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1 Introduction

Consider the Sturm-Liouville fractional differential problem

‘D* (p(t)u' (t)) + q(Ou(t) = h(e)f (u(t)), te(0,T), (1.1)
W) =0, Y &ula)=v ) nulb), (1.2)
k=1 j=1

where o € (0,1], °D* denotes the Caputo fractional derivative, p(t) € C(J,R) and ¢(t)
and /(¢) are absolute continuous functions on 7 = [0, T], T < oo with p(¢t) # 0 forall t € 7,
fu(t)): R — R is defined and differentiable on the interval 7,0 <aj <as <--- < a, <
¢, d<b <by<---<b,<T,c=<dand &, n and v € R. In this work, we discuss the
existence and uniqueness of the solution u(¢) € C*(7, R) of the Sturm—Liouville fractional
differential equation (1.1) with the multi-point boundary condition (1.2). We also study
the continuous dependence of the solution on the coefficients & and 7; of the multi-point
boundary condition.
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As a consequence of our results, we find a unique solution for the ordinary Sturm-—
Liouville differential equation with the multi-point boundary condition

(p®u (©)) +q(Ou(t) = h(O)f (ult)), te(0,T),

m n (1.3)
W0)=0, Y &ular)=v)_ nulby),
pa =

As an extension of our problem, we deduce the presence of a unique solution for Egs. (1.1)
and (1.3) under the integral conditions

e

u'(0) =0, /C u(®)dow(0) = v/d u(0)dv6),

where @ (f) and ¥ (0) are an increasing functions and the integrals are meant in the
Riemann—Stieltjes sense for0 <a<c<d<e<T.

Sturm-Liouville operator is an important operator in physics, applied mathematics and
other fields of engineering and science and has wide applications in quantum mechanics,
classical mechanics and wave phenomena; see Joannopoulos [10] and Teschl [25] and the
references therein. The existence of solutions and other properties for Sturm—-Liouville
boundary value problems have received considerable attention from many researchers
during the last two decades; see for example Al-Mdallal [1], Bensidhoum and Dib [2],
Erturk [7], Hassana [9], Klimek and Argawal [12], Li et al. [13], Lian and Ge [14], Liu et al.
[17], Muensawat et al. [20], Xu and Abernathy [26], Yang [27] and the references therein.

Nonlocal and multi-point conditions can be more useful than the standard initial con-
dition to describe some physical phenomena and have widely been studied by several re-
searchers; see Cui and Zou [3], EL-Sayed and Bin-Taher [4, 5], El-Shahed and Nieto [6],
Guo et al. [8], Karaaslan [11], Liu et al. [16], Liang et al. [15], Ma [18], Nyamoradi [21,
22], Nyamoradi et al. [23], Zhao and Ge [30], Zhang and Zhong [28], Zhanga and Liu [29],
Zhong and Lin [31] and the references therein.

2 Preliminaries and main results
First of all, we introduce some notations and basic facts which are used throughout the
paper.

Let ||u|| = max{|u(¢)| : ¢t € [0, T]} is the norm in the space C[0, T'] and ||u||;, = fOT |u(t)| dt
is the norm in L{[0, T'].

The Riemann-Liouville fractional integral of order o > 0 for the function u(¢) € L,[0, T']
is known (see [19], [24]):

N ~ t (t _ S)a—l
I I/l(t) = /0 WM(S) dS,

and the Caputo fractional derivative of order n — 1 < o < n for the function u(¢) is known:

Lt —s)y™1 gny(s)
I'n-a) ds"

d}’l
D ult) = " (z) =
) = 1" 2t /0

and we have for o, 8 € R*:
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(r1) I9:Ly — Ly and limg—, I°£ () = I'f () = [, f(s) ds.
(ra) I°IPf(t) = I**Ff(2).
(r3) Iff(¢) is absolutely continuous on 7, then lim,_.1 *D*f(¢) = Df (¢) and

-1
DI*f(¢) = ; o O+ 1"DF)

1)4+y
(l"4) Ity = %,y+1>0

Here we investigate the Sturm-Liouville fractional differential equation (1.1) with the
multi-point boundary condition (1.2) under the following assumptions.
(D1) The function f: R — R is defined and differentiable on the interval [0, 7] and %
is bounded on J with | L=< K.
(D) The function p(t) € Cl(j, ‘R) with p(t) # 0 for all £ € J, inf[o, 1) |p(£)| = p and q(¢)

and /(t) are absolute continuous functions on 7.

