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Abstract
In this paper, we study the following Lotka–Volterra commensal symbiosis model of
two populations with Michaelis–Menten type harvesting for the first species:
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where r1, r2, K1, K2, α, q, E,m1 andm2 are all positive constants. The local and global
dynamic behaviors of the system are investigated, respectively. For the limited
harvesting case (i.e., q is small enough), we show that the system admits a unique
globally stable positive equilibrium. For the over harvesting case, if the cooperate
intensity of the both species (α) and the capacity of the second species (K2) are large
enough, the two species could coexist in a stable state; otherwise, the first species will
be driven to extinction. Numeric simulations are carried out to show the feasibility of
the main results.
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1 Introduction
Mutualism means that the different species exist in a relationship in which each species
benefits from the activity of the other species. During the last decade, many scholars
[1–17] investigated the dynamic behaviors of the mutualism model and some essential
progress on persistent, extinction and stability of the system are obtained. Some scholars
[1–7] focused on the persistent property of the cooperation system. Li and Yang [6] pro-
posed a discrete model of mutualism with infinite deviating arguments, they showed that
the system is permanent. Li and Zhang [1], Chen, Chen and Li [2], Chen and Xie [3], Chen,
Xie, Chen [4] and Yang and Li [5] had studied the persistent property of the mutualism
model with feedback control, and in [4], by applying a difference inequality of Fan and
Wang, Chen, Xie and Chen showed that feedback control variables have influence on the
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permanence of the discrete N-species cooperative system, Li and Zhang [1] also obtained
some similar results. Some scholars [8–12] focused on the stability property of the positive
equilibrium of the mutualism model. For example, Xie, Chen, Yang et al. [12] showed that
the unique positive equilibrium of an integrodifferential model of mutualism is globally at-
tractive. Based on a difference inequality which was established by Fengde Chen, Xie, Xue
and Wu [11] also investigated the stability property of the positive equilibrium of a dis-
crete mutualism model with infinite deviating arguments. Some scholars [13–15] argued
that non-autonomous case is more suitable, and such topics as the existence of the posi-
tive periodic solution and the persistence of the system were investigated. Recently, Chen,
Xie and Chen [16] and Yang, Miao and Chen [17] focused on the extinction property of
the mutualism model, in [16], Chen, Xie and Chen showed that the stage structure of the
species plays important roles in the extinction of the species, despite the cooperation of
the species. Yang, Miao, Chen et al. [17] proposed a mutualism model with single feedback
control, and they found that the system admits more complicated dynamic behaviors, for
example, by choosing suitable coefficients, the species may be driven to extinction.

Unlike the mutualism relationship, in which two species benefit from each other, com-
mensalism is a long-term biological interaction (symbiosis) in which members of one
species gain benefits while those of the other species neither benefit nor are harmed.
Though such kinds of relationship are often observed in nature, only recently scholars
[18–29] tried to propose the model to describe such kind of the relationship, and to study
the dynamic behaviors of suck kind of model. Recently, Sun and Sun [18] proposed the
following commensalism system:
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(1.1)

where r1, r2, K1, K2, α are all positive constants. The system admits four equilibria:

E1(0, 0), E2(K1, 0), E3(0, K2), E4(K1 + αK2, K2).

The authors showed that E1, E2 and E3 are all unstable equilibria, and E4 is a stable node.
Han and Chen [19] incorporated the feedback control variables for the above system, and
their study showed that feedback control variables have no influence on the stability prop-
erty of the system (1.1). Corresponding to system (1.1), Xie, Miao and Xue [26] proposed
a discrete commensal symbiosis model, they investigated the positive ω-periodic solution
of the system. Xue and Xie et al. [22] further proposed a discrete commensalism model
with delay, they investigated the almost periodic solution of the system. Miao, Xie and Pu
[23] studied the persistent property of the periodic Lotka–Volterra commensal symbiosis
model with impulsive action. Several scholars [24, 25] also argued that it may be more
suitable to assume that the relationship between two species is of nonlinear type instead
of linear, and they established the commensalism model with functional response. Lei [21]
proposed a commensalism model with stage structure; by constructing some suitable Lya-
punov function, he was able to show that under some suitable conditions, the system may
admit a unique positive equilibrium which is globally asymptotically stable. Lin [28] con-
sidered the influence of the Allee effect on the Lotka–Volterra type commensalism model,
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and he found that the Allee effect could increase the final density of the species. Such a
phenomenon is quite different from the predator–prey system incorporating the Allee
efffect.

