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Abstract
This paper is devoted to the investigation of the sliding-mode controller design
problem for a class of complex dynamical network systems with Markovian jump
parameters and time-varying delays. On the basis of an appropriate
Lyapunov–Krasovskii functional, a set of new sufficient conditions is developed which
not only guarantee the stochastic stability of the sliding-mode dynamics, but also
satisfy the H∞ performance. Next, an integral sliding surface is designed to guarantee
that the closed-loop error system reach the designed sliding surface in a finite time.
Finally, an example is given to illustrate the validity of the obtained theoretical results.
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1 Introduction
In recent years, increasing attention has been drawn to the problem of complex networks
due to their potential applications in many real-world systems, such as biological systems,
chemical systems, social systems and technological systems. In particular, the synchro-
nization phenomena in complex dynamical networks system have attracted rapidly in-
creasing interests, which mean that all nodes can reach a common state. Several famous
network models, such as the scale-free model [1] and the small-word model [2, 3], which
accurately characterize some important natural structures, have been researched. Com-
plex dynamical network are prominent in describing the sophisticated collaborative dy-
namics in many fields of science and engineering [4–6].

The feature of time delay exists extensively in many real-world systems. It is well known
that the existence of time delay in a network can make system instable and degrade its per-
formance. In recent decades, considerable attention has been devoted to the time-delay
systems due to their extensive applications in practical systems including circuit theory,
neural network [7–10] and complex dynamical networks system [11–16] etc. Thus, syn-
chronization for complex dynamical networks with time delays in the dynamical nodes
and coupling has become a key and significant topic. Some researchers have proposed
some results in this area. In [11], the author proposed pinning control scheme to achieve
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synchronization for singular complex networks with mixed time delays. Based on impul-
sive control method, the authors in [12, 13] studied projective synchronization between
general complex networks with coupling time-varying delay and multiple time-varying de-
lays [14], respectively. Based on sampled-data control [15], the authors proposed a method
with finite-time H∞ synchronization in Markovian jump complex networks with time-
varying delays. Based on pinning impulsive control [17], the problem of exponential syn-
chronization of Lur’e complex dynamical network with delayed coupling was studied.

The dynamical behaviors of all nodes in complex dynamical networks are not always the
same. Thus, many authors have studied the characteristics of all nodes in CDNs with the
help of digital controllers, such as pinning control [18–21], sampled-data control [22, 23],
impulsive control [24–26] and sliding control [27–30] and so on. Under an important pin-
ning control approach, by a minimum number of controllers, the system can reached the
predetermined goal. Under a sampled-data controller, the states of the control systems
at sampling instants are adjusted continuously by using zero-order holder. Under an im-
pulsive controller, states of the control systems are adjusted at discrete-time sampling in-
stants. Under sliding control, in the design of the sliding surface, a set of specified matrices
are employed to establish the connections among sliding surface corresponding to every
mode. No matter what control strategy is adopted, the ultimate goal is to make the system
stable and achieve our intended results. In this paper, the goal is to select suitable slid-
ing control to synchronize complex networks with Markovian jump parameters and time
delays.

The sliding-mode control methods were initiated in the former Soviet Union about 40
years ago, and since then the sliding-mode control methodology has been receiving much
more attention within the last two decades. Sliding-mode control is widely adopted in
lots of complex and engineering systems, including time delays [31–33] stochastic sys-
tems [34, 35], singular systems [36–38], Markovian jumping systems [39–41], and fuzzy
systems [42–44]. As is well known, system performance may be degraded by the affection
of the presence of nonlinearities and external disturbances. In [32], a sliding-mode ap-
proach is proposed for the exponential H∞ synchronization problem of a class of master–
slave time-delay systems with both discrete and distributed time delays. In [34], the au-
thors were concerned with event-triggered sliding-mode control for an uncertain stochas-
tic system subject to limited communication capacity. In [38], this paper is concerned
with non-fragile sliding-mode control of discrete singular systems with external distur-
bance. In [41], the authors considered sliding-mode control design for singular stochastic
Markovian jump systems with uncertainties. The main advantage of the sliding mode is
low sensitivity to plant parameter variation and disturbance, which eliminate the necessity
of exact modeling.

Markovian jump systems including time-evolving and event-driven mechanisms have
the advantage of better representing physical systems with random changes in both struc-
ture and parameters. Much recent attention has been paid to the investigation of these
systems. When complex dynamical networks systems experience abrupt changes in their
structure, it is natural to model them by Markovian jump complex networks systems.
A great deal of literature has been published to study the Markovian jump complex net-
works systems; see [11, 14, 15, 19, 23, 28] for instance.

Up to now, unfortunately, there have only been few papers related to the topic of syn-
chronization of complex dynamical networks with Markovian jump parameters and time-
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varying delays coupling in the dynamical nodes. So it is challenging to solve this synchro-
nization problem for complex dynamical networks. Motivated by the aforementioned dis-
cussion, this paper aims to study the H∞ synchronization of complex dynamical network
system. To achieve the H∞ synchronization of complex dynamical networks with Marko-
vian jump parameter, the integral sliding surface is designed, and a novel sliding-mode
controllers is proposed. The main contributions of this article are summarized as follows:
(1) This paper extends previous work on the synchronization problem for complex dy-
namical network systems with Markovian jump parameters and time-varying delays and
derives some new theoretical results. (2) An appropriate integral sliding-mode surface is
constructed such that the reduced-order equivalent sliding motion can adjust the effect
of the chattering phenomenon. (3) Using a Lyapunov–Krasovskii functional and a sliding-
mode controller, we establish new sufficient conditions in terms of LMIs to ensure the
stochastic stability and the H∞ performance condition.

