

1
2
∥
∥ηn+1∥∥2 ≤ 1

2
∥
∥ηn∥∥2 + τhL

M–1∑

i=1

∣
∣η

n+ 1
2

i
∣
∣2

≤ 1
2
∥∥ηn∥∥2 +

τL
2

∥∥ηn+1∥∥2 +
τL
2

∥∥ηn∥∥2. (3.5)

It follows from (3.5) that

∥∥ηn+1∥∥2 ≤ ∥∥ηn∥∥2 + τL
∥∥ηn+1∥∥2 + τL

∥∥ηn∥∥2

≤ ∥
∥η0∥∥2 + τL

n∑

k=0

(∥∥ηk+1∥∥2 +
∥
∥ηk∥∥2)

= (1 – τL)
∥∥η0∥∥2 + 2τL

n∑

k=0

∥∥ηk∥∥2 + τL
∥∥ηn+1∥∥2. (3.6)

We can obtain the recursion from (3.6),

(1 – τL)
∥∥ηn+1∥∥2 ≤ (1 – τL)

∥∥η0∥∥2 + 2τL
n∑

k=0

∥∥ηk∥∥2. (3.7)

For any given μ ∈ (0, 1), and 0 < τ ≤ τ0 = 1–μ

L , then we obtain from (3.7)

∥∥ηn+1∥∥2 ≤ ∥∥η0∥∥2 +
2τL

1 – τL

n∑

k=0

∥∥ηk∥∥2

≤ ∥∥η0∥∥2 +
2τL
μ

n∑

k=0

∥∥ηk∥∥2. (3.8)

It follows from (3.8) and the discrete Gronwall inequality that

∥
∥ηn+1∥∥2 ≤ e

2(n+1)τL
μ

∥
∥η0∥∥2

≤ e
2TL
μ

∥∥η0∥∥2.
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Therefore

max
1≤n≤N

∥
∥ηn∥∥ ≤ c2

∥
∥η0∥∥,

where c2 =
√

e
2TL
μ . The proof is completed. �

Theorem 3.2 For any given positive number μ ∈ (0, 1), if 0 < τ ≤ τ0 = 2–2μ

2L+1 , then the nu-
merical scheme (2.6)–(2.8) is convergent, i.e. there exists a constant c3, such that

max
1≤n≤N

∥∥εn∥∥ ≤ c3
(
τ 2 + h2),

where εn = (0, εn
1 , εn

2 , . . . , εn
M–1, 0), εn

i = u(xi, tn) – un
i .

Proof Subtracting (2.6) from (2.4), we get the error equation

εn+1
i = εn

i + τδα
x ε

n+ 1
2

i + τ
(
g̃n+ 1

2
i – gn+ 1

2
i

)
+ τR

n+ 1
2

i , 1 ≤ i ≤ M – 1, 0 ≤ n ≤ N – 1, (3.9)

where g̃n+ 1
2

i = g(xi, tn+ 1
2

, u(xi ,tn+1)+u(xi ,tn)
2 ).

Similarly, we can conclude from the deduction of Theorem 3.1 that

1
2
∥
∥εn+1∥∥2 ≤ 1

2
∥
∥εn∥∥2 +

∣
∣∣
∣∣
τh

M–1∑

i=1

(
g̃n+ 1

2
i – gn+ 1

2
i

)
ε

n+ 1
2

i

∣
∣∣
∣∣

+

∣
∣∣
∣∣
τh

M–1∑

i=1

R
n+ 1

2
i ε

n+ 1
2

i

∣
∣∣
∣∣
. (3.10)

According to (1.4) and Cauchy–Schwarz inequality, we obtain from (3.10)

