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Abstract
We study an epidemic model with nonlinear incidence rate, describing the saturated
mass action and the psychological effect of certain serious diseases on the
community. Firstly, the existence and local stability of disease-free and endemic
equilibria are investigated. Then we prove the occurrence of backward bifurcations,
saddle-node bifurcations, Hopf bifurcations and cusp type Bogdanov–Takens
bifurcations of codimension 3. Finally, numerical simulations, including one limit
cycle, two limit cycles, an unstable homoclinic loop and many other phase portraits
are presented. These results show that the psychological effect of diseases and the
behavior change of the susceptible individuals may affect the final spread level of an
epidemic.
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1 Introduction
In the well-known SIS epidemic model, the population is always separated into two com-
partments, susceptible and infective individuals. In most SIS epidemic models (see An-
derson and May [1]), the incidence takes the mass-action form with bilinear interactions.
However, in a practical application, to describe the transmission process more realistically,
it is necessary to introduce the nonlinear contact rates [2].

Actually, various forms of nonlinear incidence rates have been proposed recently [3–
10]. For example, in order to incorporate the effect of behavioral changes, Liu, Levin, and
Iwasa [6] used a nonlinear incidence rate of the form

g(I)S =
κIιS

1 + αIh ,

where κIι represents the infection force of the disease, 1/(1 + αIh) is a description of the
suppression effect from the behavioral change of susceptible individuals when the infective
population increases. ι, h and κ are all positive constants, and α is a nonnegative constant.
See also Hethcote and van den Driessche [7], Moghadas [8] and Alexander and Moghadas
[9, 10], etc.

To describe the effects of psychology effect caused by protection measures and inter-
vention policies, etc., when a serious disease arouses widespread horror, in [11], Ruan
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Figure 1 Graphs of different incidence rate functions. (a) Non-monotone incidence g1(I) = κ I
1+αI2

.

(b) Nonlinear incidence g2(I) = κ I2

1+αI2
. (c) Nonlinear and non-monotone incidence rate G(I) = aI2

I2+c
+ bI

I2+c

discussed a specific infection force

g1(I) =
κI

1 + αI2 ;

see Fig. 1(a). Obviously, g1(I) is increasing with small I and decreasing with large I , that
is, g1(I) is non-monotone. It can be used to interpret the “psychological” effect: for a very
large number of infective individuals, the infection force may decrease as the number of
infective individuals increases, since a large number of infectives may lead to the reducing
of the number of contacts per unit time. For example, in 2003, the epidemic outbreak of
severe acute respiratory syndrome (SARS) had such psychological effects on the general
public (see [12]), and aggressive measures and policies had been taken, such as border
screening, mask wearing, quarantine, isolation, etc. One showed that either the number
of infective individuals tends to zero as time evolves or the disease persists.

Furthermore, Li, Zhao and Zhu (see [13]) studied the following SIS model, which de-
scribes behavior change effect of susceptible individual when infectious population in-
creases:

⎧
⎨

⎩

dS
dt = Λ – d0S – g2(I)S + δI,
dI
dt = g2(I)S – (d0 + d′ + δ)I,

(1.1)
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where

g2(I) =
αI2

1 + β0I2 ;

see Fig. 1(b). By the qualitative and bifurcation analyses, they showed that the maximal
multiplicity of weak focus is 2, and proved that the model can undergo a Bogdanov–Takens
bifurcation of codimension 2. These results illustrate that the behavior change of the sus-
ceptible individuals may affect the final spread level of an epidemic.

Actually, both the effect of psychology and the behavior change of susceptible individ-
uals have influence on the transmission of the disease. Thus, motivated by the above re-
search, we consider a nonlinear incidence rate of a SIS model as follows:

⎧
⎨

⎩

dS
dt = Λ – SG(I) – dS + σ I,
dI
dt = SG(I) – (d + μ + σ )I,

(1.2)

where

G(I) =
aI2

c + I2 +
bI

c + I2 ,

see Fig. 1(c), which can describe the effect of psychology and behavior change of suscep-
tible individuals. S and I represent the number of susceptible individuals and infected
individuals, respectively. Λ is the recruitment rate of population, d is the natural death, μ
is the disease-induced death rate, and σ represents the recovered rate, a, b and c are all
positive constants.

The organization of this paper is as follows. In Sect. 2, we analyze the existence of the
equilibria and local stability of the equilibria. In Sect. 3, we study the existence of Hopf
bifurcation around the positive equilibrium at the critical value under the conditions of
R0 < 1 and R0 > 1. We also show that these positive equilibria can be weak focus for some
parameter values and a cusp type of Bogdanov–Takens bifurcation of codimension 3. In
Sect. 4, we give some brief discussions.