Notation Rn denotes the n dimensional Euclidean space; Rm×n represents the set of all
m × n real matrices. For a real asymmetric matrix X and Y , the notation X ≥ Y (respec-
tively, X > Y ) means X – Y is semi-positive definite (respectively, positive definite). The
superscript T denotes matrix transposition. Moreover, in symmetric block matrices, ∗ is
used as an ellipsis for the terms that are introduced by asymmetry and diag{· · · } denotes
a block-diagonal matrix. The notation A ⊗ B stands for the Kronecker product of matri-
ces A and B. ‖ · ‖ stands for the Euclidean vector norm. E stands for the mathematical
expectation. If not explicitly stated, matrices are assumed to have compatible dimensions.

2 System description and preliminary lemma
Let {r(t) (t ≥ 0)} be a right-continuous Markovian chain on the probability space (Ω , F ,
{Ft}t≥0, P) taking a value in the finite space S = {1, 2, . . . , m}, with generator Π = {πij}m×m

(i, j ∈ S) given as follows:

Pr(rt+�t = j|rt = i) =

⎧
⎨

⎩

πij�t + o(�t), i �= j,

1 + πij�t + o(�t), i = j,

where �t > 0, lim�t→0(o�t/�t) = 0, and πij is the transition rate from mode i to mode j
satisfying πij ≥ 0 for i �= j with πij = –

∑m
j=1 j �=i πij (i, j ∈ S).

The following complex dynamical network systems of N identical nodes is considered,
in which each node consists of an n-dimensional dynamical subsystem with Markovian
jump parameter and time delay:

⎧
⎪⎪⎨

⎪⎪⎩

ẋk(t) = A(r(t))xk(t) + C(r(t))f (xk(t)) + σ1
∑N

j=1 gkjΓ1(r(t))xj(t)

+ σ2
∑N

j=1 gkjΓ2(r(t))xj(t – τ (t)) + D(r(t))wk(t) + B(r(t))uk(t),

zk(t) = E(r(t))xk(t), k = 1, 2, . . . , N ,

(1)

where xk(t) = (xk1, xk2, . . . , xkn)T ∈ Rn represents the state vector of the kth node of the
complex dynamical system; uk(t) denote the control input and wk(t) is the disturbance;
f (xk(t)) is for vector-valued nonlinear functions; A(r(t)), C(r(t)), D(r(t)) and B(r(t)) are
matrix functions of the random jumping process {r(t)}; Γ1(r(t)) and Γ2(r(t)) represent the
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inner coupling matrix of the complex networks; σ1 and σ2 > 0 denote the non-delayed
and delayed coupling strengths. G = (gkj)N×N is the out-coupling matrix representing the
topological structure of the complex networks, in which gkj is defined as follows: if there
exists a connection between node k and node j (k �= j), then gkj = gjk = 1, otherwise, gkj =
gjk = 0 (k �= j). The row sums of G are zero, that is,

∑N
j=1 gkj = –gkk , k = 1, 2, . . . , N . The

bounded function τ (t) represents unknown discrete-time delays of the system. The time
delay τ (t) is assumed to satisfy the condition as follows:

0 ≤ τ (t) ≤ τ , 0 ≤ τ̇ (t) ≤ τ̄ , (2)

where τ and τ̄ are given nonnegative constants.

Assumption 2.1 For all x, y ∈ Rn, the nonlinear function f (·) is continuous and assumed
to satisfy the following sector-bounded nonlinearity condition:

[
f (x) – f (y) – U1(x – y)

]T[f (x) – f (y) – U2(x – y)
]≤ 0, (3)

where U1 and U2 ∈ Rn×n are known constant matrices with U2 – U1 > 0. For presentation
simplicity and without loss of generality, it is assumed that f (0) = 0.

Definition 2.1 ([41]) The complex dynamical network systems (1) is said to be stochas-
tically stable, if any e(0) ∈ Rn and r0 ∈ S there exists a scalarM̃(e(0), r0) > 0 such that

lim
t→∞E

{∫ t

0
eT(s, e(0), r0

)
e
(
s, e(0), r0

)
}

≤ M̃
(
e(0), r0

)
,

where e(t, e(0), r0) denotes the solution under the initial condition e(0) and r0. And ek(t) =
xk(t) – s(t) is the synchronization error of the complex dynamical network system, and
s(t) ∈ Rn can be an equilibrium point, or a (quasi-)periodic orbit, or an orbit of a chaotic
attractor, which satisfies ṡ(t) = A(r(t))s(t) + C(r(t))f (s(t)).

Definition 2.2 ([32]) The H∞ performance measure of the systems (1) is defined as

J∞ = E
(∫ ∞

0
ze(t)T ze(t) – γ 2wT (t)w(t) dt

)

,

where the positive scalar γ is given.

