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Abstract
Dengue is one of the important infectious diseases in the world. In Malaysia, dengue
occurs nationally and has been endemic for more than a decade. Hence, the
modeling of dengue transmission is of great importance to help us understand the
dynamical behavior of the disease. In this paper, we developed a compartmental
model of the dengue transmission using the fractional order differential equation. It
consists of six compartments representing the human and mosquito dynamics. The
disease-free and the positive endemic equilibrium point are obtained. The stability
analysis of the equilibria is presented. A sensitivity analysis of the model is performed
to determine the relative importance of the model parameters to the transmission.
Numerical simulations are given for different parameter settings. A case study, using
the outbreak dengue data in the state of Selangor, Malaysia, in 2012, is presented.

Keywords: Fractional system; Dengue; Stability analysis; Reproduction number;
Sensitivity analysis

1 Introduction
Dengue fever, commonly known as dengue, is a painful, debilitating mosquito-borne trop-
ical disease caused by the dengue virus. It is a viral disease transmitted by the bite of
an Aedes mosquito infected with any of the four serotypes, denoted by DEN-I, DEN-II,
DEN-III, and DEN-IV, respectively. In recent decades, the spread of the dengue virus has
increased rapidly and according to the World Health Organization (WHO) there are mil-
lions of dengue cases reported every year worldwide [1]. A human that gets infected by
any of these dengue serotype produces permanent immunity to it, but only a temporary
cross-immunity to the other serotypes [2].

In Malaysia, dengue occurs nationally with increased risk in urban and peri-urban ar-
eas. The number of dengue fever cases reported in our nation continues to increase since
2010 [3]. There is no specific vaccine available for dengue in Malaysia. Preventing and
controlling the dengue virus depends solely on the control of the mosquito vector or in-
terruption of human-vector contact. Hence, a reliable mathematical model is essential to
give a deeper understanding of the mechanism of dengue transmission and on how to
control the spread of the disease.

The well-known susceptible–infected–recovered (SIR) epidemic model introduced by
Kermack and McKendrick in 1927 [4] has been used by many researchers to study the dy-
namics of the infectious disease. Later, Bailey [5] developed a simple vector-host dengue
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transmission model for a single serotype based on the SIR epidemic model. The develop-
ment of the dengue transmission model has become attention ever since, parallel to the
increase in the number of dengue cases reported all around the world. Most of the model
is based on the ordinary differential equation [6–10].

In the last few years, fractional order calculus is found to be more interesting in mod-
eling a real problem in comparison to a classical integer order as it provides a tool for the
description of memory effects and genetic properties of various materials [11–14]. In this
paper, the proposed dengue epidemic model is derived using the generalized fractional
order derivative.

Pooseh et al. [15] were the first that fractionalized the dengue ODE model using the
Riemann–Liouville definition. Later, Diethelm [16] proposed a more sophisticated way
of fractional dengue model by using the Caputo definition. Diethelm solved the problem
of mismatched dimension in the earliest model by Pooseh et al. Sardar et al. in [17, 18]
showed the significance of order incorporated with memory in the dengue transmission.
In this paper, we will not only be considered the adult stage of mosquito, but also the
dynamic of the aquatic stage of mosquito. We will be considered the work of Diethelm
[16] in fractionalize the ODE system, but with the assumption that any parameter related
to the birth and death in both human and mosquito population is assumed to be memory
independent.

The rest of the paper is organized as follows. In Sect. 2, the formulation of the model is
presented. The stability analysis of the equilibrium points is given in Sect. 3. In Sect. 4, the
sensitivity analysis is performed. Section 5 consists of the numerical experiments done to
verify the theoretical analysis shown in Sects. 3 and 4. Lastly, the conclusion is in Sect. 6.

2 Mathematical model
For many years, fractional operators have been interpreted in several ways that fit the
concept of their integrals or derivatives. For instance, the most common definitions of the
fractional derivative are the Riemann–Liouville derivative, the Caputo derivative, and the
Grünwald–Letnikov derivative. In this paper, the Caputo derivative is used, since the clas-
sical initial conditions can be used without encountering any problem during obtaining
the solutions.