2 Types and stability of the equilibria
Firstly, we make scalings: (Λ′, a′, d′,σ ′, c′) = ( Λ

b , a
d+μ+σ

, d
d+μ+σ

, σ
d+μ+σ

, c(d+μ+σ )2

b2 ), and (x, y,
τ ) = ( d+μ+σ

b S, d+μ+σ

b I, (d + μ + σ )t). To avoid the abuse of mathematical notation, we still
denote (Λ′, a′, d′,σ ′, c′, τ ) by (Λ, a, d,σ , c, t). Then model (1.2) becomes

⎧
⎨

⎩

dx
dt = Λ – xy(ay+1)

y2+c – dx + σy,
dy
dt = xy(ay+1)

y2+c – y,
(2.1)

where d + σ < 1.

Lemma 2.1 The set D = {(x, y)|x ≥ 0, y ≥ 0, x + y ≤ Λ
d } is an invariant manifold of system

(2.1), which is attracting in the first octant of R2.
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Proof Summing up the two equations in (2.1), we can get

d(x + y)
dt

= Λ – d(x + y) – (1 – d – σ )y ≤ Λ – d(x + y).

Thus, lim supt→∞(x + y) ≤ Λ
d , which implies the conclusion. �

Obviously, system (2.1) always has a unique disease-free equilibrium E0 = ( Λ
d , 0). The

positive equilibria of (2.1) can be obtained by solving the following algebraic equations:

Λ –
xy(ay + 1)

y2 + c
– dx + σy = 0,

xy(ay + 1)
y2 + c

– y = 0,

which yields

(
d + a(1 – σ )

)
y2 + (1 – σ – aΛ)y + dc – Λ = 0. (2.2)

Denote the basic reproduction number as follows:

R0 =
Λ

dc
.

And, for convenience, we define the following quantity:

R∗ = 1 –
[(1 – σ ) – aΛ]2

4dc(d + a(1 – σ ))
.

Then, computing the discriminant of (2.2), we get


 = (1 – σ – aΛ)2 – 4
[
d + a(1 – σ )

]
(dc – Λ)

= (1 – σ – aΛ)2 – 4dc
[
d + a(1 – σ )

]
(1 – R0)

= 4dc
[
d + a(1 – σ )

](
R0 – R∗),

which implies that 
 > 0 if and only if R0 > R∗, 
 = 0 if and only if R0 = R∗, and that 
 < 0
if and only if R0 < R∗. It is clear that R∗ < 1 and we can obtain the following theorem.

Theorem 2.2 Model (2.1) always has a disease-free equilibrium E0 and the following con-
clusions hold.

(i) When R0 < 1, we have
(a) if R0 < R∗, then system (2.1) has no positive equilibrium;
(b) if R0 = R∗ and Λ > (1 – σ )/a, then system (2.1) has a unique positive equilibrium

E1(x1, y1), where x1 = y2
1+c

ay1+1 and y1 = aΛ–(1–σ )
d+a(1–σ ) ;

(c) if R0 > R∗ and Λ > (1 – σ )/a, then system (2.1) has two positive equilibria
E2(x2, y2) and E3(x3, y3), where xk = y2

k +c
ayk +1 (k = 2, 3) and y2 = aΛ–(1–σ )–

√



2(d+a(1–σ )) ,

y3 = aΛ–(1–σ )+
√




2(d+a(1–σ )) ;
(ii) When R0 = 1 and Λ > (1 – σ )/a, then system (2.1) has a unique positive equilibrium

E4(x4, y4), where x4 = y2
4+c

ay4+1 and y4 = aΛ–(1–σ )
d+a(1–σ ) ;
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(iii) When R0 > 1, then system (2.1) has a unique positive equilibrium E5(x5, y5), where
x5 = y2

5+c
ay5+1 and y5 = aΛ–(1–σ )+

√



2(d+a(1–σ )) .

In the following, we discuss the local stability of Ek(xk , yk) (k = 0, 1, 2, 3, 4, 5) and present
the corresponding phase portrait. By directly calculating, the Jacobian matrix at equilib-
rium Ek is

Jk =

⎛

⎜
⎝

–d – yk (ayk +1)
y2

k +c σ – –y2
k +2acyk +c
(y2

k +c)2 xk

yk (ayk +1)
y2

k +c –1 + –y2
k +2acyk +c
(y2

k +c)2 xk

⎞

⎟
⎠ .

We have

tr Jk =
ψk

(y2
k + c)(ayk + 1)

, det Jk =
ykφk

(y2
k + c)(ayk + 1)

,

where

ψk = –a(d + 1 + a)y3
k – (d + 2 + 2a)y2

k – (acd + 1 – ac)yk – cd,

φk = a
(
d + a(1 – σ )

)
y2

k + 2
(
d + a(1 – σ )

)
yk + (1 – σ ) – dac.