Lemma 2.1 (Jensen’s inequality) For a positive matrix M, scalar hU > hL > 0 the following
integrations are well defined:

(1) –(hU – hL)
∫ t–hL

t–hU
xT (s)Mx(s) ds ≤ –(

∫ t–hL
t–hU

xT (s) ds)M(
∫ t–hL

t–hU
xT (s) ds),

(2) –( h2
U –h2

L
2 )

∫ t–hL
t–hU

∫ t
s xT (u)Mx(u) du ds ≤ –(

∫ t–hL
t–hU

∫ t
s xT (u) du ds)M(

∫ t–hL
t–hU

∫ t
s x(u) du ds).

Lemma 2.2 ([11]) If for any constant matrix R ∈ Rm×m, R = RT > 0, scalar γ > 0 and a
vector function φ : [0,γ ] → Rm such that the integrations concerned are well defined, the
following inequality holds:

–γ

∫ t

t–γ

φ̇T (s)Rφ̇(s) ds ≤
(

φ(t)
φ(t – γ )

)T (
–R R
∗ –R

)(
φ(t)

φ(t – γ )

)

.
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Lemma 2.3 ([45]) Let ⊗ denote the Kronecker product. A, B, C and D are matrices with
appropriate dimensions. The following properties hold:

(1) (cA) ⊗ B = A ⊗ (cB), for any constant c,
(2) (A + B) ⊗ C = A ⊗ C + B ⊗ C,
(3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),
(4) (A ⊗ B)T = AT ⊗ BT ,
(5) (A ⊗ B)–1 = (A–1 ⊗ B–1).

For the sake of simplicity, when r(t) = i, we denote Ai, Ci, Bi, Di, Γ1i, Γ2i as A(r(t)),
C(r(t))B(r(t)), D(r(t)), Γ1(r(t)), Γ2(r(t)). Let e(t) = x(t) – s(t) be the synchronization error
of system from the initial mode r0. Then the error dynamical, namely, the synchronization
error system can be expressed by

⎧
⎪⎪⎨

⎪⎪⎩

ėk(t) = Aiek(t) + Cig(ek(t)) + σ1
∑N

j=1 gkjΓ1iej(t) + σ2
∑N

j=1 gkjΓ2iej(t – d(t))

+ Biuk(t) + Diwk(t),

zk(t) = Eiek(t), k = 1, 2, . . . , N ,

(4)

where g(ek(t)) = f (xk(t)) – f (sk(t)).
Now, the original synchronization problem can be replace by the equivalent problem

of the stability the system (4) by a suitable choice of the sliding-mode control. In the fol-
lowing, the sliding-mode controller will be designed using variable structure control and
sliding-mode control methods [46]. Let us introduce the sliding surface as

Sk(t, i) = Viek(t) – Vi

∫ t

0

[

(Ai – BiKi)ek(s) + σ1

N∑

j=1

gkjΓ1iek(s)

+ σ2

N∑

j=1

gkjΓ2iek
(
s – d(s)

)
]

ds. (5)

Vi ∈ Rm×n, Ki ∈ Rr×n are real matrices to be designed. Vi is designed such that ViBi is non-
singular. It is clear that Ṡk(t, i) = 0 is a necessary condition for the state trajectory to stay
on the switching surface Sk(t, i) = 0. Therefore, by Ṡk(t, i) = 0 and (4), we get

0 = ViBiKiek(t) + ViCig
(
ek(t)

)
+ ViBiuk + ViDiwk(t). (6)

Solving Eq. (6) for uk(t)

ukeq(t) = –Kiek(t) – V̂iCig
(
ek(t)

)
– V̂iDiwk(t), (7)

where V̂i = (ViBi)–1Vi.
Substituting (7) into (4), the error dynamics with sliding mode is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ėk(t) = (Ai – BiKi)ek(t) + (Ci – BiV̂iCi)g(ek(t))

+ σ1
∑N

j=1 gkjΓ1iej(t) + σ2
∑N

j=1 gkjΓ2iej(t – d(t)) + (I – BiV̂i)Diwk(t),

zk(t) = Eiek(t).

(8)
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Or equivalently

⎧
⎪⎪⎨

⎪⎪⎩

e(t) = (IN ⊗ (Ai – BiKi))e(t) + (IN ⊗ (Ci – BiV̂iCi))g(e(t))

+ σ1(G ⊗ Γ1i)e(t) + σ2(G ⊗ Γ2i)e(t) + (IN ⊗ (Di – BiV̂iDi))w(t),

z(t) = (IN ⊗ Ei)e(t).

(9)

The problem to be addressed in this paper is formulated as follows: given the complex
dynamical network system (1) with Markovian jump parameters and time delays, finding a
mode-dependent sliding mode stochastically stable and H∞ synchronization control u(t)
with any r(t) = i ∈ S for the error system (4) is stochastically stable and satisfies an H∞
norm bound γ , i.e. J∞ < 0.

3 Main results
The purpose of this section is to solve the problem of H∞ synchronization. More specifi-
cally, we will establish LMI conditions to check whether the sliding-mode dynamics have
ideal properties, such as being stochastically stable and H∞ synchronization. The relevant
conclusion of the stability analysis is provided in the following theorem.

