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Abstract
In this paper, we obtain sufficient conditions for the nonexistence of global solutions
for some classes of q-difference inequalities. Our approach is based on the weak
formulation of the problem, a particular choice of the test function, and some
q-integral inequalities.
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1 Introduction
In this paper, we obtain sufficient conditions for the nonexistence of global solutions for
some classes of q-difference inequalities. First, we are concerned with the q-difference
inequality

(Dqy)(t) ≥ ∣
∣y(qt)

∣
∣
p, t > 0, (1)

subject to the initial condition

y(0) = y0, (2)

where q ∈ (0, 1), Dq is the q-derivative operator, p > 0, and y0 > 0.
Next, we study the system of q-difference inequalities

⎧

⎨

⎩

(Dqy)(t) ≥ |z(qt)|p, t > 0,

(Dqz)(t) ≥ |y(qt)|m, t > 0,
(3)

subject to the initial condition

y(0) = y0, z(0) = z0, (4)

where q ∈ (0, 1), p > 1, m > 1, and y0 + z0 > 0.
In the limit case where q ↑ 1, (1) reduces to the ordinary differential inequality

y′(t) ≥ ∣
∣y(t)

∣
∣
p, t > 0. (5)
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It is well known that if p > 1 and y0 > 0, then problem (5)–(2) blows up in a finite time.
Observe also that in the limit case where q ↑ 1, (3) reduces to the system of ordinary
differential inequalities

⎧

⎨

⎩

y′(t) ≥ |z(t)|p, t > 0,

z′(t) ≥ |y(t)|m, t > 0.
(6)

Note that if p > 1, m > 1, y0 > 0, and z0 > 0, then a blow-up situation takes place for problem
(6)–(4) (see, e.g., [18]).

The study of sufficient conditions for the nonexistence of global solutions to differen-
tial equations or inequalities provides important information in theory as in applications.
First, sufficient conditions for the absence of solutions provide necessary conditions for the
existence of solutions. Second, useful information on limiting behaviors of many physical
systems can be obtained via the nonexistence criteria. Indeed, having an information on
the blowing-up of solutions can help in preventing accidents and malfunction in industry.
It helps also in improving the performance of machines and extending their lifespan.

There are several works in the literature concerning the nonexistence of solutions for dif-
ferent classes of differential equations or inequalities involving nonstandard derivatives.
In particular, the study of the absence of solutions for different types of fractional differ-
ential problems has received a great attention from many researchers. In this direction,
we refer the reader to [15, 16, 18–21] and the references therein. However, to the best of
our knowledge, there are no investigations on the nonexistence of solutions in quantum
calculus.

The q-difference calculus or quantum calculus is an old subject, which is rich in history
and in applications. It was initiated by Jackson [11, 12] and developed by many researchers
(see, e.g., [1, 6, 8]). We can find in the literature several papers dealing with the existence
of solutions for different kinds of q-difference equations; see, for example, [3–5, 9, 10, 13,
17, 24] and the references therein.

In this paper, we obtain sufficient criteria for the absence of global solutions to problems
(1)–(2) and (3)–(4). The proofs are based on an extension of the test function method due
to Mitidieri and Pohozaev [22] to quantum calculus.

The paper is organized as follows. In Sect. 2, we recall some basic concepts on q-calculus
and present some properties and lemmas that will be used in the proofs of our results.
Section 3 is devoted to study the nonexistence of global solutions for problem (1)–(2). In
Sect. 4, we establish a nonexistence result for problem (3)–(4).

2 Preliminaries on quantum calculus
In this section, we recall some basic concepts on quantum calculus and provide some
useful properties.

We denote by N the set of natural numbers and by N
∗ the set N\{0}. Here we follow [7,

23].
Let q ∈ (0, 1) be fixed. For a ∈R, we set

[a]q =
1 – qa

1 – q
.
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The q-analog of the power (a – b)N is

(a – b)(0) = 1,

(a – b)(N) =
N–1
∏

i=0

(

a – bqi), (a, b) ∈R
2, N ∈N.

