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1 Introduction
In this paper, we consider Riesz tempered fractional diffusion equation with a nonlinear

source term

du(r,t) 0% u(x, 1)
=K
ot a|x|*

+g(x t,ulx,t)), (1) €(a,b) x (0,T], (1.1)
with the initial and boundary conditions

u(x,0)=¢kx), xe€la,b], (1.2)

u(a,t) =0, ub,t)=0, tel0,T], (1.3)

where 1 <« < 2, A > 0, the diffusion coefficient « is a positive constant, ¢(x) is a known
sufficiently smooth function, g(x, ¢, u) satisfies the Lipschitz condition

|g(x,t,u)—g(x,t,v)| <Llu-v|, Yu,veR, (1.4)
here L is Lipschitz constant, and the Riesz tempered fractional derivative % is ex-
pressed as [1, 2]

3% u(x, t) »

e = D2+ D ute ) (15)
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where ¢, = —s—5+, D** and RD%* stand for the left and right Riemann—Liouville tem-
2cos(ERF)? a % x~b

pered fractional derivatives which are defined as

_,0u(x, t)

stc(’A”(x: £)= ngca’A)”(% t) = \ulx, t) — ar” IT, (1.6)
du(x, t

R 1, £) = RDOP (i, £) — A% u(x, ) + an® % (1.7)

where the symbols *D*" and #D{*" are defined by

e—kx 82 x
KD u(x, t) = e RDY e ulx, 1) = T2—a) 02 /a e ulE, )(x—£)' " de,
R (@) AR o~ er 92 b n -
IDY o) = DG ) = s / e, (€ — %) dg,

where I'(-) is Gamma function.

Moreover, if A = 0, then the Riesz tempered fractional derivative will reduce to the usual
Riesz fractional derivative (see e.g. [3-8]).

In recent years, differential equations with tempered fractional derivatives have widely
been used for modeling many special phenomena, such as geophysics [9-11] and finance
[12, 13] and so on. It has attracted many authors’ attention in constructing the numeri-
cal algorithm for tempered fractional partial differential equation (see e.g., [1, 2, 14—24]).
Li and Deng proposed the tempered weighted and shifted Griinwald—Letnikov formula
with second-order accuracy for Riemann-Liouville tempered fractional derivative in [24],
and its approximation is applied in the numerical simulation of the tempered fractional
Black-Scholes equation for European double barrier option by Zhang et al. [14]. Based on
this approximation, Qu and Liang [15] constructed a Crank—Nicolson scheme for a class
of variable-coefficient tempered fractional diffusion equation, and disscussed the stabil-
ity and convergence. Yu et al. [16] proposed a third-order difference scheme for one side
Riemann-Liouville tempered fractional diffusion equation and given the stability and con-
vergence analysis. Yu et al. [19] constructed a fourth-order quasi-compact difference oper-
ator for Riemann-Liouville tempered fractional derivative and tested its effectiveness by
numerical experiment. Zhang et al. [1] presented a modified second-order Lubich tem-
pered difference operator for approximating the Riemann-Liouville tempered fractional
derivative and verified its effectiveness by theoretical analysis and numerical results. The
aim of this paper is to try to use the implicit midpoint method and the modified second-
order Lubich tempered difference operator to construct a new numerical scheme, and to
give a theoretical analysis of the numerical method.

The outline of this paper is arranged as follows. In Sect. 2, numerical scheme is proposed
for solving Riesz tempered fractional diffusion equation with a nonlinear source term.
Section 3 is devoted into the stability and convergence analysis. In Sect. 4, we use the
proposed method (abbr. T-ML;,) and the method (abbr. T-WSGL) in literature [24] to solve
the test problems. Finally, we draw the conclusion in Sect. 5.

2 Numerical method

Letx;=a+ih,i=0,1,2,...,M,t,=nt,n=0,1,2,...,N, where h = (b—a)/M is spatial step
size, T = T/N denotes the time step size. The exact solution and numerical solution at the
point (x;, ¢,) are denoted by u(x;, t,) and u, respectively.
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To discretize the Riemann—Liouville tempered fractional derivatives, we would intro-
duce the modified second-order Lubich tempered difference operators 67 and &, at the
point (x;, £,), which are defined as