3.1 Stability analysis
Theorem 3.1 Let the matrices Vi, Ki (i = 1, 2, . . . , N ) with det(ViBi) �= 0 be given. The com-
plex dynamical network system (1) with Markovian jump parameter is stochastically stable
and shows H∞ synchronization in the sense of Definition 2.1 and Definition 2.2, if there ex-
ist some positive definite matrices Pi, Q1, Q2, Xι (ι = 1, 2, 3) such that the following matrix
holds for any i ∈ S :

Φi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 Φ12 –X2
2
τ

X3 Φ15 Φ16 Φ17

∗ –(1 – τ̄ )Q1 0 0 0 Φ26 0
∗ ∗ –Q2 + X2 0 0 0 0
∗ ∗ ∗ – X1

τ
– 2X3

τ2 0 0 0
∗ ∗ ∗ ∗ –εI Φ56 0
∗ ∗ ∗ ∗ ∗ Φ66 Φ67

∗ ∗ ∗ ∗ ∗ ∗ –e–2ατ γ 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (10)

where

Φ11 = sym
(
(IN ⊗ Pi)

(
IN ⊗ (Ai – BiKi)

))
+ sym

(
(IN ⊗ Pi)(G ⊗ Γ1i)

)

+ Q1 + Q2 + τX1 + X2 – 2X3 – εR̄ + ΛT
1
(
IN ⊗ (Ai – BiKi)

)

+ σ1Λ
T
1 (G ⊗ Γ1i) + e–2ατ (IN ⊗ E)T (IN ⊗ E),

Φ12 = σ2(IN ⊗ Pi)(G ⊗ Γ2i) + σ2Λ
T
1 (G ⊗ Γ2i),

Φ15 = (IN ⊗ Pi)
(
IN ⊗ (Ci – BiV̂iCi)

)
+ ΛT

1
(
IN ⊗ (Ci – BiV̂iCi)

)
– εS̄,

Φ16 = –ΛT
1 +

(
IN ⊗ (Ai – BiKi)

)T
Λ2 + σ1(G ⊗ Γ1i)TΛ2,

Φ17 = (IN ⊗ Pi)
(
IN ⊗ (Di – BiV̂iDi)

)
+ ΛT

1
(
IN ⊗ (Di – BiV̂iDi)

)
,

Φ26 = σ2(G ⊗ Γ2i)TΛ2,
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Φ56 = –
(
IN ⊗ (Ci – BiV̂iCi)

)
Λ2,

Φ66 = τ 2X2 +
τ 2

2
X3 – 2ΛT

2 ,

Φ67 = ΛT
2
(
IN ⊗ (Di – BiV̂iDi)

)
.

Proof Design the following positive definition functional for the system:

V
(
e(t), i, t

)
= V1

(
ek(t), i, t

)
+ V2

(
e(t), i, t

)
+ V3

(
e(t), i, t

)
, (11)

where

V1
(
ek(t), i, t

)
=

N∑

k=1

eT
k (t)Piek(t), (12)

V2
(
e(t), i, t

)
=
∫ t

t–τ (t)
eT (s)Q1e(s) ds +

∫ t

t–τ

eT (s)Q2e(s) ds, (13)

V3
(
e(t), i, t

)
=
∫ t

–τ

∫ t

t+θ

eT (s)X1e(s) ds dθ + τ

∫ 0

–τ

∫ t

t+θ

ėT (s)X2ė(s) ds dθ

+
∫ 0

–τ

∫ 0

υ

∫ t

t+θ

ėT (s)X3e(s) ds dθ dυ. (14)

By the definition of the infinitesimal operator L of the stochastic Lyapunov–Krasovskii
functional in [47], we obtain

LV
(
e(t), i, t

)
= lim

�t→0

1
�

[
E
[
V
(
e(t + �), ri+�, t + �

)] |x(t), rt=i
]

– V
(
x(t), i, t

)

= Vt
(
e(t), i, t

)
+ ėT (t)Ve

(
e(t), i, t

)
+

m∑

j=1

πijV
(
e(t), i, t

)
. (15)

Calculating the infinitesimal generator of V (e(t), i, t) along the trajectory of the error
sliding-mode dynamics (8) and (9), we obtain

LV1
(
ek(t), i, t

)
= 2

N∑

k=1

eT
k (t)Piėk(t)

= 2
N∑

k=1

eT
k (t)Pi(Ai – BiKi)ek(t)

+ 2
N∑

k=1

eT
k (t)Pi(Ci – BiV̂iCi)g

(
e(t)

)

+ 2σ1

N∑

k=1

eT
k (t)Pi

N∑

j=1

gkjΓ1iej(t)

+ 2σ2

N∑

k=1

eT
k (t)Pi

N∑

j=1

gkjΓ2iej
(
t – τ (t)

)
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+ 2
N∑

k=1

eT
k (t)Pi(Di – BiV̂iDi)wk(t)

= 2eT (t)(IN ⊗ Pi)
(
IN ⊗ (Ai – BiKi)

)
e(t)

+ 2eT (t)(IN ⊗ Pi)
(
IN ⊗ (Ci – BiV̂iCi)

)
g
(
e(t)

)

+ 2σ1eT (t)(IN ⊗ Pi)(G ⊗ Γ1i)e(t)

+ 2σ2eT (t)(IN ⊗ Pi)(G ⊗ Γ2i)e
(
t – τ (t)

)

+ 2eT (t)(IN ⊗ Pi)
(
IN ⊗ (Di – BiV̂iDi)

)
w(t), (16)