In addition, after some complicated computations, we get

φ2 =
√


(a(
√


 – (aΛ + 1 – σ )) – 2d)
2(d + a(1 – σ ))

and

φk =
√


(a(
√


 + (aΛ + 1 – σ )) + 2d)
2(d + a(1 – σ ))

> 0 (k = 3, 4, 5).

Theorem 2.3 The disease-free equilibrium E0 of system (2.1) is
(i) an attracting node if R0 < 1;

(ii) a hyperbolic saddle if R0 > 1;
(iii) a saddle-node of codimension 1 if R0 = 1 and 2a – 1–σ

dc 	= 0; a repelling node if R0 = 1
and 2a – 1–σ

dc = 0.

Proof Obviously, at equilibrium E0, we have det(J0) = d(1 – R0) and Tr(J0) = –d – (1 – R0).
Therefore, E0 is a stable node if R0 < 1 and a hyperbolic saddle if R0 > 1, and degenerate if
R0 = 1.

When R0 = 1, we let u = x – Λ
d , v = y, then system (2.1) becomes

⎧
⎨

⎩

du
dt = –du – (1 – σ )v – 1

c uv – 2av2 + O(|(u, v)|3),
dv
dt = 2av2 + 1

c uv + O(|(u, v)|3).
(2.3)

Indeed, if R0 = 1, the Jacobian J0 is diagonalizable with eigenvalues λ1 = –d and λ2 = 0 and
respective eigenvectors ν1 = (1, 0) and ν2 = (– 1–σ

d , 1). By the transformation

(
u
v

)

=

(
1 – 1–σ

d
0 1

)(
x
y

)

,
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system (2.3) can be rewritten as

⎧
⎨

⎩

dx
dt = –dx – ( 1

c + 1–σ
d )xy – ( 1–σ

cd – 2a + 2a(1–σ )
d )y2 + O(|(x, y)|3),

dy
dt = (2a – 1–σ

dc )y2 + 1
c xy + O(|(x, y)|3).

If 2a – 1–σ
dc 	= 0, according to the calculation of center manifold [14], we know that the

center manifold x = h(y) of (2.3) begins with quadratic term of y. In addition, from the sec-
ond equation of (2.3), we can easily see that the equation restricted to the center manifold
is as follows:

dy
dt

=
(

2a –
1 – σ

dc

)

y2 + O
(
y3).

By applying Theorem 7.1 in Zhang et al. [14], E0 is a saddle-node.
If 2a – 1–σ

dc = 0, then the center manifold turns into

dy
dt

=
1
c

y3 + O
(
y4).

Since 1
c > 0 and the first nonzero item is uneven. Thus, the equilibrium E0 is a repelling

node, according to Theorem 7.1 in Zhang et al. [14]. �

From the expression of ψ1 and φ1, we can see that one of the eigenvalues of the char-
acteristic matrix of E1 is zero and the other is nonzero if ψ1 	= 0. The type of E1 can be
directed proved by checking the conditions in Zhang et al. ([14], Theorems 7.1–7.3). So,
we have the following results.

Theorem 2.4 If R0 = R∗, then system (2.1) has a unique positive equilibrium E1. More
precisely,

(a) if ψ1 	= 0, then E1 is a saddle-node;
(b) if ψ1 = 0, then E1 is a cusp.

Theorem 2.5 Suppose that R∗ < R0 < 1 and aΛ > 1 – σ , then system (2.1) has two positive
equilibria E2 and E3, and equilibrium E2 is a hyperbolic saddle for all permissible choices
of the parameters, equilibrium E3 is not degenerate. Moreover,

(i) E3 is a stable focus or node if ψ3 < 0;
(ii) E3 is a weak focus or center if ψ3 = 0;

(iii) E3 is an unstable focus or node if ψ3 > 0.

Proof Note that φ2 is less than zero since 
 < (aΛ + 1 – σ )2, then E2 is a hyperbolic saddle
for any choices of the parameters. And at E3, we have φ3 > 0. Thus, the stability of the
equilibrium E3 depends on the sign of ψ3. �

Theorem 2.6 When R0 = 1 and c > 1–σ
a , then system (2.1) has a unique positive equilibrium

E4(x4, y4), and the equilibrium E4 is stable if ψ4 < 0.

Proof In fact, when R0 = 1 and c > 1–σ
a , then φ4 > 0. Thus, the stability of E4 is determined

by the sign of ψ4. �
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Figure 2 When R∗ < R0 < 1, Λ > (1 – σ )/a. (a) ψ3 < 0, equilibria E0 and E3 are locally stable and E2 is unstable.
(b) ψ3 > 0, equilibrium E0 is locally stable and E2 and E3 are unstable

Theorem 2.7 Assume R0 > 1, then system (2.1) has a unique positive equilibrium E5. More-
over,

(i) E5 is stable if ψ5 < 0;
(ii) E5 is a weak focus or center if ψ5 = 0;

(iii) E5 is unstable if ψ5 > 0.