L e (3a—-2 2a-1)
o _ (a,1) ) _ I e
5% (i t) = e kZ_(;gk u(Xi—k+1,tn) I ( 7 e
o—2 ¢
+ 7@21’1)\) u(xi: tn)’
M-i+l fi
1 e 30-2 2a-1)
) 1 ) e 2l —1)
6x+u(xi, tn) = T ; 8 u(ka—lytn) he < 20 o €
o—-2 “
+ 76_2]1}”> M(xi’ tn);
(et,2) ;
where g’ are given as
ehk(Bz;Z )oz, k = 0,
da(l-a) —hp (c,))
g(a,/\) _ 3517201)3 ey, o
o =
a4 - o)~k + D g + (o - 2)(2
—k+2)e gDy, k=2

then we have the following lemma.
Lemma 2.1 ([1]) Ifu(x, t,) € €27(R) (1 < n < N), for the fixed step size h, we have

RDM i, t) — A ulis t) = 8% u(xin ty) + O(H?), 1<i<M-1,0<n<N,

RDE M u(w, t) — 2%l t,) = 82, u(xist,) + O(H?), 1<i<M-1,0<n<N,

where U(x, t,) is a zero-extension of u(x, t,,) with respect to x on R which is defined as

ulx,t,), x¢€la,b],
0, R\[a, b].

ﬁ(x: tn) =

The fractional Sobolev space €2 (R) is defined by
+oo 2+a
CH(R) = {V‘VELl(R),/ (A2+w2)7|’17(w)}dw<oo},
—00
where V(o) is represented as the Fourier transformation of v(x) defined by

+00 .
W) = / e y(x)dx, % =-1.

o]

According to (1.5)-(1.7), we have

9" (i, t)

= 8%ulxi b, 2), 2.1
PR Sy u(x;,t )+O(h ) (2.1)
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where
8% =Ky (82 +6%). (2.2)
X X X+

Using the implicit midpoint method to solve (1.1) at the point (x;,£,), we find

u(¥i, tue1) = i, ty) + TK

ot <u(xi’ Lur1) + u(xirtn))

d|x|* 2
u(x;, t, + u(x;, t,
+ Tg(xi; t,H_%, ( i n+1)2 ( i n)> + O(TS),
1<i<M-1,0<un<N. (2.3)

Applying (2.1) to discretize the Riesz tempered fractional derivative, we get

u(x;, t, + u(x;, L,
u(xi,tml):u(x,-,tanaz( it ”))

2
u(x;, t, + u(x;, t, 1
+Tg<xi;tn+l, (z n+l) (z n)> T%EHZ’
2 2
1<i<M-1,0<n<N-1, (2.4)
where there exists a constant ¢; such that
”+% 2 2 .
%, | <a(?+H), 1<i<M-1,0<n<N-1 (2.5)

1
Onmitting the error term %ln "2 we obtain the following numerical scheme for solving

(1.1)=(1.3):
1 na el ,
™ =ul +Tsu; P vtg 2, 1<i<M;-1,0<n<N-1, (2.6)
u =), 0<i<M, 2.7)
ult =0, ul, =0, 0<n<N, (2.8)
1 n+l,  n 1 1
where MZ'HZ =4 2+Mi ,gfﬁz =g(xi,tn+%,u:l+2),

Furthermore, the matrix form of (2.6) can be written as
(- AU =+ AU" +tg"™2, 0<n<N-1, (2.9)

where

T n+d n+% n+% n+% T
=@ &, Thetu)
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here A is a Toeplitz matrix, which can be written as A = B + BY, where the matrix B is

defined as
—g(ot,k) +d g(()a,k) .
(a,1) (1) (a,2)
& g +d g
_KCT : : . .
2he : : S . ’
(t,2) (ot,) ) (a,2) (o)1)
gz& 2 g}\[/xr_ gz\j 4 g +d %
(a,) (a,2) a,)) (a,A) (1)
L e P vic A vic SERTER @ +d]

where d = -/ (32 - @e’hl + &2y,
Remark 2.1 In [24], Li and Deng combined the Crank-Nicolson method with a tem-
pered weighted and shifted Griinwald—Letnikov operator to propose a numerical method
with the accuracy of O(t? + h?) for tempered fractional diffusion equation with a lin-
ear source term, where the tempered weighted and shifted Griinwald—-Letnikov operators
with second-order accuracy are defined as

i+1

_ 1 1 . i}
O i ty) = D M ulickins t) - h—c,(yle”A + 2+ yse ™) (1) uxit,),
k=0

Mip—-i+1
8%, u(xi, ty) = Z S Uik, ) — —(yle +y2+ yse M) (1 - ) ulxi ),

where the weights E(a’x) are given as

nwe, k=
& =y + yzwé“), k=1,
) + w4 ysw)e ED k>0,

the weights w(()“) =1, w,(f‘) =(1- “T“)wgi)l, k > 1. The values of 1, y» and 3 can be selected

in the following three sets:

(1) S7(r1,v2,¥3) = {max{
3=v1—75}

2 Sryey)={n= %Ta -z,
(a=6)(a®+3a+2)+48
W} Vs =

2(2+3a-4) o2+3a 3(a2+30-2) 2+a
—_— < < = = 22
a2+3a+2 ’ a2+30¢+4} =n= 2(a2+3a+2)’y2 2y,

(a— 4)(a +3a+2) <
2(a?+30+2)

(0=2)(«?+3+4)+16

Y2 = mln{ 22 +3a+4) ’

2-a _ 12
=@ 7}

4
(2— 8 1— 2
(3) S5y 73) = (1= 5 + v3, 72 = 552 = 23, max( Gy (afersnay ) <
(2-a)(a?+2a-3) }

2(a2+30+2)

3 Stability and convergence analysis

In order to analyze the stability and convergence of the numerical method, we would in-
troduce some notations and lemmas.
Let

={eme = (@goeln i) = {1 € vt = ¢ =0},

Page 5 of 14
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for any u",v" € 7}, we define the following discrete inner product and corresponding

norm:
hz% i =y ).

Remark 3.1 From [1], we note that the matrix A is negative definite, i.e. for any x € RM-1,

xAxT <0, therefore, we have Lemma 3.1.

Lemma 3.1 For any u” € y,, we have
(82u",u") <O0.

Assuming %! is the numerical solution for (2.6)—(2.8) starting from another initial value
@(x), denote n" = (0,7},n5,...,n4_1,0), where n! =u? —ﬁ?, then we have the following
consequences.

Theorem 3.1 For any given positive number (v € (0,1), if 0 <t <79 = M then the nu-

merical scheme (2.6)—(2.8) is stable, i.e. there exists a constant ¢y, such that

max 0" < ez2[n°]

Proof According to (2.6), we obtain the following equation:

1
n+l _ n a, Mty
n; n; +T8x n;

1 1
n+y An+7)
?

+1(g ' -g 1<i<M-1,0<n<N-1, (3.1)

+% An+%)

=g(xi’ tn+%’ uU;

Multiplying by hn”’f% in (3.1), summing up from 1 to M — 1 on i, we have

~n
whereg;

l M-1
hznml :hzn?nz +ThZ 5(, n+2 n+2
i=1

+th 2 —§ln+2 77z+%~ (3.2)
Noticing that
M-1 L1 1 M- n+l + nn)
h;( n+lm 2 :’anHZ > n+1 5
h M- M
- n+1
E Z Z
_ 1 n+1]|2 _ 1 nl|2
L - L 33)
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Employing Lemma 3.1, we find
gl nely ned 1 1
th 2(8;‘ n; z)ni 2= r((Sgnm?,n”*f) <0.

i=1

Substituting (3.3) and (3.4) into (3.2), we obtain

1 1

|| ak —2||'7 I*+ th Fgh
1 3 An+2 n+%
<zl +th| Lghr

Since g satisfies Lipschitz condition with respect to u, we have

1 M-1 1
= S I e Yl

tL tL
P T s

It follows from (3.5) that

e e DA A UE A Tl

< [P el 3 + )

k=0

n
==L |n°|” + 2eL Y [f |+ L
k=0

We can obtain the recursion from (3.6),

n
A=eD)yHF < @ =D [*+ 20L 3.
k=0

For any given 1 € (0,1),and 0< 7t <7 = I_T“, then we obtain from (3.7)
n+l ||2 o2, 2tL . k|2
b < el 255 S
27 <
< [n°]* + " Yol
k=0

It follows from (3.8) and the discrete Gronwall inequality that

2 2(n+1)tL
[P =e

%Iln

(3.5)

(3.7)

(3.8)

Page 7 of 14
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Therefore

max [n"] = e2|n°]

1<n<N
[ o .
where ¢; =y e # . The proof is completed. O
Theorem 3.2 For any given positive number i € (0,1), if0<t <10 = 2L 1, then the nu-

merical scheme (2.6)—(2.8) is convergent, i.e. there exists a constant cs, such that

max "] = es(z*+ 1),

where " = (0, ¢5,...,e8_1,0), e = ulx;, t,) — ul.

Proof Subtracting (2.6) from (2.4), we get the error equation

1 1 1 1
8n+1—8 +t8“ (~n+2—gf+2)+t%»n+2, 1<i<M-1,0<u<N-1, (3.9

4 1

1
+2 ¢ u(xi,tn+1)+u(xi,tn))
1, 3 .