LV2
(
e(t), i, t

)
= eT (t)(Q1 + Q2)e(t) –

(
1 – τ̇ (t)

)
eT(t – τ (t)

)
Q1e

(
t – τ (t)

)

– eT (t – τ )Q2e(t – τ )

≤ eT (t)(Q1 + Q2)e(t) – (1 – τ̄ )eT(t – τ (t)
)
Q1e

(
t – τ (t)

)

– eT (t – τ )Q2e(t – τ ), (17)

LV3
(
e(t), i, t

)
= τeT (t)X1e(t) –

∫ t

t–τ

eT (t)X1e(t) ds + τ 2ėT (t)X2ė(t)

– τ

∫ t

t–τ

ėT (t)X2ė(t) ds +
∫ 0

–τ

∫ 0

υ

ėT (t)X3ė(t) dθ dυ

–
∫ 0

–τ

∫ t

t+υ

ėT (t)X3ė(t) ds dυ

= τeT (t)X1e(t) + ėT (t)
(

τ 2X2 +
τ 2

2
X3

)

ė(t)

–
∫ t

t–τ

eT (t)X1e(t) ds – τ

∫ t

t–τ

ėT (t)X2ė(t) ds

–
∫ 0

–τ

∫ t

t+υ

ėT (t)X3ė(t) ds dυ. (18)

According to Lemma 2.1 and Lemma 2.2, we have

–
∫ t

t–τ

eT (s)X1e(s) ds ≤ –
1
τ

(∫ t

t–τ

e(s) ds
)T

X1

(∫ t

t–τ

e(s) ds
)

, (19)

–τ

∫ t

t–τ

ėT (s)X2ė(s) ds ≤
(

e(t)
e(t – τ )

)T (
–X2 X2

∗ –X2

)(
e(t)

e(t – τ )

)

, (20)

–
∫ 0

–τ

∫ t

t+υ

ėT (t)X3ė(t) ds dυ

≤ –
2
τ 2

(∫ 0

–τ

∫ t

t+υ

ė(t) ds dυ

)T

X3

(∫ 0

–τ

∫ t

t+υ

ė(t) ds dυ

)

= –
2
τ 2

(

τe(t) –
∫ t

t–τ

e(s) ds
)T

X3

(

τe(t) –
∫ t

t–τ

e(s) ds
)

. (21)

For any matrices Λ1 and Λ2 with appropriate dimensions, the following equations hold:

0 = 2
[
eT (t)ΛT

1 + ėT (t)ΛT
2
]
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× [
–ė(t) +

(
IN ⊗ (Ai – BiKi)

)
e(t) +

(
IN ⊗ (Ci – BiV̂iCi)

)
g
(
e(t)

)

+ σ1(G ⊗ Γ1i)e(t) + σ2(G ⊗ Γ2i)e
(
t – τ (t)

)
+
(
IN ⊗ (Di – BiV̂iDi)

)
w(t)

]
. (22)

It can be deduced from Assumption 2.1 that, for the matrices U1 and U2, the following
inequalities hold:

y(t) = ε

(
e(t)

g(e(t))

)T (
R̄ S̄
∗ I

)(
e(t)

g(e(t))

)

≤ 0, (23)

where

R̄ =
(IN ⊗ U1)T (IN ⊗ U2) + (IN ⊗ U2)(IN ⊗ U1)T

2
,

S̄ =
(IN ⊗ U2)T + (IN ⊗ U1)T

2
.

On the other hand, for a prescribed γ > 0, under zero initial condition, J∞ can be rewrit-
ten as

J∞ ≤ E
(∫ ∞

0
e–2αt[zT (t)z(t) – γ 2wT (t)w(t)

]
dt + V

(
e(t), i, t

)|t→∞

– V
(
e(t), i, t

)|t=0

)

≤ E
(∫ ∞

0
e–2αt[zT (t)z(t) – γ 2wT (t)w(t)

]
+ LV

(
e(t), i, t

)
dt
)

. (24)

From the obtained derivation terms in Eqs. (16)–(21) and adding Eqs. (22)–(23) into (24)

J∞ ≤ E
(∫ ∞

0
ξT (t)Φiξ (t) dt

)

, (25)

where

ξ (t) =
[

eT (t) eT (t – τ ) eT (t – τ (t))(
∫ t

t–τ
e(s) ds)

T
gT (e(t)) ėT (t) wT (t)

]T
.

According to the condition (10) in Theorem 3.1, it means that the condition J∞ < 0 is
satisfied. Moreover, J∞ < 0 for w(t) = 0 implies E{LV (e(t), i, t)} < 0. Then we have

E
{
LV

(
e(t), i, t

)}
< –a1E

{
eT (t)e(t)

}
, (26)

where a1 = min{λmin(–Φi), i ∈ S}, then a1 > 0. By Dynkin’s formula, we have

E
{∫ t

0
eT (s)e(s) ds

}

≤ a–1
1 V

(
e(0), r0, 0

)
(27)

and

lim
t→∞E

{∫ t

0
eT (s)e(s) ds

}

≤ a–1
1 V

(
e(0), r0, 0

)
. (28)
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Then from Definition 2.1, the sliding-mode dynamical system (9) is stochastically stable.
This completes the proof. �

Remark 1 It should be pointed out that Theorem 3.1 provided a sufficient condition of
stability for the sliding-mode complex dynamical network systems (9). But the parameter
matrix is not given so we cannot apply the LMI toolbox of Matlab to solve them. According
to Theorem 3.1 and the Schur complement, the strict LMI conditions will be given in the
next theorem.