The definition of the Caputo derivative is the following equation:

Dα
Cf (x) =

1
Γ (n – α)

∫ x

a

dnf
dεn (ε)(x – ε)n–α–1 dε, (1)

where α is the order of the derivative with n – 1 < α < n and n = [α] + 1. Γ (n – α) is the
Euler gamma function defined by the so-called Euler integral of the second kind [19]:

Γ (n – α) =
∫ ∞

0
tn–α–1e–t dt, (2)

where tn–α–1 = e(n–α–1) log(t).
In the formulation of the model, we assume that the total human and vector population

to be constant. We also assume that the infection is produced by only one serotype of
dengue virus. The dynamics of the female Aedes mosquito are included aquatic stage (Am)
and adult stage. The adult female mosquito (M) is divided into two compartments that are
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susceptible Ms and infected Mi. The total human population, Nh(t) = H is partitioned into
three compartments: susceptible, Hs, infected, Hi, and recovered, Hr individuals.

The system of fractional order nonlinear differential equation for the proposed host-
vector model is as follows:

DαAm = qφ(1 – Am/C)M – (σA + μA)Am,

DαMs = σAAm –
bαβm

H
MsHi – μmMs,

DαMi =
bαβm

H
MsHi – μmMi,

DαHs = μh(H – Hs) –
bαβh

H
HsMi,

DαHi =
bαβh

H
HsMi – (γh + μh + ρh)Hi,

DαHr = γhHi – μhHr .

(3)

The parameter H is the total human population, q is the proportion of eggs that results
in female mosquito, σA is the transition rate from aquatic stage to adult stage, μA is the per
capita mortality rate of aquatic phase, 1/μm is the average lifespan of adult mosquitoes,
1/μh is the average lifespan of human, b is the biting rate, βm is the transmission prob-
ability from human to vector, βh is the transmission probability from vector to human,
γh is the recovery rate in the host population, C is the aquatic carrying capacity, m is the
number of female mosquitoes per human, k is the number of larvae per human, φ is the
oviposition rate and ρh is the per capita disease-induced death rate for humans. All pa-
rameters in (3) are assumed to be non-negative as the system monitors the dynamics of
the human population. The possible feasible ranges of each parameter of model (3) are
given in Table 1.

Since Nh = Hs + Hi + Hr , we have Hr = Nh – Hs – Hi. Therefore, we can simplify system
(3) to the following system:

DαAm = qφ(1 – Am/C)M – (σA + μA)Am,

DαMs = σAAm –
bαβm

H
MsHi – μmMs,

DαMi =
bαβm

H
MsHi – μmMi,

DαHs = μh(H – Hs) –
bαβh

H
HsMi,

DαHi =
bαβh

H
HsMi – (γh + μh + ρh)Hi.

(4)

3 Existence and stability of equilibrium points
Suppose that the set Ω = {(Am, Ms, Mi, Hs, Hi, Hs) ∈ R

5
+ : Hs + Hi ≤ K ; 0 ≤ Ms + Mi ≤

Q1, and Q1 ≥ σAA
μm

; 0 ≤ Am ≤ Q2, and Q2 ≥ qφM} is the region of biological interest, that
is, positively invariant to the system (4). The proof is similar to the proof in [20].

From system (4), for all parameter values, it is straightforward to obtain a disease-free
equilibrium E0 = (0, 0, 0, H , 0). Using Maple software, we obtained one more disease-free
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Table 1 Description of the dengue model (3) parameters and their possible feasible ranges

Parameter Biological meaning Range of values References

q Proportion of eggs 0–1 [8]
φ Oviposition rate 0–11.2 per day [8]
σA Transition rate from aquatic to adult 0–0.19 per day [8]
μA Average aquatic mortality rate 0.01–0.47 per day [8]
1/μm Average lifespan of adult mosquito 11–56 days [21]
1/μh Average lifespan of human 73–75 years [22]
b The biting rate 0–1 per day [23]
βm Transmission probability from human to vector 0.375 [6]
βh Transmission probability from vector to human 0.375 [6]
γh Recovery rate in the host population 0.328833 per day [21]
ρh Disease-induced death rate for humans 10–3 [24]

equilibrium,

E1 = (Ām, M̄s, 0, H , 0),

where Ām and M̄s are given by

Ām = C
(

1 –
1

Rm

)
and M̄s =

σAĀm

μm
.