1
2
∥∥εn+1∥∥2 ≤ 1

2
∥∥εn∥∥2 + τh

M–1∑

i=1

∣∣(g̃n+ 1
2

i – gn+ 1
2

i
)∣∣∣∣ε

n+ 1
2

i
∣∣

+
τh
2

M–1∑

k=i

∣∣R
n+ 1

2
i

∣∣2 +
τh
2

M–1∑

k=i

∣∣ε
n+ 1

2
i

∣∣2

≤ 1
2
∥
∥εn∥∥2 + τhL

M–1∑

i=1

∣
∣ε

n+ 1
2

i
∣
∣2 +

τ

2
∥
∥Rn+ 1

2
∥
∥2 +

τ

2
∥
∥εn+ 1

2
∥
∥2

≤ 1
2
∥
∥εn∥∥2 +

τL
2

∥
∥εn+1∥∥2 +

τL
2

∥
∥εn∥∥2 +

τ

2
∥
∥Rn+ 1

2
∥
∥2

+
τ

4
∥∥εn+1∥∥2 +

τ

4
∥∥εn∥∥2. (3.11)

It follows from (3.11) that

∥∥εn+1∥∥2 ≤ ∥∥εn∥∥2 + τL
∥∥εn+1∥∥2 + τL

∥∥εn∥∥2 + τ
∥∥Rn+ 1

2
∥∥2 +

τ

2
∥∥εn+1∥∥2 +

τ

2
∥∥εn∥∥2

≤ ∥
∥ε0∥∥2 + τL

n∑

k=0

∥
∥εk+1∥∥2 + τL

n∑

k=0

∥
∥εk∥∥2 + τ

n∑

k=0

∥
∥Rk+ 1

2
∥
∥2

+
τ

2

n∑

k=0

∥∥εk+1∥∥2 +
τ

2

n∑

k=0

∥∥εk∥∥2
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≤ 2τL
n∑

k=0

∥∥εk∥∥2 + τ

n∑

k=0

∥∥εk∥∥2 + τL
∥∥εn+1∥∥2

+
τ

2
∥
∥εn+1∥∥2 + τ

n∑

k=0

∥
∥Rk+ 1

2
∥
∥2. (3.12)

We can obtain the recursion from (3.12),

(
1 – τL –

τ

2

)∥∥εn+1∥∥2 ≤ (2τL + τ )
n∑

k=0

∥∥εk∥∥2 + τ

n∑

k=0

∥∥Rk+ 1
2
∥∥2. (3.13)

For any given positive number μ ∈ (0, 1), if 0 < τ ≤ τ0 = 2–2μ

2L+1 , then we can conclude from
(3.13) that

∥∥εn+1∥∥2 ≤ 2τL + τ

1 – τL – τ
2

n∑

k=0

∥∥εk∥∥2 +
τ

1 – τL – τ
2

n∑

k=0

∥∥Rk+ 1
2
∥∥2

≤ (2L + 1)τ
μ

n∑

k=0

∥∥εk∥∥2 +
τ

μ

n∑

k=0

∥∥Rk+ 1
2
∥∥2. (3.14)

In view of the discrete Gronwall inequality, we have

∥
∥εn+1∥∥2 ≤ τ

μ
e

(2L+1)τ (n+1)
μ

n∑

k=0

∥
∥Rk+ 1

2
∥
∥2. (3.15)

It follows from (2.5) and the definition of the discrete norm that

∥
∥Rk+ 1

2
∥
∥2 = h

M–1∑

i=1

(
R

k+ 1
2

i
)2 ≤ Mh max

1≤i≤M–1

∣
∣R

k+ 1
2

i
∣
∣2 ≤ c1

2(b – a)
(
τ 2 + h2)2. (3.16)

Therefore

τ

n∑

k=0

∥
∥Rk+ 1

2
∥
∥2 ≤ (n + 1)τ max

1≤i≤M–1

∥
∥Rk+ 1

2
∥
∥2 ≤ c1

2(b – a)T
(
τ 2 + h2)2. (3.17)

Substituting (3.17) into (3.15), we get

∥∥εn+1∥∥2 ≤ c1
2(b – a)T

μ
e

(2L+1)T
μ

(
τ 2 + h2)2. (3.18)