On the other hand, to obtain a resource for humans, harvesting of species is necessary.
Already, many scholars investigated the influence of the harvesting on the population sys-
tem [9, 10, 30–38].

There are three types of harvesting: (1) constant harvesting [39]; (2) linear harvesting
[9, 10, 27, 31, 32]; (3) nonlinear harvesting [30, 33–37]. As is well known, nonlinear har-
vesting is more realistic from the biological and economical points of view [30]. Clark [11]
proposed a harvesting term h = qEx

cE+lx , which is named the Michealis–Menten type func-
tional form of the catch rate. Generally speaking, such kind of harvesting may lead to the
complexity dynamic behaviors of the system; for example, Idlangoa, Shepherd and Gear
[40] showed that the logistic model with Holling type II harvesting term may admit zero,
one or two positive equilibria. Hu and Cao [35] showed that the predator–prey model
with Michealis–Menten type harvesting in predator species may admit a rich bifurcation
phenomenon.

In this paper, we will further incorporate the harvesting term for the first species in
system (1.1), and this leads to the following model:
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(1.2)

where r1, r2, K1, K2, α, q, E, m1, m2 are all positive constants, r1, r2, K1, K2, α, have the
same meaning as that of the system (1.1), E is the fishing effort used to harvest and q is
the catchablity coefficient, m1 and m2 are suitable constants. One could refer to [35] and
[40] for a more detailed discussion about the nonlinear harvesting term.

In system (1.2), without the commensalism of the second species, the first species will
satisfy the following equation:

dx
dt

= r1x
(

1 –
x

K1

)
–

qEx
m1E + m2x

. (1.3)

Similarly to the analysis of Idlangoa, Shepherd and Gear ([40], page 83), one could see that
the model (1.3) may admit zero, one or two positive equilibrium. That is, by introducing
the harvesting term, the first species may or may not exist in the long run, maybe the first
species will be driven to extinction due to over harvesting. In this case, the commensalism
of the second species to the first species may play the most important role in the persis-
tence or extinction of the first species. It is the aim of this paper to find the answer to this
problem.

The paper is arranged as follows. The local and global stability property of the equilibria
of system (1.2) is investigated in Sects. 2 and 3, respectively. The extinction property of the
system is investigated in Sect. 4. Some examples together with their numeric simulations
are presented in Sect. 5 to show the feasibility of the main results. We end this paper by a
brief discussion.
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2 Local stability of the equilibria
The aim of this section is to investigate the existence and local stability property of the
equilibrium of system (1.2).

Lemma 2.1 Assume that
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1
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(2.2)
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admits a unique positive solution

x1 =
–B1 +

√
B2

1 – 4A1C1

2A1
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where

A1 = m2r1, B1 = Em1r1 – K2m2r1, C1 = EK1q – K1m1r1. (2.5)

Proof It follows from the continuity of
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and (2.1) that
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q

m1
> 0, F1(K1) = –

qE
m1E + m2K1

< 0,

hence F1(x) = 0 has at least one positive solution on the interval (0, K1). Also, for x ≥ 0,
from (2.2)

dF1(x)
dx

= –
r1

K1
+

qEm2

(Em1 + m2x)2 ≤ –
r1

K1
+

qm2

Em2
1

< 0.

Hence, F1(x) is strictly decreasing on the interval (0, +∞); therefore, F1(x) = 0 has at
most one positive solution on the interval (0, +∞). The above analysis shows that un-
der the assumption of Lemma 2.1, F1(x) = 0 has a unique positive solution on the interval
(0, K1).
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The solution of the equation F1(x) = 0 is equivalent to the solution of the equation

G1(x) = A1x2 + B1x + C1 = 0, (2.6)

where A1, B1, C1 is defined by (2.4). Noting that under the assumption (2.1), C1 = EK1q –
EK1m1r2 < 0, (2.6) has only one positive solution,

x1 =
–B1 +

√
B2

1 – 4A1C1

2A1
. (2.7)

This ends the proof of Lemma 2.1. �

Lemma 2.2 Assume that
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qm2

Em2
1

<
r1

K1
(2.9)

hold, then
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x
K1

+ α
K2

K1

)
–

qE
m1E + m2x

= 0 (2.10)

admits a unique positive solution

x∗ =
–B2 +

√
B2

2 – 4A2C2

2A2
, (2.11)

where

A2 = m2r1, B2 = Em1r1 – K2αm2r1 – K1m2r1, (2.12)

C2 = EK1q – EK1m1r1 – EK2αm1r1. (2.13)

Proof The proof of Lemma 2.2 is similar to that of Lemma 2.1 and we omit the details
here. �

Under the assumption (2.8) and (2.9) hold, by using Lemma 2.2, system (1.2) admits
three equilibria,

E1(0, 0), E3(0, K2), E4
(
x∗, y∗), (2.14)

where x∗ is defined by (2.14) and y∗ = K2. If we further assume that (2.1) holds, then system
(1.2) also admits the fourth equilibrium, E2(x1, 0), where x1 is defined by (2.4).