Lemma 2.1 Let the assumptions (D1)—(D,) be satisfied. Then problem (1.1)—(1.2) is equiv-

alent to the integral equation

u(t) = EZSk/O LI‘)‘ q(s)u(s) ds — UEZ 77]/ —I"q(s u(s)ds
o 1 o
- Eng /0 —1 h(s)f (u(s)) ds+vEZn, /0 Pl h(s)f (u(s)) ds

. 1 1 — 1
withu e CH(J,R) and u’(t) € Li(J,R), where E = ST S

Proof For t >0, Eq. (1.1) can be written as

d
I PO (0) = —a(©u(®) + h(t)f (u()).

Operating by I on both sides, we obtain

1 p0u 0 =~ quto) + Ih (1),

pOu' () = p(0)u' (0) = ~I*q(O)u(t) + 1" h(e)f (u(t)).

From (1.2) we have

u'(t) = —ﬂl"‘q(t)u(t) + ﬂl"h(t)f(u(t))

u(t) —u(0) = / ﬂl"‘q(s)u(s) ds + /0 I%I“h(s)f(u(s)) ds

(2.2)

Page 3 of 17
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For convenience, put A(t) = ft L I“q(s)u(s) ds and B(t) = fot ﬁl"‘h(s)f(u(s)) ds, we get

D Eaular) - Y Eu0) = - EAa) + Y EBlay) (2.3)
k=1 k=1 k= k=1
and
v Z nju(bj) —v Z nju(0) = —v Z njA(b;) +v Z niB(b). (2.4)
j=1 j=1 j=1 j=1

On subtracting (2.3) from (2.4) and using Y /., &u(ax) = v 27:1 n;u(b;), we obtain
u(0) = E{Z EAlar) - vy mAb) - &Bla) +vy n/B(b;)}
k=1 j=1 k=1 j=1

with E = m, substituting in (2.2) we get (2.1).

Conversely, to complete the equivalence between integral equation (2.1) and problem
(1.1)—(1.2), we have from (2.1)

u'(t) = —ﬁlo‘q(t)u(t) + ﬂlah(t)f(u(t)) e C(J,R),

d / d o d o
%(p(t)u @) = —%1 q(t)u(t) + El h@)f (u(t)), (2.5)

1- d 1-«a d o 1-a d o
1 dt(p(t)u (t)) -1 %I qt)u(t) +1 El h(t)f(u(t)).

From the definition of Caputo derivative and applying (r3), we have

d
‘D (p(t)u(t) = o e (q(t)u(t)) +11‘°‘I"‘ (h(t)f(u(t)))
a-1

et q(O)u(0)+11_“F() (w(0)).

I ()
Hence, from (r;) and (r4) we get

d . d
dt( q(t )u(t)) +1 P

= —q(O)u(t) + h(o)f (u(?)),

‘D*(p(t)u (1)) = -1 (h(o)f (u(2))) — q(0)u(0) + H(0)f ((0))

and then we get (1.1).
From (2.5) we have #'(0) = 0. Also by simple computation we can deduce from (2.1) that
Yoy Exular) = v Z;?:l nju(b;). Then problem (1.1)—(1.2) and Eq. (2.1) are equivalent.
Now from (2.5) using (r3), we have

d
u'(t) = —[—1“( q(t)u(t))+h(t)f(u(t)))],

dt| pt)
P o 1 ,d
=0 1 (—q(Ou(t) + h(e)f (u(2))) + 20" = (Fa@u()
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a-1