Thus

max
1≤n≤N

∥∥εn∥∥ ≤ c3
(
τ 2 + h2),

where c3 =
√

c12(b–a)T
μ

e
(2L+1)T

μ . The proof is completed. �
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4 Numerical experiments
Denote ‖ε(h, τ )‖ =

√
hτ

∑N
n=1

∑M–1
i=1 |u(xi, tn) – un

i |2 as L2 norm of the error at the point
(xi, tn), where u(xi, tn) and un

i are the exact solution and numerical solution with the step
sizes h and τ at the grid point (xi, tn), respectively. The observation order is defined as

Rate = log2

(‖ε(2h, 2τ )‖
‖ε(h, τ )‖

)
.

Example 1 Consider the initial-boundary value problem in the following Riesz tempered
fractional diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = ∂α,λu(x,t)

∂|x|α + g(x, t, u(x, t)), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = x2(1 – x)2, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

where 1 < α < 2, the nonlinear source term is

g
(
x, t, u(x, t)

)
=

(
u(x, t)

)2 – x2(1 – x)2e–t

+
e–t

2 cos( πα
2 )

[

e–λx
∞∑

k=0

4∑

m=2

λkΓ (k + m + 1)Am

Γ (k + 1)Γ (k + m + 1 – α)
xk+m–α

+ eλx–λ

∞∑

k=0

4∑

m=2

λkΓ (k + m + 1)Am

Γ (k + 1)Γ (k + m + 1 – α)
(1 – x)k+m–α

– 2λαx2(1 – x)2

]

– x4(1 – x)4e–2t ,

where A2 = 1, A3 = –2, A4 = 1.
The exact solution of Example 1 is

u(x, t) = x2(1 – x)2e–t .

From Table 1, we can observe the second-order accuracy in both spatial and temporal
directions with different α and λ, which is in line with our convergence analysis. The nu-
merical solutions of Example 1 are shown in Fig. 1, we can find from Fig. 2 that the global
perturbation errors depend on the initial perturbation errors, which proved the correct-
ness of our stability analysis.

Example 2 Consider the initial-boundary value problem in the following Riesz tempered
fractional diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = ∂α,λu(x,t)

∂|x|α + g(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = 0, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],
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Table 1 Errors and corresponding observation orders of T-ML2 in spatial and temporal directions for
Example 1 with different α and λ

α h τ λ = 0 λ = 1
100 λ = 1

‖ε(h,τ )‖ Rate ‖ε(h,τ )‖ Rate ‖ε(h,τ )‖ Rate

1.2 1
10

1
10 7.6335e–04 – 7.5126e–04 – 1.1638e–03 –

1
20

1
20 1.9911e–04 1.9388 1.9631e–04 1.9362 2.8958e–04 2.0068

1
40

1
40 5.1544e–05 1.9497 5.0882e–05 1.9479 7.3198e–05 1.9841

1
80

1
80 1.3313e–05 1.9530 1.3155e–05 1.9516 1.8860e–05 1.9565

1
160

1
160 3.4300e–06 1.9565 3.3923e–06 1.9553 4.8865e–06 1.9484

1.5 1
10

1
10 9.6520e–04 – 9.6198e–04 – 2.4219e–04 –

1
20

1
20 2.3429e–04 2.0425 2.3357e–04 2.0421 6.6478e–05 1.8652

1
40

1
40 5.6964e–05 2.0402 5.6791e–05 2.0401 1.8427e–05 1.8510

1
80

1
80 1.3932e–05 2.0317 1.3888e–05 2.0318 5.2173e–06 1.8205

1
160

1
160 3.4330e–06 2.0208 3.4222e–06 2.0209 1.4881e–06 1.8099

1.8 1
10

1
10 1.0924e–03 – 1.0917e–03 – 8.0464e–04 –

1
20

1
20 2.6152e–04 2.0625 2.6141e–04 2.0622 1.9630e–04 2.0353

1
40

1
40 6.2776e–05 2.0586 6.2754e–05 2.0585 4.7153e–05 2.0577

1
80

1
80 1.5082e–05 2.0574 1.5077e–05 2.0574 1.1234e–05 2.0695

1
160

1
160 3.6282e–06 2.0555 3.6268e–06 2.0556 2.6688e–06 2.0736

Figure 1 Numerical solutions for Example 1 with h = τ = 0.01, α = 1.5, λ = 1

where 1 < α < 2, the linear source term g(x, t) is

g(x, t) = (2 + α)t1+αe–λxx4(1 – x)4 +
t2+α

2 cos( πα
2 )