We shall now investigate the local stability property of the above equilibria.
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Theorem 2.1 Assume that (2.8) and (2.9) hold, then E1(0, 0) and E3(0, K2) are all unstable;
E4(x∗, y∗) is locally asymptotically stable. Assume further that (2.1) holds, then E2(x1, 0) is
unstable.

Proof The variational matrix of the system of Eq. (1.2) at (x, y) is

J(x, y) =

(
Γ

r1αx
K1

0 r2(1 – y
K2

) – r2y
K2

)
, (2.15)

where
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x
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αy
K1

)
–

r1x
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–
qE
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+

qExm2

(Em1 + m2x)2 .

The characteristic equation of the variational matrix is

λ2 – tr(J)λ + det(J) = 0. (2.16)

(1) For the steady-state solution E1(0, 0), λ1 = r1 – q
m1

, λ2 = r2 > 0, so E1(0, 0) is unstable.
(2) For the steady-state solution E3(0, K2), λ1 = r1(1 + αK2

K1
) – q

m1
> 0, λ2 = –r2 < 0, and so,

E3(0, K2) is unstable.
(3) Noting that the positive equilibrium E4(x∗, y∗) satisfies
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)
–

qE
m1E + m2x∗ = 0,
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(
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)
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(2.17)

By using (2.17), the Jacobian of the system about the equilibrium point E4(x∗, y∗) is
given by

J
(
x∗, y∗) =

(
– r1x∗

K1
+ qEx∗m2

(Em1+m2x∗)2
r1x∗α

K1

0 – r2y∗
K2

)
. (2.18)

Under the assumption (2.1) and (2.2), the two eigenvalues of the matrix satisfies
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K1
+
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(Em1 + m2x∗)2 < x∗
(

–
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K1
+

qm2

Em2
1

)
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λ2 = –
r2y∗

K2
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Consequently, E4(x∗, y∗) is locally asymptotically stable.
(4) Noting that x1 satisfies

r1

(
1 –

x1
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)
–

qE
m1E + m2x1

= 0.

The Jacobian of the system about the equilibrium point E2(x1, 0) is given by
(

– r1x1
K1

+ qEx1m2
(Em1+m2x1)2

r1x1α

K1

0 r2

)
. (2.19)
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Under the assumption (2.1), (2.8) and (2.9), the two eigenvalues of the matrix
satisfies λ1 = – r1x1

K1
+ qEx1m2

(Em1+m2x1)2 < 0, λ2 = r2 > 0. Consequently, E2(x1, 0) is unstable.
The proof of Theorem 2.1 is finished. �

3 Global stability
The aim of this section is to investigate the global stability property of the equilibrium of
system (1.2).

Theorem 3.1 Assume that (2.8) and (2.9) hold, then the positive equilibrium E4(x∗, y∗) of
system (1.2) is globally stable.

Proof Let (x(t), y(t))T be any positive solution of system (1.2). Noting that the second equa-
tion of system (1.2) is the traditional logistic equation, it immediately follows that

lim
r→+∞ y(t) = K2. (3.1)

Condition (2.8) implies that, for small enough positive constant, ε > 0, the inequality

r1

(
1 + α

K2 – ε

K1

)
>

q
m1

(3.2)

holds. Let ε > 0 be any small enough positive constant which satisfies (3.2) and ε < 1
2 K2. It

follows from (3.1) that there exists T > 0 such that

K2 – ε < y(t) < K2 + ε for all t > T . (3.3)

From the first equation of (1.2) and the right hand side of (3.2), we have

dx
dt

≤ r1x
(
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x
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)
–

qEx
m1E + m2x

. (3.4)

Now let us consider the equation

du1

dt
= r1u1

(
1 –

u1

K1
+ α

K2 + ε

K1

)
–

qEu1

m1E + m2u1
. (3.5)