Proof Obviously, when R0 > 1, then φ5 > 0, and then E5 is stable if ψ5 < 0. �

Lemma 2.8 From the expression of ψk (k = 1, 3, 5), we can see that Ek (k = 1, 3, 5) is always
stable if d ≥ 1 – 1

ac .

When ψi 	= 0 (i = 3, 5), the dynamics of system (2.1) can easily be seen in Fig. 2, Fig. 3
and Fig. 4, respectively. The dynamical behaviors of system (2.1) when ψi = 0 (i = 3, 5) will
be discussed in detail in the next section.

Remark 2.9 In fact, Fig. 2(a) shows the occurrence of bi-stability, in which solution may
converge to one of the two equilibria, depending on the initial conditions. And in practi-
cal cases, this interesting phenomenon implies that initial states determine whether the
disease dies out or not.

Remark 2.10 From Fig. 2(a), we can see that there exist two separatrices. All solutions tend
to the disease-free equilibrium E0 except the two green lines tend to equilibrium E2.

Theorem 2.11 Suppose that R0 = 1 and Λ > 1–σ
a , then system (2.1) has a unique positive

equilibrium E4. If ψ4 > 0, then there exists at least one stable limit cycle in the interior of
the first quadrant.

Proof Indeed, the Jacobian J0 is diagonalizable with eigenvalues λ1 = –d and λ2 = 0 and
respective eigenvectors ν1 = (1, 0) and ν2 = (– 1–σ

d , 1). By the transformation

(
u
v

)

=

(
1 – 1–σ

d
0 1

)(
x
y

)

,
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Figure 3 When R0 > 1. (a) ψ5 < 0, the disease-free equilibrium E0 is unstable and the unique positive
equilibrium E5 is globally stable. (b) ψ5 > 0, E0 and E5 are unstable and there exists a stable limit cycle

Figure 4 When R0 = 1, and Λ > (1 – σ )/a. (a) ψ4 < 0, the disease-free equilibrium E0 is unstable and the
unique positive equilibrium E4 is globally stable. (b) ψ4 > 0, E0 and E4 are unstable and there exists a stable
limit cycle

system (2.3) becomes

⎧
⎨

⎩

dx
dt = –dx – ( 1

c + 1–σ
d )xy – ( 1–σ

cd – 2a + 2a(1–σ )
d )y2 + O(|(x, y)|3),

dy
dt = (2a – 1–σ

dc )y2 + 1
c xy + O(|(x, y)|3).

(2.4)

The theorem of Chochitaichvili [15] shows directly that system (2.4) is topologically
equivalent to the system

⎧
⎨

⎩

dx
dt = –dx,
dy
dt = (2a – 1–σ

dc )y2 + O(|y|3).
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Figure 5 When R0 = 1, and Λ > (1 – σ )/a. (a) When R0 = 1, Λ > 1–σ
a and ψ4 > 0, there exists a stable limit

cycle. (b) When R0 > 1 and ψ5 > 0, there exists a stable limit cycle

It is easy to see that 2a – 1–σ
dc > 0 according to the condition of R0 = 1 and Λ > 1–σ

a , and
then we find that there exists a unique repelling equilibrium E4 in the region D1 shown in
(a) of Fig. 5. Consequently, by the Poincaré–Bendixson theorem, at least one stable limit
cycle appears in the interior of the first quadrant. �

Similarly, when ψ5 > 0, we have the following result.

Theorem 2.12 Suppose that R0 > 1. If ψ5 > 0, then there exists at least one stable limit
cycle in the interior of the first quadrant.

Proof Indeed, the Jacobian J5 has eigenvalues λ1 = –d and λ2 = R0 – 1 > 0, when R0 > 1.
Thus, we find that there exists a E5, which is the unique repelling equilibrium in the region
D2 shown in (b) of Fig. 5. Consequently, by the Poincaré–Bendixson theorem, at least one
stable limit cycle appears in the interior of the first quadrant. �

Remark 2.13 From (b) of Fig. 3, we can see clearly that there exists a stable limit cycle
enclosing the equilibrium E5 even though E0 is a saddle node. Similarly, from (b) of Fig. 4,
we also find that there exists a stable limit cycle if E4 is unstable.

3 Bifurcations
3.1 Backward bifurcation
Theorem 3.1 When R0 = 1 and Λ > 1–σ

a , model (2.1) exhibits a backward bifurcation at
equilibrium E0.

Remark 3.2 When R0 = 1 and Λ > 1–σ
a , system (2.1) exhibits a unique positive equilibrium

E4, which means that once R0 crosses 1, the disease can invade to a relatively high level.
And this is one of the main characters of backward bifurcation [16].