Thus we obtained the following:

E1 =
(

C(qφσA – μAμm – μmσA)
qφσA

,
C(qφσA – μAμm – μmσA)

qφμm
, 0, H , 0

)
,

E1 =
(

C
(

1 –
1

Rm

)
,

CσA

μm

(
Rm – 1

Rm

)
, 0, H , 0

)
,

where Rm = qφσA
μm(σA+μA) . Rm denotes the ‘basic offspring’ of the mosquito population. This

results in the following proposition.

Proposition 1 Consider Rm to be the basic offspring of the mosquito population

Rm =
qφσA

μm(σA + μA)
.

The system of equations (4) has at most two disease-free equilibrium points:
• if Rm ≤ 0, there is a disease-free equilibrium (DFE), known as trivial equilibrium,

E0 = (0, 0, 0, H , 0);
• if Rm > 0, there is a biologically realistic disease-free equilibrium (BRDFE),

E1 = (Ām, M̄s, 0, H , 0).
or an endemic equilibrium E2 = (A∗

m, M∗
s , M∗

i , H∗
s , H∗

i ).

In modeling the infectious disease, the basic reproduction number R0 is important. This
threshold quantity value represents the expected number secondary cases produced in a
completely susceptible population, by a typical infected individual during its entire period
of infectious [25]. In this paper we use the next-generation matrix approach to obtaining
the R0. By following [26], we are thus lead to the following proposition.
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Proposition 2 If Rm > 0, then the basic reproduction number associated to the system (4)
is R2

0 = b2αβmβh
(γh+μh+ρh)μm

M̄s
H . The BRDFE is locally asymptotically stable if R0 < 1 and unstable

otherwise.

The local stability of the BRDFE E1 is governed by the eigenvalues of the Jacobian matrix
of system (4) about E1, which can be computed as

J(E1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

–Rm(σA + μA) 0 0 0 0
σA –μm 0 0 bαβm

H M̄s

0 0 –μm 0 bαβm
H M̄s

0 0 –bαβh –μh 0
0 0 bαβh 0 –(γh + μh + ρh)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The calculated eigenvalues are λ1 = –Rm(σA + μA), λ2 = –μm, λ3 = –μh. the others are
the roots of the second order polynomial

λ2 + (γh + μh + ρh + μm)λ + μm(γh + μh + ρh)
(
1 – R2

0
)
.

By the Routh–Hurwitz stability criterion, E1 is locally asymptotically stable if and only
if R0 < 1, otherwise the BRDFE is unstable.

We assumed that E2 = (A∗
m, M∗

s , M∗
i , H∗

s , H∗
i ) is any arbitrary positive endemic equilib-

rium of the reduced system (4). It is convenient to express the variables of the model at
the steady state in terms of the force of infection denoted by λ∗

m and λ∗
h:

λ∗
m =

bαβmHi

H
,

λ∗
h =

bαβhMi

H
.

(5)

Thus, system (3) can be written as follows:

DαAm = qφ(1 – Am/C)M – (σA + μA)Am,

DαMs = σAAm – λ∗
mMs – μmMs,

DαMi = λ∗
mMs – μmMi,

DαHs = μh(H – Hs) – λ∗
hHs,

DαHi = λ∗
hHs – (γh + μh + ρh)Hi.

(6)

Now we solve Eq. (4) at the steady state E2, we have the following endemic equilibrium
in terms of λ∗

m and λ∗
h:

A∗
m = Ām = C

(
1 –

1
Rm

)
,

M∗
s =

σAC(1 – 1
Rm

)
λ∗

m + μm
,

M∗
i =

λ∗
m

μm

σAC(1 – 1
Rm

)
λ∗

m + μm
, (7)
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H∗
s =

μhH
μh + λ∗

h

H∗
i =

λ∗
hμhH

(γh + μh + ρh)(μh + λ∗
h)

.

Substitute (7) in (5), and simplify:

λ∗
m =

bαβmμhλ
∗
h

(γh + μh + ρh)(μh + λ∗
h)

,

λ∗
h =

bαβhλ
∗
mσAC(1 – 1

Rm
)

Hμm(λ∗
m + μm)

.