1
+h(e)f (u(t))) + SO T@ (—4(0)u(0) + h(0)f (u(0)))

and

0] < O [T a0t 9 ) ) s

1 -1
’ )l Jo (tp(s ) <|6I(S)| |(5)| + |/ (5)||uu(s) |
|mn‘wm +V“MVW@M)@

wznrw<m<n|on+mmny@m»u

Therefore, we get

T _ )1
/’u”(t)‘dt /(; ||Il;(?)|| (tr(s)) (‘q(s)Hu(s)|+|h(s)Hf(u(s))‘)dsdt

! Lt —s) /
[ v ] (W“Hu )| +1a/6)] |65

.qmgwggﬁﬂ

+ |h/(s)| [f(u(s)) |> dsdt

T 1 t(x—l
(@[] + (O O]) [ 1 e

T T lp @) -5
—/0 (\q(s)||u(s)|+|h(S)Hf(M(S))DdS o120 (@) dt

' 9
ﬂA(W@W“M+MuMMm+m@Wf$?W
T o
+ |h’(s)W(u)’> ds/s‘ ﬁ(t_s) 1 5

@O I'(e)

u'(s)|

T 1 totfl
() o)) [

Ummmn+wmvmigﬂ——7 + (a7 + '], ol

/ / T
+/C||h||||14 HT+ ”h ”Ll”f”)pr(a +1)

o

T
* oy (40O + O} ().

Then u"(¢t) € Li(J,R).

Define an operator ‘H associated with the integral equation (2.1) as follows:

m 1 b
Hu(t):EkXﬂ:Ek/o Pr )I"‘q(s)u(s)ds vE}XI:n,/ ﬂl"’q(s)u(s)ds
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- EZ & /o I"‘h(s)f(u(s)) ds — / ﬂl"‘q(s)u(s) ds

+ VEi nj /bj iI"‘h(s)f(u(s)) ds + ft LI"‘h(s)f(bt(s)) ds
i1 "Jo pGs) o ps)

Theorem 2.2 Assume that the hypotheses (D1)—(D,) hold, and the coefficients &, n; and
veRwith ) L & —v3 L 0 #0.If

Ta+l m n
=—— | | |E| |&k| + V] nil | +1 (IIqII+/C||hII)}<L (2.6)
v (e )

then Sturm—Liouville fractional differential equation (1.1) with the multi-point boundary
condition (1.2) has a unique solution u € C(J,R).

Proof Let sup,. 7 |[f(0)| = M; it follows from the Lipschitz condition that
If (u(®)] = |[fw) - £(0) + £(0)] < Klul + |[f(0)] < Kllull + M. (2.7)

Firstly, we show that the operator H satisfies the relation HB, C B,, where B, = {u €
C(J,R):|lull <r}and

. MUMT [|EN(S) 186l + [v] Y 1|n,|)+1]
1-G

For u € B,, we have
|Hul

E R ds + [V[|E e J
< |§|sk|/0 1l |uto) s+ 101 |Z|n,|/ 1466)|| )| s
FEY lel [ 1 )] (u(5) | ds

Ve[ o

+|v||E|Z|n,|/ h(s)| |f (u(s))| ds

Hu s)| ds + I“’h(s)’ [f(u(s))‘ds

£
|P(S)| o 1pGs)l

. Elalte [Z [
gl [ [ S dcas
n bj ps (S_g-)a—l
j ——d¢d.
+|v|jZl|n,|f0 [« s}

LENANKlull + M) | & WS (s =)
———dcd
' . [;@u/o [ dcds
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(s- ) Il [+ [* 6=
*'”'Z'""// @ ”’”} [

AN (KCNull + M) (s— )
+—// Fla) %ds
|E|||f1||||u|| n b}“l

» |:Z|$ | +|V|§|mlm]

T M a+1 n ba+1
o JENAIN K ull + )[ZEI Tas |Z|’b +2)}

p

a+1

+||61||||u|| T+t +||h||(/C||M||+M) T"+1
p T(@+2) p I'a+2)

Toz+1 m n

= oM@+ [('H(;I&l +[v] Zl Iml) + 1)(||q|| +ic||h||)}nun
| MlmIT?
t Tl [I |<Z|sk|+|v|2|n,)+1}