Remark 3.3 Actually, backward bifurcation did not emerge with a = 0, which is considered
in [13]. This indicates that introducing the non-motonic incidence into model (1.1) makes
the epidemic model more complex and exhibits richer dynamical behaviors.
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3.2 Hopf bifurcation
In this subsection, we will study the Hopf bifurcation of system (2.1) for (i) R∗ < R0 < 1
and Λ > (1 – σ )/a; (ii) R0 > 1. From the discussion in Sect. 2, it can be seen that Hopf
bifurcation may occur at E3, E5. The expressions of the equilibria E3 and E5 are the same,
not considering the values of every parameters. Based on Theorem 2.5, Theorem 2.6 and
Theorem 2.7, we know that the stability of E3 and that of E5 are similar and when ψk = 0,
Ek (k = 3, 5) is a weak focus or center. Thus, we show the existence of a Hopf bifurcation
around Ek (k = 3, 5).

Theorem 3.4 Suppose Ek (k = 3, 5) exist, then model (1.2) undergoes a Hopf bifurcation at
equilibrium Ek if ψk = 0. Moreover,

(a) if η < 0, there is a family of stable periodic orbits of model (2.1) as ψk decreases from
0;

(b) if η = 0, there are at least two limit cycles in (2.1), where η will be defined below;
(c) if η > 0, there is a family of unstable periodic orbits of (2.1) as ψk increases from 0.

Proof From the above discussions, we can see that tr Jk = 0 if and only if ψk = 0, and det Jk >
0 when equilibrium Ek exists. Therefore, the eigenvalues of Jk are a pair of pure imaginary
roots if ψk = 0. From direct calculations we have

d(tr Jk)
dψk

∣
∣
∣
∣
ψk =0

=
1

(y2
k + c)(yk + 1)

	= 0.

By Theorem 3.4.2 in [17], Ψk = 0 is the Hopf bifurcation point for (2.1).
Next, similar to [13], we introduce a new time variable τ by dt = (y2 + c) dτ . By rewriting

τ as t, we obtain the following equivalent system of (2.1):

⎧
⎨

⎩

dx
dt = Λ(y2 + c) – xy(ay + 1) – dx(y2 + c) + σy(y2 + c),
dy
dt = xy(ay + 1) – y(y2 + c).

(3.1)

Let X = x – xk and Y = y – yk , still use (x, y) to express (X, Y ), then system (3.1) becomes

⎧
⎨

⎩

dx
dt = b11x + b12y + c1xy + c2y2 + c3xy2 + c4y3,
dy
dt = b21x + b22y + c5xy + c6y2 + c7xy2 + c8y3,

where

b11 = –d
(
(yk)2 + c

)
– yk(ayk + 1), b21 = yk(ayk + 1), b22 = (axk – 2yk)yk ,

b12 = 2Λyk – 2(a + d)xkyk – xk + σ
(
3(yk)2 + c

)
, c1 = –1 – 2(a + d)yk ,

c2 = Λ + 3σyk – (a + d)xk , c3 = –(a + d), c4 = σ , c5 = 2ayk + 1,

c6 = axk – 3yk , c7 = a, c8 = –1.

Let Ê denote the origin of x – y plane. Since Ek satisfies Eq. (2.1), we obtain

det J(Ê) = b11b22 – b12b21 =
ykψk

yk + b
> 0,
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and it is easy to verify that b11 + b22 = 0 if and only if ψk = 0. Let ω = (det J(Ê)) 1
2 , u = –x and

v = b11
ω

x + b12
ω

y, then the normal form of system (3.1) reads

⎧
⎨

⎩

du
dt = –ωv + f (u, v),
dv
dt = ωu + g(u, v),

(3.2)

where

f (u, v) =
(

b11c1

b12
–

b2
11c2

b2
12

)

u2 + ω

(
c1

b12
–

2b11c2

b2
12

)

uv –
c2ω

2

b2
12

v2 + b2
11

(
c3

b2
12

–
b11c4

b3
12

)

u3

+ b11ω

(
2c3

b2
12

–
3b11c4

b3
12

)

u2v + ω2
(

c3

b2
12

–
3b11c4

b3
12

)

uv2 –
c4ω

3

b3
12

v3,

g(u, v) =
1
ω

(
b3

11c2

b2
12

–
b2

11c1

b12
– c5b11 +

b2
11c6

b12

)

u2 +
(

2b2
11c2

b2
12

–
b11c1

b12
+

2b11c6

b12
– c5

)

uv

+ ω

(
b11c2

b2
12

+
c6

b12

)

v2 +
b2

11
b12ω

(
b2

11c4

b2
12

–
b11c3

b12
– c7 +

b11c8

b12

)

u3

+
(

3b3
11c4

b3
12

–
2b2

11c3

b2
12

–
b11c7

b12
+

3b2
11c8

b2
12

)

u2v

+ ω

(
3b2

11c4

b3
12

–
b11c3

b2
12

–
c7

b12
+

3b11c8

b2
12

)

uv2 + ω2
(

b11c4

b3
12

+
c8

b2
12

)

v3.