(8)

Replacing (8) and (7) in (5) and using the expression of R0, we will have λ∗
m and λ∗

h in
terms of R0 as follows:

λ∗
m =

μm(R2
0 – 1)

1 + μm(γh + μh + ρh)R2
0

,

λ∗
h =

μmμh(γh + μh + ρh)(R2
0 – 1)

bαβmμh + μm(γh + μh + ρh)
.

(9)

Using the relation in (9), we express (A∗
m, M∗

s , M∗
i , H∗

s , H∗
i ) in (7) in terms of R0:

A∗
m = Ām = C

(
1 –

1
Rm

)
,

M∗
s =

σAC(1 – 1
Rm

)(1 + μm(γh + μh + ρh)R2
0)

μmK1R2
0

,

M∗
i =

σAC(1 – 1
Rm

)(R2
0 – 1)

μmK1R2
0

,

H∗
s =

HK2

K2 + μm(γh + μh + ρh)(R2
0 – 1)

,

H∗
i =

Hμmμh(R2
0 – 1)

K2 + μm(γh + μh + ρh)(R2
0 – 1)

,

(10)

where K1 = 1 + μm(γh + μh + ρh) and K2 = bαβmμh + μm(γh + μh + ρh).
Therefore, R0 > 1, it implies R2

0 > 1, and, as a result, from (10) there exists a unique pos-
itive endemic equilibrium E2 = (A∗

m, M∗
s , M∗

i , H∗
s , H∗

i ). Thus, we have the following result.

Theorem 1 The reduced system (4) corresponding to model (3) has a unique positive en-
demic equilibrium E2 = (A∗

m, M∗
s , M∗

i , H∗
s , H∗

i ) if R0 > 1.

4 Sensitivity analysis
Sensitivity analysis helps us to identify the parameters that have a big impact on the dis-
ease transmission. Such information is important not only for experimental design but
also for data assimilation and reduction to complex nonlinear models [27]. Normally, in
the epidemiological model, the analysis is used to discover parameters that have great-
est influence on the basic reproduction number R0 and should be targeted by the control
strategies.
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The sensitivity indices of the R0 are determined to allow us to measure which parameter
has the greatest influence on the changes of R0 and, hence, the greatest effect in deter-
mining whether the disease can be eliminated in the population. The normalized forward
sensitivity index of a variable (R0) with respect to a parameter is the ratio of the relative
change in the variable (R0) to the relative change in the parameter. When the variable is
a differentiable function of the parameter, the sensitivity index can be defined using the
partial derivatives [27].

Definition 1 (cf. [28]) The normalized forward sensitivity index of R0, which depends
differentiably on a parameter p, is defined by

Υp
R0 =

∂R0

∂p
× p

R0
. (11)

Recall that the value of R0 for the system (4) is given by

R2
0 =

b2αβmβh

(γh + μh + ρh)μm

M̄s

H
. (12)

The index indicates how sensitive the variable R0 is to the change of parameter p. The
positive index clearly reveals that an increase in the parameter value will result in an in-
crease of the R0 value and vice versa. The index values for the parameters in (4) are pre-
sented in Tables 2 and 3. The graphical presentation of the sensitivity index for each pa-
rameter with the order of the derivative is α = 0.9 can be found in Fig. 1.

Table 2 Sensitivity indices of R0 evaluated at the baseline parameter values for α = 0.9

Parameter Sensitivity index

q –0.0097
φ –0.0097
σA +0.5073
μA +0.0073
μm –1.0097
μh –5.5798× 10–5

b +0.90
βm +0.50
βh +0.50
γh –0.5092
ρh –0.0015

Table 3 Sensitivity indices of R0 evaluated at the baseline parameter values for α = 0.6

Parameter Sensitivity index

q –0.0097
φ –0.0097
σA +0.5073
μA +0.0073
μm –1.0097
μh –5.5798× 10–5

b +0.60
βm +0.50
βh +0.50
γh –0.5092
ρh –0.0015
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Figure 1 Sensitivity indices of R0 with respect to the parameters in (4) for α = 0.9

Figure 2 Solutions of the model (3) and the real
data coming from the dengue cases recorded in
Selangor, Malaysia, in 2012

5 Numerical simulations and discussion
The simulations were carried out using the following initial conditions based on the
dengue cases reported in Selangor for the year 2012 [29]:

Hs0 = Nh – Hi0, Hi0 = 7799,

Am0 = kNh, Ms0 = mNh,
(13)

where Nh = 5,650,800, k = 3, m = 4. The final time tend = 365 days. The computation is
done in Matlab using the code fde12 [30].