= g(xi’ e
Similarly, we can conclude from the deduction of Theorem 3.1 that

~
where g

M-1

|| n+1|| _2 |£ || n ‘L’hZ ~n+2_ f”z i . _Ehz%mz n+2 (3.10)
i=1
According to (1.4) and Cauchy—Schwarz inequality, we obtain from (3.10)
H "< HS I +th! @ gl
P
Sl S e
<l Sl s e+ )
e e e B1)

4

It follows from (3.11) that

e B T 2 R R B e e R P T B &

2

n n n
S BRSBTS Fasl |k
k=0 k=0 k=0
R k12, T 3 k|2
Y P Y
k=0 k=0

Page 8 of 14
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n n
<2eLy [e [* e Y[t |+ L] |
k=0 k=0
n
1
+ 5 ||8n+1 ||2 +T ZH%’”? H2 (3.12)
We can obtain the recursion from (3.12),

( _TL__)|| wi|? <(sz+f)Z||ek|| HZ“W (3.13)

For any given positive number p € (0,1),if0<7 < 19 = then we can conclude from

(3.13) that

2L 1’

2tL+ 1
e < 1= — ZH B — ZH%’“ZH
< CLADT SN gz, Ty ke (3.14)
n m
k=0 k=0

In view of the discrete Gronwall inequality, we have

2L+1 (n+1)

e 1= ZH%“Z I (3.15)

It follows from (2.5) and the definition of the discrete norm that

M- 1

|23 =03 (2 )" <Mh max 1|9f’*2| <c)X(b-a)(2+ 1) (3.16)
1:1
Therefore
T ZH%"W || <(n+ 1)1’ max. ||%k+2 || <c2(b- (l)T(‘L' + h2) (3.17)
k=0

Substituting (3.17) into (3.15), we get

"1 < (”T“)e L 2y ), (3.18)

Thus

jmax "] < es(z”+ 1),

@L+1)T

a2-a)l =57 The proof is completed. O

"

where ¢3 =
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4 Numerical experiments
Denote |le(h, T)| = \/hr Zn 12 Y, £,) — u?'|? as L, norm of the error at the point

(xi,t,), where u(x;, t,) and u! are the exact solution and numerical solution with the step

sizes i1 and t at the grid point (x;, t,,), respectively. The observation order is defined as

Rate - Lo, (161201
e or )

Example 1 Consider the initial-boundary value problem in the following Riesz tempered

fractional diffusion equation:

3“;’;'” = HIZI(“ +g(x, tulxt), x€(0,1),te(0,1],
u(x,0) = x2(1 — x)?, x€[0,1],
u(0,¢) = u(1,£) =0, t€0,1],

where 1 < « < 2, the nonlinear source term is

gl b ulx, 1)) = (ulx, t))2 —x2(1-x)%et

o 4

Axiz AL (k+m+1)A,, =

2cos(”°‘) Frk+1)'k+m+1-a)
k=0 m=2

4
+ P Ak +m+1)A, (1 - x)fim-e
g 2Fk+1) k+m+1-a)

ka 2(1 x } —2t’

where A2 =1, A3 =-2, A4 =1

The exact solution of Example 1 is
ulx, t) = x*(1 —x)2e".

From Table 1, we can observe the second-order accuracy in both spatial and temporal
directions with different & and A, which is in line with our convergence analysis. The nu-
merical solutions of Example 1 are shown in Fig. 1, we can find from Fig. 2 that the global
perturbation errors depend on the initial perturbation errors, which proved the correct-

ness of our stability analysis.

Example 2 Consider the initial-boundary value problem in the following Riesz tempered

fractional diffusion equation:

aug,t) - a|x|" +g(x, t), x€(0,1),te(0,1],
u(x,0) =0, x€[0,1],

u(0,t) = u(1,t) =0, te[0,1],
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Table 1 Errors and corresponding observation orders of T-ML, in spatial and temporal directions for
Example 1 with different & and A