Set

Γ =
1

16
[fuuu + fuvv + guuv + gvvv]

+
1

16ω

[
fuv(fuu + fvv) – guv(guu + gvv) – fuuguu + fvvgvv

]
,

where fuv denotes ∂2f
∂u∂v (0, 0), etc. Then by computing we obtain

Γ =
η

8b2
12ω

2 ,

where

η =
[

c3 + 3c8 –
c2(c1 + 2c6)

b12

]

ω4 +
[(

c3 + 3c8 –
2c2(c1 + 2c6)

b12

)

b2
11

+ b11
(
c2

1 – 2b12c7 + c2c5 + c1c6 – 2c2
6
)

+ b12c5c6

]

ω2

+
[

c5 –
b11(c1 + 2c6)

b12

]
[
b2

11(b12c6 – c1) + b11
(
b2

11c2 – b2
12c5

)]
.

By Theorem 3.4.2 and Theorem 3.4.11 in [17], the rest of the claims in Theorem 3.4 are
proven. �

Remark 3.5 What we need to note here is that the expression b12 in Theorem 3.4 is
nonzero. Otherwise, we have det Jk = b11b22 < 0, since b11 + b22 = 0, which is a contra-
diction.
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Next, we present examples to show that equilibrium Ek can be a stable weak focus of mul-
tiplicity two, and under a small perturbation, system (2.1) undergoes a degenerate Hopf
bifurcation and produces two limit cycles.

Firstly, fix yk = 1/2 and solve for a = –2 + 6
(2–2Λ–σ ) . Also, fix xk = 1, based on a =

–2 + 6
(2–2Λ–σ ) , we can get d = 1

2(2Λ+1–σ ) . Then Ψk = 0 if and only if c = –10–2l–σ
4(2Λ+σ–2) . Secondly,

substituting these expressions into η and through complicated computation, we obtain

η � L1

=
81(1 + 2Λ + σ̄ )2

64(1 – 2Λ + σ̄ )6

(
32Λ5 – 80Λ4(–1 + σ̄ ) + 8Λ3(–39 + 2σ̄ (–13 + 5σ̄ )

)

+ 4Λ2(–103 + σ̄
(
99 + 2(24 – 5σ̄ )σ̄

))
+ σ̄

(
140 – σ̄

(
139 + σ̄

(
–21

+ (–11 + σ̄ )σ̄
)))

+ 2Λ
(
–80 + σ̄

(
242 + σ̄

(
–81 + σ̄ (–38 + 5σ̄ )

))))
,

with σ̄ = 1 – σ > 0, which is the first Liapunov number of the equilibrium (0, 0) of (3.2).
Then we fix σ̄ = 4/5 and solve the equation η = 0, then we get only one suitable value 0.5859
for Λ. That is to say, if (σ ,Λ, d, a, c) = (1/5, 5859, 0.2, 8, 4.741), then L1 = 0. Furthermore, it
can be seen that Ek = E3 under this group of parameters.

In the following, we further compute the second Liapunov number of the equilibrium
(0, 0) of system (3.2) by the successor function method. It is convenient to introduce polar
coordinates (r, θ ) and rewrite system (3.2) in polar coordinates by x = r cos θ , y = r sin θ . It
is clear that in a small neighborhood of the origin, the successor function D(c0) of system
(3.2) can be expressed by

D(c0) = r(2π , c0) – r(0, c0),

where r(θ , c0) is the solution of the following Cauchy problem:

dr
dθ

= R2(θ )r2 + R3(θ )r3 + R4(θ )r4 + R5(θ )r5 + · · · ,

r(0) = c0, 0 < |c0| 
 1,

where Ri(θ ) (i = 1, 2, 3, . . .) is a polynomial of (sin θ , cos θ ), whose coefficients can be ex-
pressed by the coefficients of system (3.2). We omit them here, since the expressions are
too long.