The selection of order α is similar to the approach taken in the previous work [20]. We
solved the system for a various choice of α values. Specifically, we have used the formula of
α ∈ {k/100 : k = 1, 2, . . . , 100}. From that, we found that a reasonable range of α is between
0.7 and 1. Note that α = 1 gives the same solution as the integer order system.

In Fig. 2, we present the solutions of our model during a shorter interval of time in weeks
and also the real data fitted curve for the same time interval based on the data collected.
From Fig. 2, we can observe that the fractional model provides a better approximation
towards the real data compared to the classical integer order solution (α = 1).

Figures 3 and 4 show the solutions to (4) with the initial conditions (13). It can be seen
in Fig. 3 that the solutions approach the stable disease-free equilibrium when R0 is less
than 1. Notice that the speed of convergence is decreased, once the order α is reduced.
The same behavior is observed in Fig. 4 for the speed of convergence. Here, R0 > 1, and
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Figure 3 Numerical solution of model (4) with the parameter values q = 0.5, φ = 5.6, b = 0.3, βm = 0.35,
βh = 0.375, μA = 0.47, μm = 0.09, μh = 3.65× 10–5, ρh = 0.001, C = Nh , σA = 0.08, γh = 0.5. R0 < 1

we can verify that the system approaches the stable endemic equilibrium over time. This
indicates that the disease is persistent in the community and is endemic over a long period
of time.

Figure 5 shows graphs of the infected human population through parameter variation.
The obtained figure reinforces the sensitivity analysis made in Sect. 4. We choose to plot
graphs of the different parameter that gives high influence on R0, in other words, having
a big sensitivity index. From Table 2, the most positive parameter is the mosquito biting
rate, b, where the index is 0.9. Then we have σA and βm, βh.

Notice that, in Table 3, the index of the parameter b is decreased as we reduced the
order α. This explained the relationship of R0 with the α. The threshold quantity R0 defined
here is a memory-dependent threshold quantity as R0 ∝ bα . As the memory of the biting
rate of the mosquito increased (α → 0), the basic reproduction number increased, thus, we
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Figure 4 Numerical solution of model (4) with the parameter values q = 0.8, φ = 5.6, b = 0.7, βm = 0.09091,
βh = 0.0714, μA = 0.24, μm = 0.04, μh = 3.65× 10–5, ρh = 0.001, C = 3Nh , σA = 0.15, γh = 0.000014285. R0 > 1

have an increase of the transmission rate of the disease. This tells us that, in the fractional
sense, the sensitivity of the biting rate parameter b of the system depends on the α value.

The parameters μm and γh have a negative sensitivity index, the most negative being the
mortality rate of the mosquito, μm, with Υ R0

μm = –1.0097. This tells us that if we increase the
parameter value of μm by 10%, then the basic reproduction number R0 will be decreasing
by approximately 10%. This agreed with the numerical simulation obtained in Fig. 5.

6 Conclusions
In the present paper, a fractional order dengue epidemic model is studied. The local stabil-
ity of the equilibrium points has been determined theoretically and verified numerically.
The numerical experiment revealed that, for the fractional order model, the speed of con-
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Figure 5 Infected human population with the initial parameter value (solid line) and with an increase of 10%
of a specific parameter (dashed line)

vergence of the solution is slower than in the classical integer model. From the epidemio-
logical point of view, this result is crucial, because it affects the time needed to eliminate
the disease.

Also, we have performed a sensitivity analysis in order to determine the relative impor-
tance of the model parameters in the transmission of dengue. Such information allows us
to determine the effective control and prevention measures, in monitoring the spread of
the disease.

We believed that this work can provide an important tool to the public health practi-
tioners in dealing with the increase of dengue cases in the real-life situation, especially in
Malaysia.
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