< 1#;)[(' |<Z|sk| + vl Z Il ) + 1>(||q|| +K||h||)}

j=1

M|\ k|| T -
M 2 2 . 1 .
+ Ma+2) |: ( 531(|+|v|j=1 |r),|>+ :|§r

which proves that HB, C B,.
Now for u,v € C(J,R) and t € J, we have

[(Hu)(®) - (Hv)(0)|

s|E|;|sk|/0 W’ lq(s)|u(s) - v(s)| ds

FIE S Il [ 1)) - v(5)| ds
Xh [ Pl |
+|E|Z|sk| f —1“|h(s)|Lf(u(s)) £ | ds

/ 1 o
] Zl I /0 i |l () (10 ds

I()I I()I

Elgllle—vi | < /“k Ss=o)!
_— E dcd
= » [kl |8k ), T ¢as

n 4 bj s(s_;-)cx—l
+|U|;|n]|/0/0 = d;“ds}

1°‘|q(s)| \u s) — v(s)| ds + I°‘|h S)Hf(u(s)) —f(v(s))|ds
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NLIIR “ ot
[Zm/ OO dcas

a-1
+IUIZ|77/|// F()) d;“ds:|

Il —vil [* [ (s=c)e! /cnhnnu v gyt
_ —  dcds+ — dtds.
YT /0/0 Fa) “%* / / T “*

By a similar calculation to the one above, we obtain

|(Hu)(8) - (HV) ()|

< 1%[@(2 &l + v] Z ] ) + 1)(||q|| +K||h||)} = vl

Therefore, we get

1Hu - Hy|
Ta+1
< MK' |<Z &l + v ]Zl Il ) * 1)(||q|| +/C||h||)} e —v].

It follows from (2.6) that H is a contraction mapping and by applying the Banach fixed
point theorem problem (1.1)—(1.2) has a unique solution z € C}(7,R). O

Corollary 2.3 Let the assumptions (D1)—(D-) be satisfied, and the coefficients &, n; and
veRwith Y L & —v3 L 0 #0.If

[(m(Z &l + v Z Il ) + 1)(||q|| +K||h||)} (2.8)

j=1

then the ordinary Sturm-Liouville differential equation

(p@)u (0)) +qOu(t) = hOf (ut)), te(©O,T), (2.9)

under the conditions
- kau ax) -va

has a unique solution u € C(J,R) if and only if u solves the integral equation

we)=EY ¢ q()u(x)de ds—vEY n (©)ul¢) dt ds
;k/ ()/ Z’/ /

0

m a1 s
—E;gk/ E/o h(¢)f (u(¢)) de ds

0
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n bj 1 s
EY [ =5 [ ey uer ac as

t1 S t q s
A d¢ d — dc ds. .
/Op(s)fo q(§)u(¢)dg s+/0 p(s)/o h(&)f (u(t)) dg ds (2.10)

Proof Taking the limit as « — 1 in (1.1) and applying (r3) we get the ordinary Sturm-—
Liouville differential equation (2.9). Also from the continuity of the solution of (1.1)—(1.2)
(cf. (2.1) and (2.6)) and applying (r1) we obtain (2.10) and (2.8), respectively. O

Example Consider the Sturm-Liouville fractional differential equation

\/Z t
cnl/2( t,/ _
D (e u (t)) + —wou(t) =206+ D tanhu(t), tel0,1], (2.11)

under the conditions

1 1 1 2 3
u'(0)=0, 4u<—) —3u<—) = —<7u(—> —614(—)). (2.12)
4 3 10 3 4

Here, o = 3, p(t) = ¢, q(t) = 355, h(t) = gy f@(®) = tanhw(t), &1 = 4, & = =3, v = &,
m=71m=-6T=1p=1l4l =15 Il = & 152 < 1=K, |E| = ¥, then G =
0.2691383936 < 1.

Therefore by Theorem 2.2, the Sturm-Liouville fractional differential equation (2.11)

under the conditions (2.12) has a unique continuous solution.

3 Continuous dependence

In this section we study the continuous dependence (on the coefficient & and 7; of the
multi-point condition) of the solution of the Sturm-Liouville fractional differential equa-
tion (1.1) with the multi-point boundary condition (1.2).

Definition 3.1 The solution of the fractional Sturm-Liouville differential equation (1.1)
is continuously dependent on the data &; and #; if for any € > 0, there exist 6;(¢) and 8,(¢)
such that, for any two solutions u(¢) and #(¢) of (1.1) with the initial data (1.2) and

W0)=0, Y Eula)=v) ulby), (3.1)
X 1

respectively, one has ) ;" |&x — x| < 81 and Z;lﬂ [n;—1j| < 82, then |[u—i|| < e forallt € J.