[

e–λx
4∑

m=0

(–1)m( 4
m
) Γ (5 + m)
Γ (5 + m – α)

x4+m–α

+ eλ(x–2)
∞∑

j=0

(2λ)j

Γ (j + 1)

4∑

m=0

(–1)m( 4
m
) Γ (5 + m + j)
Γ (5 + m + j – α)

(1 – x)4+m+j–α

– 2λαe–λxx4(1 – x)4

]

.
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Figure 2 Numerical solutions for the perturbation equations of Example 1 with h = τ = 0.01, α = 1.5, λ = 1
and the initial perturbation error η0

i = 1e – 04 (0≤ i ≤M)

Table 2 Errors and corresponding observation orders with λ = 1, and the parameters γ1, γ2, γ3 are
selected in Sα1 (γ1,γ2,γ3)

α h τ T-ML2 T-WSGL (γ1 = 0.61)

‖ε(h,τ )‖ Rate ‖ε(h,τ )‖ Rate

1.2 1
10

1
10 1.9919e–05 – 1.9478e–05 –

1
20

1
20 4.4251e–06 2.1703 4.3499e–06 2.1628

1
40

1
40 1.0291e–06 2.1044 1.0137e–06 2.1014

1
80

1
80 2.4771e–07 2.0546 2.4421e–07 2.0534

1
160

1
160 6.0724e–08 2.0283 5.9887e–08 2.0278

α h τ T-ML2 T-WSGL (γ1 = 0.76)

‖ε(h,τ )‖ Rate ‖ε(h,τ )‖ Rate

1.5 1
10

1
10 1.3017e–05 – 1.3016e–05 –

1
20

1
20 3.3092e–06 1.9759 3.3016e–06 1.9791

1
40

1
40 8.4075e–07 1.9768 8.3865e–07 1.9770

1
80

1
80 2.1209e–07 1.9870 2.1157e–07 1.9869

1
160

1
160 5.3289e–08 1.9928 5.3160e–08 1.9927

α h τ T-ML2 T-WSGL (γ1 = 0.92)

‖ε(h,τ )‖ Rate ‖ε(h,τ )‖ Rate

1.8 1
10

1
10 1.4954e–05 – 1.4668e–05 –

1
20

1
20 3.3806e–06 2.1451 3.6011e–06 2.0262

1
40

1
40 8.1335e–07 2.0553 9.0055e–07 1.9996

1
80

1
80 2.0006e–07 2.0235 2.2513e–07 2.0001

1
160

1
160 4.9655e–08 2.0104 5.6275e–08 2.0002

The exact solution of Example 2 is

u(x, t) = t2+αe–λxx4(1 – x)4.
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For contrast, we apply our numerical scheme (2.6)–(2.8) (T-ML2) and the method (T-
WSGL) in [24] for solving Example 2 with different α and λ = 1, respectively. The errors
and corresponding observation orders are listed in Table 2, we find that T-ML2 and T-
WSGL are both effective for solving Example 2. However, we need to select the values
of γ1, γ2 and γ3 for different α when T-WSGL is used. In a sense, T-ML2 may be more
convenient than T-WSGL for Example 2.

5 Conclusion
In this paper, the implicit midpoint method is proposed for solving the Riesz tempered
fractional diffusion equation with a nonlinear source term, the numerical scheme is proved
to be stable and convergent by the energy method, and numerical examples verify the
correctness of the theoretical analysis and the effectiveness of the proposed method.
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