Theorem 3.2 Under Assumption 2.1, a synchronization law given in the form of Eq. (9)
exists such that the Markovian jump synchronization error system (9) with time-varying
delays is stochastically stable and an H∞ performance level γ > 0 in the sense of Defini-
tion 2.1 and Definition 2.2, if there exist some matrices Yi, V̂i and positive definite matrices
Mi (i = 1, 2, . . . , s), X̃ι (ι = 1, 2, 3), Q1, Q2 satisfying the following LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 Σ12 –X̃2
2
τ

X̃3 Σ15 Σ16 Σ17 Σ18 Σ19

∗ –(1 – τ̄ )Q̃1 0 0 0 Σ26 0 0 0
∗ ∗ –Q̃2 + X̃2 0 0 0 0 0 0
∗ ∗ ∗ – X̃1

τ
– 2X̃3

τ2 0 0 0 0 0
∗ ∗ ∗ ∗ –εI Σ56 0 0 0
∗ ∗ ∗ ∗ ∗ Σ66 Σ67 0 0
∗ ∗ ∗ ∗ ∗ ∗ –e–2ατ γ 2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (29)

V̂iBi = I, (30)

where

Σ11 = sym
((

IN ⊗ (AiMi – BiYi)
))

+ sym
(
(G ⊗ Γ1i)(IN ⊗ Mi)

)
+ Q̃1 + Q̃2

+ τ X̃1 + X̃2 – 2X̃3 + Λ̃T
1
(
IN ⊗ (AiMi – BiYi)

)

+ σ1Λ̃
T
1 (G ⊗ Γ1i)(IN ⊗ Mi),

Σ12 = σ2(G ⊗ Γ2i)(IN ⊗ Mi) + σ2Λ̃
T
1 (G ⊗ Γ2i)(IN ⊗ Mi),

Σ15 =
(
IN ⊗ (Ci – BiV̂iCi)

)
(IN ⊗ Mi) + Λ̃T

1
(
IN ⊗ (Ci – BiV̂iCi)

)

– ε(IN ⊗ Mi)S̄,

Σ16 = –Λ̃T
1 (IN ⊗ Mi) +

(
IN ⊗ (AiMi – BiYi)

)T
Λ̃2 + σ1(IN ⊗ Mi)(G ⊗ Γ1i)TΛ̃2,

Σ17 =
(
IN ⊗ (Di – BiV̂iDi)

)
+ Λ̃T

1
(
IN ⊗ (Di – BiV̂iDi)

)
,

Σ26 = σ2(IN ⊗ Mi)(G ⊗ Γ2i)TΛ̃2,

Σ56 = –
(
IN ⊗ (Ci – BiV̂iCi)

)
Λ̃2,

Σ66 = τ 2X̃2 +
τ 2

2
X̃3 – 2(IN ⊗ Mi)Λ̃T

2 ,
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Σ67 = Λ̃T
2
(
IN ⊗ (Di – BiV̂iDi)

)
,

Σ18 = e–ατ (IN ⊗ Mi)(IN ⊗ E)T ,

Σ19 =
[√

πi1(IN ⊗ Mi),
√

πi2(IN ⊗ Mi), . . . ,
√

πis(IN ⊗ Mi)
]
,

Σ99 = diag
{

–(IN ⊗ M1), –(IN ⊗ M2), . . . , –(IN ⊗ Ms)
}

.

Proof Using the following diagonal matrix:

diag
{

(IN ⊗ Pi)–1, (IN ⊗ Pi)–1, (IN ⊗ Pi)–1, (IN ⊗ Pi)–1, I, (IN ⊗ Pi)–1, I
}

and its transpose, to pre-multiplying and post-multiplying (11), where Mi = P–1
i , applying

Schur complements and Lemma 2.3 and considering KiMi = Yi, we can get (29). Thereby
the proof of the theorem is completed. �

3.2 Sliding-model control design
The objective now is to study the reachability. In this section, an appropriate control law
will be constructed to drive the trajectories of the system (1) into the designed sliding
surface Sk(t, i) = 0 with Sk(t, i) defined in (6) in finite time and maintain them on the surface
afterwards.

Theorem 3.3 Suppose that the sliding function is given in (6) where Ki and Mi satisfy
(29)–(30). Then the trajectories of the error dynamic system (9) can be driven onto the slid-
ing surface Sk(t, i) = 0 in finite time and then maintain the sliding motion if the control is
designed as follows:

uk(t) = –Kiek(t) –
[
δki +

∥
∥B–1

i
∥
∥
(∥
∥Cig

(
ek(t)

)∥
∥ + ρi

∥
∥wk(t)

∥
∥
)]

sign
(
BT

i V T
i S(k, i)

)
, (31)

where ρi := maxi∈S (λmax(DiDT
i ))0.5.