Let f : [0, T] → R, T > 0, be a given function such that f ′(t) exists in a neighborhood of
t = 0 and is continuous at t = 0. The q-derivative of the function f is defined by

(Dqf )(t) =
f (t) – f (qt)

(1 – q)t
, 0 < t ≤ T ,

and

(Dqf )(0) = f ′(0).

We easily see that Dqf ∈ C([0, T];R).
Notice that if f is differentiable, then

lim
q↑1

(Dqf )(t) = f ′(t).

The q-integral of the function f is defined by

(Iqf )(t) :=
∫ t

0
f (s) dqs = (1 – q)t

∞
∑

n=0

qnf
(

qnt
)

, 0 ≤ t ≤ T ,

provided that the sum converges absolutely. We say that f is q-integrable on [0, T] iff
∫ t

0 |f (s)|dqs < ∞ for all t ∈ [0, T]. If f is such that, for some C > 0 and α > –1, |f (s)| < Csα

in a right neighborhood of s = 0, then f is q-integrable (see [7]).
We can easily see that if f is q-integrable on [0, T], then

∣
∣
∣
∣

∫ t

0
f (s) dqs

∣
∣
∣
∣
≤

∫ t

0

∣
∣f (s)

∣
∣dqs, 0 ≤ t ≤ T .

Moreover, if f1, f2 : [0, T] → R are two q-integrable functions on [0, T], T > 0, then

f1 ≤ f2 
⇒
∫ T

0
f1(s) dqs ≤

∫ T

0
f2(s) dqs. (7)

By [2], if f is Riemann integrable on [0, t], then

∫ t

0
f (t) dt = lim

q↑1
(Iqf )(t).

Lemma 2.1 ([14]) Let f ∈ C([0, T];R), T > 0, be a continuous function such that f ′(t) exists
in a neighborhood of t = 0 and is continuous at t = 0. Then

(

Dq(Iqf )
)

(t) = f (t)
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and

(

Iq(Dqf )
)

(t) = f (t) – f (0).

Let u(s) = αsβ , where 0 ≤ s ≤ t, α > 0, and β > 0. Then we have the change-of-variable
formula (see [14])

∫ u(t)

u(0)
g(z) dqz =

∫ t

0
g
(

u(s)
)

D
q

1
β

u(s) d
q

1
β

s, (8)

where g : [0,αtβ ] →R is a q-integrable function on [0,αtβ ].

Lemma 2.2 (see [7]) Let N ∈ N
∗, T > 0, and a, b, t ∈R. Then

Dq(a + bt)(N) = [N]qb(a + bqt)(N–1) (9)

and

∫ T

0
(a + bt)(N–1) dqt =

(a + bT
q )(N) – aN

[N]qb
q

. (10)

Next, we recall the following q-integration-by-parts rule.

Lemma 2.3 (see [14]) Let f1, f2 ∈ C([0, T];R), T > 0, be two given functions whose ordinary
derivatives exist in a neighborhood of t = 0 and are continuous at t = 0. Then

∫ T

0
f1(s)(Dqf2)(s) dqs =

[

f1(s)f2(s)
]T

s=0 –
∫ T

0
f2(qs)(Dqf1)(s) dqs.

3 The absence of global solutions for problem (1)–(2)
In this section, we establish the nonexistence of global solutions for problem (1)–(2). Our
nonexistence result is stated in the following theorem.

Theorem 3.1 Let p > 1 and y0 > 0. Then problem (1)–(2) admits no global solutions in
C1([0,∞);R).

Proof We argue by contradiction. Suppose that problem (1)–(2) has a global solution y ∈
C1([0,∞);R). Let us take N ∈N

∗ such that

∫ 1

0
gN (z) dqz < ∞, (11)

where

gN (z) = (1 – z)
–p

p–1 (1 – z)(N), 0 ≤ z ≤ 1. (12)

For an arbitrary T > 0, let us introduce the test function

ϕT (t) = T–N (T – t)(N), 0 ≤ t ≤ T . (13)



Aydi et al. Advances in Difference Equations         (2019) 2019:40 Page 5 of 9

Multiplying inequality (1) by ϕT (t), using (7), and taking the q-integral over [0, T], we
obtain

∫ T

0
(Dqy)(t)ϕT (t) dqt ≥

∫ T

0

∣
∣y(qt)

∣
∣
p
ϕT (t) dqt. (14)

Using a q-integration by parts (see Lemma 2.3), we obtain

∫ T

0
(Dqy)(t)ϕT (t) dqt =

[

y(t)ϕT (t)
]T

t=0 –
∫ T

0
y(qt)(DqϕT )(t) dqt.