Condition (2.8) implies

r1

(
1 + α

K2 + ε

K1

)
>

q
m1

(3.6)

holds. Let

F3(u1) = r1

(
1 –

u1

K1
+ α

K2 + ε

K1

)
–

qE
m1E + m2u1

. (3.7)

From (3.6) and (2.9), with slightly revise of the proof of Lemma 2.1, we can show that:
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(1) There is a unique u∗
1ε , such that F3(u∗

1ε) = 0, where, by simple computation,

u∗
1ε =

–B21 +
√

B2
21 – 4A2C21

2A2
. (3.8)

A2 = m2r1, B21 = Em1r1 – (K2 + ε)αm2r1 – K1m2r1,

C21 = EK1q – EK1m1r1 – E(K2 + ε)αm1r1.
(3.9)

(2) For all u∗
1ε > u1 > 0, F3(u1) > 0.

(3) For all u1 > u∗
1ε > 0, F3(u1) < 0.

Hence, it immediately follows from Lemma 2.1 in [38] that the unique positive equilibrium
u∗

1ε of system (3.5) has global stability. By the comparison theorem, it immediately follows
from (3.4) and (3.5) that

lim sup
t→+∞

x(t) ≤ u∗
1ε . (3.10)

Since ε > 0 is an arbitrary small positive constant, letting ε → 0 in (3.10) leads to

lim sup
t→+∞

x(t) ≤ x∗. (3.11)

From the first equation of (1.2) and the left hand side of (3.2), we have

dx
dt

≥ r1x
(

1 –
x

K1
+ α

K2 – ε

K1

)
–

qEx
m1E + m2x

. (3.12)

Now let us consider the equation

dv1

dt
= r1v1

(
1 –

v1

K1
+ α

K2 – ε

K1

)
–

qEv1

m1E + m2v1
. (3.13)

Let

F4(v1) = r1

(
1 –

v1

K1
+ α

K2 – ε

K1

)
–

qE
m1E + m2v1

. (3.14)

From (3.2) and (2.9), with slightly revision of the proof of Lemma 2.1, we can show that:
(1) There is a unique v∗

1ε , such that F4(v∗
1ε) = 0, where, by simple computation,

v∗
1ε =

–B22 +
√

B2
22 – 4A2C22

2A2
, (3.15)

here

A2 = m2r1, B22 = Em1r1 – (K2 – ε)αm2r1 – K1m2r1,

C22 = EK1q – EK1m1r1 – E(K2 – ε)αm1r1.

(2) For all v∗
1ε > v1 > 0, F4(v1) > 0.

(3) For all v1 > v∗
1ε > 0, F4(v1) < 0.
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Hence, it immediately follows from Theorem 2.1 in [38] that the unique positive equilib-
rium v∗

1ε of system (3.13) has global stability. By the comparison theorem, it immediately
follows from (3.12) and (3.13) that

lim inf
t→+∞ x(t) ≥ v∗

1ε . (3.16)

Since ε > 0 is an arbitrary small positive constant, letting ε → 0 in (3.16) leads to

lim inf
t→+∞ x(t) ≥ x∗. (3.17)

It immediately follows from (3.11) and (3.17) that

lim
t→+∞ x(t) = x∗. (3.18)

This ends the proof of Theorem 3.1. �

One could easily see that (2.1) implies (2.8), hence, as a direct corollary of Theorem 3.1,
we have the following.

Corollary 3.1 Assume that (2.1) and (2.2) hold, then system (1.2) admits a unique positive
equilibrium E4(x∗, y∗), which is globally stable.

Remark 3.1 Corollary 3.1 shows that if the harvesting is limited, the catchability is small
enough (i.e., q is small enough), then the two species could coexist in a stable state.

Remark 3.2 Theorem 3.1 shows that, for the catchability large enough (i.e., q is large),
then the cooperative intensity of the two species becomes the most important factor, if α

is large enough, then two species could also coexist in a stable state.

4 Extinction of the first species
In Sect. 2, assumption (2.8) and (2.9) implies that the catchability coefficient q should be
limited or the cooperative effect (α) should be large enough. One may be curious as to
what would happen if the harvesting effort is large enough and the cooperative effect is
limited. In this case, will the species be driven to extinction?

We will give an affirmative answer to this question. Indeed, we have the following result.