Proof Choose the following Lyapunov function:

W
(
Sk(t, i)

)
=

1
2

ST
k (t, i)Sk(t, i). (32)

Calculating the time derivative of the sliding-mode surface Sk(t, i) along the trajectory
of (4), we obtain

Ẇ
(
Sk(t, i)

)
= ST

k (t, i)Ṡk(t, i)

= ST
k (t, i)Vi

{

ėk(t) –

[

(Ai – BiKi)ek(t) + σ1

N∑

j=1

gkjΓ1iej(t)

+ σ1

N∑

j=1

gkjΓ2iej
(
t – d(t)

)
]}

= ST
k (t, i)Vi

[
BiKiek(t) + Cig

(
ek(t)

)
+ Biuk(t) + Diwk(t)

]

= ST
k (t, i)ViBi

[
uk(t) + Kiek(t) + B–1

i Cig
(
ek(t)

)
+ B–1

i Diwk(t)
]
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≤ ST
k (t, i)ViBi

[
uk(t) + Kiek(t)

]

+
∥
∥B–1

i
∥
∥
(∥
∥Cig

(
ek(t)

)∥
∥ + ρi

∥
∥wk(t)

∥
∥
)∥
∥BT

i V T
i Sk(t, i)

∥
∥. (33)

Substituting (31) into (33) implies that

Ẇ
(
Sk(t, i)

)≤ –δki
∥
∥BT

i V T
i Sk(t, i)

∥
∥≤ –

√
2δkiλmin(ViBi)W 0.5(Sk(t, i)

)
. (34)

Then, letting Sk(t0 = 0, r0) = Sk0 and integrating from 0 → t, one obtains

E
{

W
(
Sk(t, i)

)|Sk0, r0
}0.5 ≤ –

√
2

2
δkiλmin(ViBi)t + W 0.5(Sk0, r0). (35)

The left-hand side of (35) is nonnegative; we can judge that W (Sk(t, i)) reaches zero in
finite time for each mode i ∈ S = {1, 2, . . . , m}, and the finite time t∗ is estimated by

t∗ ≤
√

2W (Sk0, r0)
δkiλmin(ViBi)

. (36)

Therefore, it is shown from (36) that the system trajectories can be driven onto the pre-
defined sliding surface in finite time. In other words, the sliding-mode surface Sk(t, i) must
be reachable. �

Remark 2 In order to eliminate the chattering caused by sign(BT
i V T

i S(k, i)), a boundary
layer is introduced around each switch surface by replace sign(BT

i V T
i S(k, i)) in (31) by sat-

uration function. Hence, the control law (31) can be expressed as

uk(t) = –Kiek(t) –
[
δki +

∥
∥B–1

i
∥
∥
(∥
∥Cig

(
ek(t)

)∥
∥ + ρi

∥
∥wk(t)

∥
∥
)]

sat

(
BT

i V T
i S(k, i)
κ

)

. (37)

The jth element of sat(BT
i V T

i S(k, i)/κ) is described as

sat

( [V T
i BT

i Sk(t, i)]j

κj

)

=

⎧
⎨

⎩

[sign(V T
i BT

i Sk(t, i))]j, if [V T
i BT

i Sk(t, i)]j > κj,
[V T

i BT
i Sk (t,i)]j
κj

, otherwise,
(38)

where j = 1, 2, . . . , m, κj is a measure of the boundary layer thickness around the jth switch-
ing surface.

4 Example
In this section, an example is provided to demonstrate that the proposed method is effec-
tive.

Example 1 Consider complex dynamical networks systems (1) with three nodes and mode
S = {1, 2}. The relevant parameters are given as follows.

Mode 1:

A1 =

[
–0.1 0.1

0 –0.2

]

, B1 =

[
–1 0
0 –1

]

, C1 =

[
1 0
0 1

]

,
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D1 =

[
–0.1 0.1
0.1 –0.2

]

, Γ11 =

[
0.8 0
0 0.8

]

, Γ21 =

[
1 0
0 1

]

, E1 =
[

1 0
]

.

Mode 2:

A2 =

[
–0.1 0.1
–0.1 0.2

]

, B2 =

[
0 1
1 1

]

, C2 =

[
1 0
1 1

]

, D2 =

[
–0.1 0.1
–0.1 –0.2

]

,

Γ12 =

[
0.3 0
0 0.3

]

, Γ22 =

[
1 0
0 1

]

, E2 =
[

1 1
]

.

In addition, the transition rate matrix is given by π =
[ –2 2

3 –3

]
.

And the outer coupling matrix is given as

G =

⎡

⎢
⎣

–1 1 0
1 –2 1
1 1 –2

⎤

⎥
⎦ .

The nonlinear function f (xi(t)) is taken as

f
(
xi(t)

)
=

[
–0.5xi1(t) – tanh(0.2xi1(t)) + 0.2xi2(t)

0.65xi2(t) – tanh(0.45xi2(t))

]

.

Let us take the matrices U1 and U2 as follows: U1 =
[ –0.5 0.2

0 0.65

]
, U2 =

[ –0.3 0.2
0 0.45

]
.

The time-varying delay is chosen as τ (t) = 0.9 + 0.01 sin(40t). According, one has τ =
0.91, τ̄ = 0.4. Let us consider the coupling strength σ1 = 0.2, σ2 = 0.5. The coefficient of
free weight matrix ε = 0.1, and α = 0.6. The exogenous input ω(t) = 1

1+t2 .
The LMIs (29) in Theorem 3.2 are solved by Matlab LMI toolbox, and obtained γ =

8.4702e+04.