Using the initial condition (2) and the facts that ϕT (T) = 0 and ϕT (0) = 1, we get

∫ T

0
(Dqy)(t)ϕT (t) dqt = –y0 –

∫ T

0
y(qt)(DqϕT )(t) dqt. (15)

Next, by (14) and (15) we obtain

y0 +
∫ T

0

∣
∣y(qt)

∣
∣
p
ϕT (t) dqt ≤

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt. (16)

On the other hand, we have

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt =

∫ T

0

(∣
∣y(qt)

∣
∣
(

ϕT (t)
) 1

p
)((

ϕT (t)
) –1

p
∣
∣(DqϕT )(t)

∣
∣
)

dqt.

Using Young’s inequality, we obtain

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt

≤ 1
p

∫ T

0

∣
∣y(qt)

∣
∣
p
ϕT (t) dqt +

1
p′

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt, (17)

where 1
p + 1

p′ = 1. Therefore, by (16) and (17) we obtain

y0 +
(

1 –
1
p

)∫ T

0

∣
∣y(qt)

∣
∣
p
ϕT (t) dqt ≤ 1

p′

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt,

which yields

p′y0 ≤
∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt. (18)

Further, using (13) and (9), we obtain

(

ϕT (t)
) –p′

p = T
N

p–1
[

(T – t)(N)] –1
p–1 ,

∣
∣(DqϕT )(t)

∣
∣
p′

= T
–Np
p–1

(

[N]q
) p

p–1
[

(T – qt)(N–1)]
p

p–1 .



Aydi et al. Advances in Difference Equations         (2019) 2019:40 Page 6 of 9

Hence

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt

= T–N(

[N]q
) p

p–1

∫ T

0

[

(T – t)(N)] –1
p–1

[

(T – qt)(N–1)]
p

p–1 dqt. (19)

Next, we have

[

(T – t)(N)] –1
p–1

[

(T – qt)(N–1)]
p

p–1

=
∏N–2

i=0 (T – qi+1t)
p

p–1

∏N–1
i=0 (T – qit)

1
p–1

=
1

(T – t)
1

p–1

∏N–1
i=1 (T – qit)

p
p–1

∏N–1
i=1 (T – qit)

1
p–1

=
1

(T – t)
1

p–1

N–1
∏

i=1

(

T – qit
)

=
TN–1

(T – t)
1

p–1

N–1
∏

i=1

(

1 – qi t
T

)

=
TN–1

(T – t)
1

p–1 (1 – t
T )

N–1
∏

i=0

(

1 – qi t
T

)

=
TN–1– 1

p–1

(1 – t
T )

p
p–1

(

1 –
t
T

)(N)

.

Therefore, from (19) we obtain

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt =
(

[N]q
) p

p–1 T
–p

p–1

∫ T

0

(

1 –
s
T

) –p
p–1

(

1 –
s
T

)(N)

dqs

=
(

[N]q
) p

p–1 T
–p

p–1 +1
∫ T

0
gN

(

u(s)
)

Dqu(s) dqs,

where u(s) = s
T , 0 ≤ s ≤ T , and g is defined by (12). Using the change-of-variable formula

(8), we obtain

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt =
(

[N]q
) p

p–1 T
–1

p–1

∫ 1

0
gN (z) dqz.

Recall that from (11) we have
∫ 1

0 gN (z) dqz < ∞. Further, from (18) we get

p′y0 ≤ ([N]q)
p

p–1

T
1

p–1

∫ 1

0
gN (z) dqz. (20)

Since this inequality holds for every T > 0, passing to the limit as T → ∞, we obtain y0 ≤ 0,
which contradicts the fact that y0 > 0. The obtained contradiction implies the nonexistence
of a global solution to (1)–(2) for any p > 1. �
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4 The absence of global solutions for problem (3)–(4)
In this section, we derive a nonexistence result for problem (3)–(4).