With the aid of Mathematica, we get

L2
.= –0.334275

and
∣
∣
∣
∣
∣

∂ tr J3
∂Λ

∂ tr J3
∂c

∂L1
∂Λ

∂L1
∂c

∣
∣
∣
∣
∣

= –42,982.27165,

when (σ ,Λ, d, a, c) = (1/5, 5859, 0.2, 8, 4.741). Therefore, the interior equilibrium E3 is a
stable weak focus of multiplicity two if (σ ,Λ, d, a, c) = (1/5, 5859, 0.2, 8, 4.741). The phase
portraits of system (2.1) under this group of parameters are shown in Fig. 6.
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Figure 6 (a) One limit cycle enclosing an unstable hyperbolic focus E3. (b) Two limit cycles enclosing an
unstable hyperbolic focus E3, and the small one is stable, the large one is unstable

Figure 7 Equilibrium E3 is stable and there exists an unstable homoclinic loop

Besides, we give the numerical simulation graphs for one limit cycle and two limit cycles
under small perturbations of some parameters. From Fig. 6(a), we can see that there exists
only one limit cycle around the endemic E3, and Fig. 6(b) shows us that a new limit cycle
emerges with small perturbations of the parameters Λ and c. It is worth emphasizing that
if we change the values of the parameters Λ and c, an unstable homoclinic loop arise,
which is shown in Fig. 7.

Around equilibrium E5, we obtain the same result from Fig. 8. Under the condition that
parameter a, d,σ take value 5.6923, 0.11, 0.2 and change value of Λ and c from 0.45102,
3.6062 to 0.51, 3.5972, respectively, which is a minor change, then the number of limit
cycles will add one. Thus, the interior equilibrium E5 is a stable weak focus of multiplicity
two if (σ ,Λ, d, a, c) = (0.2, 0.51, 0.11, 5.6923, 3.5962).
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Figure 8 (a) One limit cycle enclosing an unstable hyperbolic focus E5. (b) Two limit cycles enclosing an
unstable hyperbolic focus E5, and the small one is stable, the large one is unstable

Remark 3.6 As a matter of fact, the reproduction number is equal to zero in [13, 18],
which simplifies the condition that a Hopf bifurcation occur. In our model, we also com-
prehensively discuss the existence of a Hopf bifurcation when R0 < 1, R0 = 1 and R0 > 1.
Besides, the authors in [13] did not show the appearance of a homoclinic loop, which is
an interesting bifurcation phenomenon given in Fig. 7.

3.3 Bogdanov–Takens bifurcation
In this subsection, we investigate the Bogdanov–Takens bifurcation in system (2.1).
Lemma 3.7 is from Perko [19], and Lemma 3.8 is Proposition 5.3 in Lamontage et
al. [20].

Lemma 3.7 The system

⎧
⎨

⎩

dx
dt = y + Ax2 + Bxy + Cy2 + O(|(X, Y )|3),
dy
dt = Dx2 + Exy + Fy2 + O(|(X, Y )|3),

is equivalent to the system

⎧
⎨

⎩

dx
dt = y,
dy
dt = Dx2 + (E + 2A)xy + O(|(X, Y )|3),

in some small neighborhood of (0, 0) after changes of coordinates.

Lemma 3.8 The system

⎧
⎨

⎩

dx
dt = y,
dy
dt = x2 + a30x3 + a40x4 + y(a21x2 + a31x3) + y2(a12x + a22x2) + O(|(x, y)|4),
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is equivalent to the system
⎧
⎨

⎩

dx
dt = y,
dy
dt = x2 + (a31 – a30a21)xy + O(|(X, Y )|3),

in some small neighborhood of (0, 0) after changes of coordinates.

From Theorem 2.2, we can see that there exists a unique positive equilibrium E1(x1, y1)
when R0 = R∗, where

x1 =
y2

1 + c
ay1 + 1

, y1 =
aΛ – (1 – σ )

2(d + a(1 – σ ))
.

From the proving process of Theorem 2.5, it is easily to see that det J1 = 0. And Theorem 2.4
suggests that the characteristic matrix J1 possesses a zero eigenvalue with multiplicity 2
when ψ1 = 0, which shows that system (2.1) may admit a Bogdanov–Takens bifurcation.
Thus, we can prove the following theorem.

Define two functions:

f (y) = (1 + a + d)y4 +
(
1 – ac(3 + 2a + 2d)

)
y3 – 3c(1 + a)y2

– c
(
1 + ac(–1 + 2d)

)
y – c2d,

g(y) = c2d + 2c(1 + 6a – 2c + cd)y + 6c(2 + a)y2

+ 2
(
2a2c + acd – 1

)
y3 – (4 + 2a + d)y4.

Theorem 3.9 Suppose that R0 = R∗ and ψ1 = 0, then the only interior equilibrium E1 of
system (2.1) is a cusp. Moreover,

(a) if f (y1)g(y1) 	= 0, then E1 is a cusp of codimension 2;
(b) if f (y1)g(y1) = 0, then E1 is a cusp of codimension greater than or equal to 3.