M1 =

[
127.0802 3.3343

3.3343 120.4664

]

, M2 =

[
72.6259 –7.6644
–7.6644 371.9771

]

,

Y1 = 1.0e+04 ∗
[

–1.8445 –0.0364
–0.0364 –4.2983

]

, Y2 = 1.0e + 04 ∗
[

–2.3288 3.1836
3.1836 –0.6094

]

,

X̃1 = 1.0e+04 ∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.6572 0.0178 0.0007 0.0005 0.0007 –0.0067
0.0178 2.6863 –0.0004 0.0066 –0.0015 0.0091
0.0007 –0.0004 2.6572 0.0197 0.0010 –0.0024
0.0005 0.0066 0.0197 2.6325 0.0009 0.0272
0.0007 –0.0015 0.0010 0.0009 2.5636 –0.0356

–0.0067 0.0091 –0.0024 0.0272 –0.0356 2.6089

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

X̃2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

38.0472 –1.1333 –0.0541 –0.4213 –0.1619 0.4567
0.9337 72.0648 –0.3623 6.1533 –2.7151 –10.2644
0.1775 0.3276 38.0115 –1.0913 0.1921 0.3917
0.3648 –4.4085 1.0863 68.9744 –0.6696 4.2949
0.4862 2.7744 0.0387 0.6443 37.6727 –2.6762

–0.3795 11.3680 –0.3935 –1.8270 2.2792 86.5689

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,



Ma et al. Advances in Difference Equations         (2019) 2019:48 Page 14 of 18

X̃3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

75.9386 –2.2126 –0.0752 –0.8326 –0.0613 0.3964
1.7490 143.3691 0.1992 10.0380 –5.0827 –20.6567
0.3153 –0.2654 75.8670 –1.4096 0.5290 0.9310
0.7231 –6.7185 1.3070 137.5655 –1.1323 7.1219
0.7064 5.1990 –0.0751 1.0765 75.1961 –5.2959

–0.2254 22.8512 –0.9253 –2.5126 4.6910 172.5156

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Q1 = 1.0e+04 ∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.8856 0.0424 –0.0020 0.0017 –0.0001 –0.0156
0.0424 3.9816 –0.0011 0.0059 –0.0041 0.0181

–0.0020 –0.0011 3.8928 0.0451 –0.0080 –0.0050
0.0017 0.0059 0.0451 3.8696 0.0012 0.0447

–0.0001 –0.0041 –0.0080 0.0012 3.8835 –0.0819
–0.0156 0.0181 –0.0050 0.0447 –0.0819 3.8253

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Q2 = 1.0e+04 ∗

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.8470 0.0225 0.0009 0.0005 0.0009 0.0083
0.0225 2.8972 –0.0006 0.0086 –0.0020 0.0118
0.0009 –0.0006 2.8469 0.0247 0.0013 –0.0030
0.0005 0.0087 0.0247 2.8285 0.0011 0.0349
0.0009 –0.0020 0.0013 0.0011 2.8424 –0.0443

–0.0083 0.0118 –0.0030 0.0349 –0.0443 2.8071

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The gain matrices K1, K2 can be obtained by simple calculation,

K1 = Y1M–1
1 =

[
–145.1707 0.9965

6.0522 –356.9849

]

, K2 = Y2M–1
2 =

[
–0.1108 0.0346
0.1891 0.0000

]

.

Moreover, by (5), setting Vi = V̂i the switching surface function can be computed as

Sk(t, 1) = V1ek(t) – V1

∫ t

0

[

(A1 – B1K1)ek(s) + σ1

3∑

j=1

gkjΓ11ek(s)

+ σ2

3∑

j=1

gkjΓ21ek
(
s – d(s)

)
]

ds,

Sk(t, 2) = V2ek(t) – V2

∫ t

0

[

(A2 – B2K2)ek(s) + σ1

3∑

j=1

gkjΓ12ek(s)

+ σ2

3∑

j=1

gkjΓ22ek
(
s – d(s)

)
]

ds,

where k = 1, 2, 3.
The simulation results are presented in Figs. 1–4. It can be seen from Figs. 1 and 2 that

the synchronization error converges to zero in mode 1 and mode 2, respectively. Figures 3
and 4 demonstrate the sliding-mode surface function in mode 1 and mode 2, respectively.

5 Conclusion
In this paper, we have shown a sliding-mode design method to solve the H∞ synchroniza-
tion problem for complex dynamical network systems with Markovian jump parameters
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Figure 1 The state estimation error trajectories eki(t) (k = 1, 2, 3) (i = 1)

Figure 2 The state estimation error trajectories eki(t) (k = 1, 2, 3) (i = 2)

Figure 3 The sliding-mode surface function Sk(t) (k = 1, 2, 3) in mode 1
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Figure 4 The sliding-mode surface function Sk(t) (k = 1, 2, 3) in mode 2

and time-varying delays. A novel integral sliding-mode controller was proposed. On the
basis of Lyapunov stability theory, it has been shown that the Markovian jump complex
dynamical network systems via sliding-mode control can be guaranteed to show synchro-
nization and satisfy H∞ performance. An example was given to shown the effectiveness
of the obtained methods.

It would be interesting to extend the results obtained to multiple complex dynamical
networks with multiple coupling delays. This topic will be considered in future work.
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