Theorem 4.1 Let p > 1, m > 1, and y0 + z0 > 0. Then problem (3)–(4) admits no global
solutions in C1([0,∞);R) × C1([0,∞);R).

Proof As previously, we argue by contradiction. Suppose that problem (3)–(4) has a global
solution (y, z) ∈ C1([0,∞);R) × C1([0,∞);R). Let us take N ∈N

∗ such that

∫ 1

0
gN (z) dqz < ∞ and

∫ 1

0
hN (z) dqz < ∞, (21)

where gN is defined by (12), and

hN (z) = (1 – z)
–m

m–1 (1 – z)(N), 0 ≤ z ≤ 1. (22)

For arbitrary T > 0, let us consider the test function ϕT defined by (13). Multiplying the
first inequality in (3) by ϕT (t), taking the q-integral over [0, T], and using a q-integration
by parts, we obtain

y0 +
∫ T

0

∣
∣z(qt)

∣
∣
p
ϕT (t) dqt ≤

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt. (23)

On the other hand, we have

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt =

∫ T

0

(∣
∣y(qt)

∣
∣
(

ϕT (t)
) 1

m
)((

ϕT (t)
) –1

m
∣
∣(DqϕT )(t)

∣
∣
)

dqt.

Using Young’s inequality, we obtain

∫ T

0

∣
∣y(qt)

∣
∣
∣
∣(DqϕT )(t)

∣
∣dqt

≤ 1
m

∫ T

0

∣
∣y(qt)

∣
∣
m
ϕT (t) dqt +

1
m′

∫ T

0

(

ϕT (t)
) –m′

m
∣
∣(DqϕT )(t)

∣
∣
m′

dqt, (24)

where 1
m + 1

m′ = 1. Therefore, using (23) and (24), we obtain

y0 +
∫ T

0

∣
∣z(qt)

∣
∣
p
ϕT (t) dqt

≤ 1
m

∫ T

0

∣
∣y(qt)

∣
∣
m
ϕT (t) dqt +

1
m′

∫ T

0

(

ϕT (t)
) –m′

m
∣
∣(DqϕT )(t)

∣
∣
m′

dqt. (25)

Similarly, multiplying the second inequality in (3) by ϕT (t), we obtain

z0 +
∫ T

0

∣
∣y(qt)

∣
∣
m
ϕT (t) dqt

≤ 1
p

∫ T

0

∣
∣z(qt)

∣
∣
p
ϕT (t) dqt +

1
p′

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt. (26)
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Adding (25) to (26), we obtain

y0 + z0 +
(

1 –
1
m

)∫ T

0

∣
∣y(qt)

∣
∣
m
ϕT (t) dqt +

(

1 –
1
p

)∫ T

0

∣
∣z(qt)

∣
∣
p
ϕT (t) dqt

≤ 1
m′

∫ T

0

(

ϕT (t)
) –m′

m
∣
∣(DqϕT )(t)

∣
∣
m′

dqt +
1
p′

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt,

which yields

Cm,p(y0 + z0) ≤
∫ T

0

(

ϕT (t)
) –m′

m
∣
∣(DqϕT )(t)

∣
∣
m′

dqt +
∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt, (27)

where Cm,p = min{m′, p′}. On the other hand, from the proof of Theorem 3.1 we have

∫ T

0

(

ϕT (t)
) –p′

p
∣
∣(DqϕT )(t)

∣
∣
p′

dqt =
(

[N]q
) p

p–1 T
–1

p–1

∫ 1

0
gN (z) dqz

and

∫ T

0

(

ϕT (t)
) –m′

m
∣
∣(DqϕT )(t)

∣
∣
m′

dqt =
(

[N]q
) m

m–1 T
–1

m–1

∫ 1

0
hN (z) dqz.

Therefore, from (27) we obtain

Cm,p(y0 + z0) ≤ ([N]q)
p

p–1

T
1

p–1

∫ 1

0
gN (z) dqz +

([N]q) m
m–1

T 1
m–1

∫ 1

0
hN (z) dqz.

Passing to the limit as T → ∞, we obtain a contradiction to

y0 + z0 > 0. �
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