Theorem 3.2 Let the assumptions of Theorem 2.2 be satisfied. Then the solution of Sturm—
Liouville problem (1.1)—(1.2) is continuously dependent on the coefficients & and n; of the

multi-point boundary condition.

Proof Let u(t) as defined in Eq. (2.1) be the solution of the multi-point problem (1.1)—(1.2)
and

u(t) = EZSk/ p—I"‘ q(s)u(s) ds — vEZn]/ —I q(s)u(s) ds
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_E;~k/0“k ﬂ[ah(s)f (#(s)) d5+”EZﬂ;/O —I Hs)f ((s)) s
t 1 “ U ' 1 o ~
_/0 ml q(s)u(s)ds+/0 %1 h(s)f (iu(s)) ds

be the solution of the nonlocal problem (1.1) and (3.1). Then

|u(t) — ()| =

m @ q 3 o @ q 3 )
EZsk fo ) ds—EX_jsk fo i)
- VEZ n,/ —I“q(s u(s) ds + vEZr/,/ s)ds

P(S)
1 o T pt ak L ap
_EZEI(/ p—] h(s)f(u(s))ds+EZSk/0 ()I s)f( ())
+vEZn,/ —I“h(S)f u(s )) ds — vEZn,/O —I hs)f(u(s))

U LD S
_/0 ml q(s)u(s)ds+/0 1@1 q(s)i(s) ds

+ /Ot L[“h(s)f(u(S)) ds — /t —Iah(s)f(u(s)) (3.2)

p(s) p(s)

Now

a1 N B m ~ a1 N ~
EY e [ st au)ds ~EY | e s

m a
EZéka m]"‘ s)ds— EZ&/ —I"‘qs)z}(s)ds

-EY & | " " q(s)ﬂs)dswgljsk [ i) ds

0

k=1
_ " m ak 1 " _ d _ m 0 )
E;&/o ()I 9(s)itls) S+Ek2=1:€k /0 ()1 q(s)is(s) ds

< |E|Z|sk| /O ' M%”Iﬂq(s)uu(s)—ﬁ(s)yds

+IE- E|Z|sk|/ W’a 146)]i(s)| s

+|E|Z|sk su/ 205)|[i(s)| s

Elllqlllw — @) T & llqll 22| T
< E
= iy Ll |§j|sk & et
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m

Toz+1
+|E||E|<Z|§k—sk|+|v|2|n, )”"”””" >k

m

- \E|llqll 12 — 2] T+ Zlg |4 5y B M T llgllllae)| T+
pl(a+2) pl(a+2)

m

Ta+1
+ (31 + MB)IEIEIT TR CTE ”q”””” Z &l (3.3)

Similar to (3.3) we can obtain

—vEZn,/(; —I"‘ (s)u(s) ds+vEZr;,/ —1“ (s)z(s) ds

n

VIl Il — &) 7! - gl i) 7!
< D o+ IS E| =
pl(a+2) pl(a+2)

j=1

n

||q|||| ||T“+1
+ (8 + |v|82)|v||E||E| Z nj.

Also by a similar calculation to the one of (3.3) and by using (2.7), we obtain the following

inequalities:

m ay 1 " B m B ay 3
’—E;fk/(; ml h(s)f(u(s))ds+Ek21:§k/(; ﬂl h(s)f (i(s)) ds

KCIE|A % — )| T — - R + M) T+
< KIET|A I Z|§k|+51|E|” (KNl )
pI(a+2) pl (e +2)

Al (|l az]| + M) Tt &
> l&l,

) 8)|E||E
+ (81 + [v]82)|E||E| T (@+2)

UEZ n]/ —I“h(s)f s) ds—vEZn,/ I h(s)f u(s))

KIvIENAllu— i) T & ||h||(’C||M|| + M)T**!
E: + SII|E
= (@ +2) Iyl + 8211 ] Ma+2)

I (KNl + M)T ! &
plr(a+2)

+ (81 + [v182) IV |E||E| |-

Jj=1

Also it is easy to obtain
| / —Iaq(s)u(s ds+/ —I°‘ (s)z(s) ds

1 “ ' o ~
+/0 EI h(s)f (u(s)) ds—/o %1 h(s)f (ii(s)) ds

- llglllloe — )| T+ . Kkl lu - &) T+
pl(a+2) plr(a+2)
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With the final five inequalities, we have after reducing similar terms in Eq. (3.2):