o h T A=0 A= Lo A=1
lleth, 7)|| Rate lleth, 7)|| Rate [leth, 7))l Rate
12 - - 7.6335e-04 - 75126e-04 - 1.1638e-03 -
-+ - 1.9911e-04 19388 1.9631e-04 19362 28958e-04 20068
5 - 5.1544e-05 19497 50882e-05 19479 7.3198e-05 1.9841
8*—9 81—9 1.3313e-05 19530 1.3155e-05 19516 1.8860e-05 19565
=5 =5 34300e-06 19565 33923e-06 19553 48865e-06 1.9484
15 - - 96520e-04 - 96198e-04 - 24219e-04 -
# # 23420e-04 20425 23357e-04 20421 6.6478e-05 1.8652
= s 56964e-05 20402 56791e-05 20401 1.8427e-05 1.8510
8*—9 8*—9 13932e-05 20317 13888e-05 20318  52173e-06 1.8205
=5 =5 34330e-06 20208  34222e-06 20209 14881e-06 1.8099
18 - - 10924e-03 - 1.0917e-03 - 8.0464e-04 -
# # 26152e-04 20625 26141e-04 2,062 19630e-04 20353
. . 6.2776e-05 20586  62754e-05 20585  47153e-05 20577
g_g ;_9 1.5082e-05 20574 15077e-05 20574 1.1234e-05 20695
=5 =5 36282e-06  2.0555 36268e-06 20556  26688e-06 20736

0.08
0.06
5 0.04
0.02

\\\ \\‘
\ \k\m\\ ‘:x\\‘:‘:\““\m

R
‘}\\\\\\\\\ \“‘\\“\‘“\\\\““8\\\‘“

0.5 “:‘g:g‘;e\“‘\‘ T 06 0.8
A S 0.4
0.2
X 0 0 t
Figure 1 Numerical solutions for Example 1 withh=7 =001, =15,A =1
where 1 < o <2, the linear source term g(x, t) is
( t) (2 )t1+a —AX 4(1 )4 t2+a —)»x i( l)m( ) F(5 + I’I’l) d+m—o
%) =2+ e x M (l-n)*+ ————— _
g 2cos(%7) — rG+m-a)
> @Ay reo )
+ ek(x 2) Z Z(_ )m Lﬂ(l _x)4+m+j—a
rg+1) F(5 +m+j—a)

— 2% M1 - %)t
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x10™

1.2

0.8

0.6

0.4

0.2

1
7
_,-,'-’- 77

77
=
7

A

0.4
t

Figure 2 Numerical solutions for the perturbation equations of Example Twithh=7 =001, =151 =1
and the initial perturbation error r;,Q =le-04(0<i<M)

Table 2 Errors and corresponding observation orders with A = 1, and the parameters y;, y», y3 are

selected in S (y1, ¥2, ¥3)

a h T T-ML, T-WSGL (4 =061)
leth, Dl Rate lleth, o)l Rate
12 & - 1.9919e-05 - 1.9478e-05 -
% # 44251e-06 2.1703 4.3499e-06 2.1628
. = 1.0291e-06 21044 1.0137e-06 21014
81—? 8*—9 24771e-07 20546 24421e-07 20534
=5 o 6.0724e-08 20283 5.9887e-08 20278
a h T T-ML, T-WSGL (yy =0.76)
lleth, )]l Rate lleth, )|l Rate
15 -+ - 1.3017e-05 - 1.3016e-05 -
% o 33092e-06 1.9759 33016e-06 1.9791
o = 8.4075e-07 1.9768 8.3865¢-07 19770
81—? 8‘—9 2.1209e-07 1.9870 2.1157e-07 1.9869
=5 e 5.3289-08 1.9928 5.3160e-08 19927
a h T T-ML, T-WSGL (1 =0.92)
lleth, 7))l Rate lleth, )|l Rate
18 & - 1.4954e-05 - 1.4668e-05 -
* %5 3.3806e-06 21451 36011e-06 20262
- 4‘—0 8.1335e-07 20553 9.0055e-07 1999
8‘—? 8‘—9 2.0006e-07 20235 2.2513e-07 2.0001
e L 4.9655e-08 20104 56275e-08 20002

o
e}

IS
S

The exact solution of Example 2 is

u(x, t) = 2% x4 (1 - x)*.

Page 12 of 14
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For contrast, we apply our numerical scheme (2.6)—(2.8) (T-ML,) and the method (T-
WSGL) in [24] for solving Example 2 with different & and A = 1, respectively. The errors
and corresponding observation orders are listed in Table 2, we find that T-ML, and T-
WSGL are both effective for solving Example 2. However, we need to select the values
of y1, y» and ys for different « when T-WSGL is used. In a sense, T-ML, may be more
convenient than T-WSGL for Example 2.

5 Conclusion

In this paper, the implicit midpoint method is proposed for solving the Riesz tempered
fractional diffusion equation with a nonlinear source term, the numerical scheme is proved
to be stable and convergent by the energy method, and numerical examples verify the
correctness of the theoretical analysis and the effectiveness of the proposed method.
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