Theorem 4.1 Assume that

r1

(
1 +

αK2

K1

)
<

qE
m1E + m2(K1 + αK2)

(4.1)

holds, then

lim
t→+∞ x(t) = 0, lim

t→+∞ y(t) = K2,

i.e., the first species will be driven to extinction due to the over harvesting.
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Proof From (4.1) we could choose ε > 0 small enough, such that

r1

(
1 +

α(K2 + ε)
K1

)
<

qE
m1E + m2(K1 + α(K2 + ε) + ε)

. (4.2)

Noting that the second equation of system (1.2) is independent of the variable x and is the
traditional logistic equation; we have

lim
t→+∞ y(t) = K2. (4.3)

Hence, for ε > 0 be defined by (4.1), there exists a large enough T1 such that

y(t) < K2 + ε for all t ≥ T1. (4.4)

For t ≥ T1, from the first equation of system (1.2) and (4.4), we also have

dx
dt

≤ r1x
(

1 +
α(K2 + ε)

K1
–

x
K1

)
. (4.5)

Hence, it follows from Lemma 2.1 in [27] that

lim sup
t→+∞

x(t) ≤ K1 + α(K2 + ε).

Therefore, there exists a T2 > T1 such that

x(t) ≤ K1 + α(K2 + ε) + ε as t ≥ T2. (4.6)

For t > T2, it follows from the first equation of system (1.2) and (4.6) that

dx
dt

≤ Υ x, (4.7)

where

Υ = r1

(
1 +

α(K2 + ε)
K1

–
qE

r1(m1E + m2(K1 + α(K2 + ε) + ε))

)
.

It follows from (4.2) and (4.7) that

x(t) ≤ x(T2) exp
{
Υ (t – T2)

} → 0 as t → +∞. (4.8)

This ends the proof of Theorem 4.1. �

5 Numerical simulations
Example 5.1 Let us take r1 = 1, E = 1, q = 1, α = K1 = K2 = m2 = 1, m1 = 2. In this case, by
simple computation, one could easily see that

2 = r1

(
1 + α

K2

K1

)
>

q
m1

=
1
2

(5.1)
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and

1
4

=
qm2

Em2
1

<
r1

K1
= 1 (5.2)

hold, that is, conditions (2.8) and (2.9) in Theorem 2.1 hold, and it follows from Theorems
2.1 and 3.1 that the unique positive equilibrium of the system is globally stable. Numeric
simulations (Fig. 1, Fig. 2) also support this assertion.

Figure 1 Numeric simulations of the first component system (5.1), with the initial conditions
(x(0), y(0)) = (5, 0.1), (4, 1), (0.3, 3) and (0.7, 2), respectively

Figure 2 Numeric simulations of the second component of system (5.1), with the initial conditions
(x(0), y(0)) = (5, 0.1), (4, 1), (0.3, 3) and (0.7, 2), respectively
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Figure 3 Numeric simulations of the second component of system (5.1), with the initial conditions
(x(0), y(0)) = (5, 0.1), (4, 1), (0.3, 3) and (0.7, 2), respectively

Example 5.2 Let us take r1 = 1, E = 1, q = 5, r2 = 2, α = K1 = K2 = m2 = m1 = 1. In this case,
by simple computation, one could easily see that

3
2

= r1

(
1 +

αK2

K1

)
<

5
3

=
qE

m1E + m2(K1 + αK2)
. (5.3)

Hence, it follows from Theorem 4.1 that the first species will be driven to extinction, and
the second species is globally stable. Numeric simulations (Fig. 3, Fig. 4) also support this
assertion.

6 Discussion
Discussing the influence of harvesting is one of the main topics in the study of population
dynamics, and many scholars (see [30–40]) have done work in this direction. Specially,
recently, many scholars (see [30, 33–36]) studied the ecosystem with nonlinear harvesting
term.

Stimulated by the work of [30, 33–36], in this paper, we try to incorporate the Michaelis–
Menten type harvesting term for the first species of a Lotka–Volterra commensalism
model, this seems more interesting and necessary, since more and more species become
endangered due to the over harvesting by humans. It is natural to ask: Could the commen-
salism of the second species to the first species could avoid the extinction of the species?
Theorem 3.1 shows that if the cooperative intensity is large enough, then the two species
could really coexist in a stable state. However, Theorem 4.1 shows that if the cooperative
effect is limited, the first species may still be driven to extinction due to the over harvest-
ing.

Our study shows that to ensure the long run existence of the species, the harvesting
effort should be limited.



Chen Advances in Difference Equations         (2019) 2019:43 Page 13 of 14

Figure 4 Numeric simulations of the second component of system (5.1), with the initial conditions
(x(0), y(0)) = (5, 0.1), (4, 1), (0.3, 3) and (0.7, 2), respectively
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