() — ()|
Elligllllu — @l T+ NIl T+
= pl(a+2) <Z|57‘|+|‘)|Z|U;) 51+|v|8 ME'W

(81+|v|82)|E||E|”q”””” <Z|sk|+|v|2|n,>

ICE h T+
|||Lﬁ|(|Z+Z)H <Z|s,<|+|v|2|n,)

Al (KN il + M)T*!
pl(a+2)

Al (Il az]| + M) Tt &
+ (81 + [v182) |E||E| 1?(04: ) Z(lskl +[v] Z |l )

llgllloe — ]| T+ . KAl | — ) T
pl(a+2) pl(o+2)

+ (81 + [v]82) |E|

and we get

Ta+1
||u—ﬁ||sm[<| |<Z|sk|+|v|;j|n,>+1)(||q||+/cnh||)}||u |

Uigllzel + (17| (K2 ]| + M) T+
pl(a+2)

X (IEI(g &kl + [v] Fil |nd> + 1),

+ (81 + [v18,) |

then we have

Uigllael + Al (KN ]| + M) T
pl(a+2)

x (IEI(éIEkI +[v] ]é |n;|> + 1>.

(1 -G)llu—al < (8; +[v]8,) E|

Therefore for Y ", |& — & < 8; and > i1 Inj = jj| < 8, we can find

(gl ]l + 1IN + M) T
pl(a+2)

x (Iﬂ(g &kl + IVIIZj;Iml) + 1),

lu—itll <e=(1-G)" (81 + [v]8,) | E|

i.e. for every € > 0, there exist 81 (€), 8>(¢) > O such that ) /" |& —&| <81 and Zle [nj—1j] <

8, then ||u — ]| < €.
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This proves the continuous dependence of the solution of the Sturm—Liouville fractional
differential equation (1.1) with the multi-point boundary condition (1.2) on the coefficient

& and n; of the multi-point condition. O

4 Integral boundary conditions
Let u € C}(J, R) be asolution of the problem (1.1) with the multi-point BCs in (1.2). Then

we have the following theorem.

Theorem 4.1 Assume that the hypotheses (D1)—(D,) hold. If

T [ (@) - ma) + W9 e) - 9(d)
pra+2) [<|w(c) “w(@ -0 - @) 1)(”"” * ’C”h”)} <1 (4.1)

then there exists a unique solution u € C'(J,R) of the fractional differential Sturm—
Liouville problem:

D (p(t)u (1)) + q(Oult) = h(®)f (u(t)), tel0,T],

c e (4.2)
u'(0) =0, / u(0)dw (0) = v/ u@)dv®), O0<a<c<d<e<T,
a d
and u solves (4.2) if and only if u solves the integral equation
1 o
u(t) = S S E YRSy |:/ / —I q(s)u(s) ds dw (0)
/ / —I“q(s u(s)dsdd(0) — / / —I“h(s)f u(s )dsdw(@)
+v/ / E[ (s))dsdz?(@)]
I*gq(s)u(s) d tll"‘h() () d. (4.3)
—/Om q(s)u(s S+/m s)f (u(s)) ds, .

provided that @ (c) — @ (a) # v(P(e) — ¥ (d)), @ (0) and V¥ (0) are increasing functions and
the integrals are meant in the Riemann—Stieltjes sense for0 <a<c<d<e<T.

Proof Let u € C[0, T] be a solution of problem (1.1)—(1.2). Let & = @ () — @ (1) > O,
ax € (b1, 1), 0<a=ty <ty <ty < <ty =c,n =) =¥ (11-1), bj € (-1, 77) and d = 10 <

71 <--- < Ty = e < T. Then the multi-point boundary condition in (1.2) will be

Y (@) - o () ula) =v Y (9(1) - 9 (x1-1)) (b)),
k=1 j=1

from the continuity of solution u of (1.1)—(1.2), we can obtain

Tim Y (@ () - @ () ula) = v lim D (9(5) = 9 (5-1)ulby),
k=1 j=1
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that is, the multi-point boundary condition (1.2) is transformed to the integral condition

/ u(0)dw (0) = v/ u(0)dv (6).
a d
Next, from the continuity of the solution u (cf. (2.1)), we can get

1

£) =
u Yieibk—v /1771

mlggoz (w0 () - w (tr0) fo k}%f“q(s)u(s)ds

14 " b; 1
I o lim » (9(5) - 9(51-1) /0 gl A ds
k=1 - =)

j=1Tj

1
Yieibk—v ;1’71

,,};me =) [ S (o) ds

1 o
Yy lék—vzl ) nL‘EoZ (1)) = 9(j-1)) fo oo e () ds

tq 3 - ]
- /0 MZ q(s)u(s)ds + /O ﬁl h(s)f (u(s)) ds,

and we see that u € C!(J, R) solves problem (4.2) if and only if u solves (4.3).
Finally, substituting by & and 7; in (2.6) we get (4.1). (I

Corollary 4.2 Assume that the hypotheses (D1)—(D,) hold. If

Tt (c—a)+|v|(e—d)
pr(a+2>[<|(c-a)-v(e_d)| +1>(“qll +’Cllhll)] <1

then there exists a unique solution u € C*(J,R) of the Sturm—Liouville fractional differ-

ential problem:

‘D (p()id (1)) + q(t)u(t) = h(@)f (u(t)), t€]0,T],
c e (4.4)
u'(0) =0, /u(@)d@zu/ u@)dd, 0<a<c<d<e<T,
a d

and solving (4.4) is equivalent to finding a solution u € C(J,R) to the integral equation

(t)_c e d) |:/ / m]"‘ q(s)u(s)dsdo
_v / / —I"q(s u(s) dsdb — / / —I“‘h(s (u(s)) dsdo
v / / Fzws)f(u(s)) dsd@}
—/tEI“Q(S)u(S)dH Otlﬁl"‘h(S)f(u(S)) ds,

provided that c —a # v(e - d).
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Corollary 4.3 Let the assumptions (D1)—(Dy) be satisfied. If

T* [ (@ (c) - @ (a) + [v|(¥(e) — ¥ (d))
E[(m(d “o(@ -0 - @) " l)(”q” * ’C"h")} <b

then the ordinary Sturm—Liouville differential problem
(PO @) +q(Ou(t) = he)f (@), telo,T], (4.5)

u'(0)=0, /Cu(e)dw(e) = v/de u@)dd@), 0<a<c<d<e<T, (4.6)

has a unique solution u € C'(J, R) and solving (4.5), (4.6) is equivalent to finding a solution
u to the integral equation

0= @) U/: o [} outcrds asaero
v e | 9 1% / q(©u(¢) e dsdi (6)
[ 0 e o) (o)) de dsd (0)
+ v_/;/o&]% /Osh(é')f(u(g)) dc dsdl?(@)]

t1 § t 1 s
) dgds+ | — | h dc ds,

provided that w (c) — w (a) # v(¥ (e) — ¥(d)).

Proof Taking the limit as @ — 1 for (4.1), (4.2) and (4.3) and applying (r1) and (r3) we get
the result. O

Example Consider the Sturm-Liouville fractional differential equation
‘D (24(£2 + 1) (t)) + Vtu(t) = sinttan" u(t), te(0,1), (4.7)

under the conditions

1
= 1 l
#(0) =0, / u0)d(0? +1) = — / (@) d(6® +2). (4.8)
0 100 J3/4

Here, a = 3/4, p(t) = 24(t* + 1), q(t) = /¢, h(t) = sint, f(u(t)) = tan " u(t), c = 1/2, w (1/2) =
125,4=0,w(0) =1, v= ", e=1,0(1) =3, d = 3/4, 9(3/4) = 241875, T = 1, p = 24,
gl =1, 1k =1, 129| <1 =K, w(c) - (a) - v( (€) - ¥(d)) = 0.24421875 #0.

Then

Tt @ (c) - w(a) + [v|(¥(e) - ¥ (d))
pl(a+2) |:(|w(c) —w(a) —v®(e) — 9 (d))| + 1)(||q|| + /C||h||)i|

=0.0530467051 < 1.
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Therefore, by Theorem 4.1, the Sturm-Liouville fractional differential equation (4.7) un-

der the conditions (4.8) has a unique continuous solution.
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