Proof Changing the variables as X = x – x1, Y = y – y1, system (2.1) becomes
⎧
⎨

⎩

dX
dt = b11X + b12Y + c1XY + c3Y 2 + O(|(X, Y )|3),
dY
dt = b21X + b22Y – c1XY + c2Y 2 + O(|(X, Y )|3),

(3.3)

where

b11 = –d –
y1(ay1 + 1)

y2
4 + c

, b12 = σ –
–y2

1 + 2acy1 + c
(y2

1 + c)2 x1, b21 =
y1(ay1 + 1)

y2
4 + c

,

b22 = –1 +
–y2

1 + 2acy1 + c
(y2

1 + c)2 x1, c1 = –
–y2

1 + 2acy1 + c
(y2

1 + c)2 ,

c2 =
2(y3

1 – 3acy2
1 – 3cy1 + ac2)x1

(y2
1 + c)3 , c3 = –

x1(ac2 – 3cy1 – 3acy2
1 + y3

1)
(c + y2

1)3 .

Make the non-singular linear transformation

(
X
Y

)

=

(
b11
b21

1
b21

1 0

)(
x
y

)

.
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Then system (3.3) is transformed into

⎧
⎨

⎩

dx
dt = y + b1x2 + b2xy,
dy
dt = b3x2 + b4xy + Q2(x, y),

(3.4)

where Q2(x, y) is a smooth function in (x, y) at least of the third order and

b1 = c2 –
c1b11

b21
, b2 = –

c1

b21
, b3 = b21c3 + b11(c1 – c2) +

b2
11c1

b21
, b4 =

–dc1

b21
.

By Lemma 3.7, we obtain a topologically equivalent system of system (3.4)

⎧
⎨

⎩

du
dt = v,
dv
dt = b3u2 + (b4 + 2b1)uv + Q3(u, v),

where

b3 =
df (y1)

(c + y2
1)3 , b4 + 2b1 = –

g(y1)
y1(ay1 + 1)(y2

1 + c)2 .

Therefore, E1 is a cusp of codimension 2 if f (y1)g(y1) 	= 0, by the results in Perko [19], or
else, E1 is a cusp of codimension at least 3. �

Remark 3.10 In fact, Theorem 3.9(b) includes the following three cases:
(1) If f (y1) 	= 0 and g(y1) = 0, E1 is a cusp point;
(2) If f (y1) = 0 and g(y1) 	= 0, E1 is nilpotent focus/elliptic point;
(3) If f (y1) = g(y1) = 0, E1 is a nilpotent focus.
Unfortunately, due to the complexity of f (y1) and g(y1), we cannot determine which of

these three situations occurs theoretically. But we will show for some parameter values
that f (y1) 	= 0 and g(y1) = 0, i.e. E1 is a cusp point.

In the following, we will give an example to show that Theorem 3.9(b) occurs.
In the first place, fix y1 = 1/5, then we can solve for σ = 1 – –2d+5aΛ

5+2a . By assumptions
ψ1 = 0 and R0 = R∗, solve for parameters d and Λ,

d =
(5 + a)2Λ

–1 + 25c + 10ac
, Λ =

(35 + a(11 + a – 25c))(1 – 5(5 + 2a)c)
(5 + a)3(1 + 25c)

.

Then

f (y1) = –
(1 + 25c)(1 + a2c)

125(5 + a)
< 0

for any a, c > 0. We solve g(y1) = 0 for the parameter c and denote the corresponding solu-
tion with respect to c by cg

±, where

cg
± =

(375 + a(1630 + a(323 + 2a)) ± √
(5 + a)(28,125 + a(236,775 + a(531,415 + a(104,449 + 4a(318 + a))))))

50a(15 + 2a)
.
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Actually, if c = cg
–, we have d = d(a) < 0 for any a > 0. Thus, g(y1) = 0 if and only if c = cg

+ �
cg(a). In addition, with the help of Mathematica, for any 0 < a < 1.86433 or a > 123.449,
one can have all other parameters positive and satisfying d + σ < 1.

For example, take a = 1, then we can get

(a, d, c,Λ,σ ) .= (1, 0.108676, 5.478144, 0.575787, 0.619774)

� (a0, d0, c0,Λ0,σ0),

which satisfies c = cg(a), i.e. Theorem 3.9(b) is in order.

Theorem 3.11 When (a, d, c,Λ,σ ) = (a0, d0, c0,Λ0,σ0), then E1 is a Bogdanov–Takens
point of codimension 3, and system (2.1) localized at E1 is topologically equivalent to

⎧
⎨

⎩

dx
dt = y,
dy
dt = x2 + Gx3y + O(|(x, y)|3),

where G < 0.

Proof First of all, applying a linear transformation T1 : (x, y) → (u, v), defined by u = x – x1,
v = y – y1, we can reduce system (2.1) further to the form

⎧
⎨

⎩

du
dt = p10u + p01v +

∑
2≤i+j≤4 pijuivj + O(|(u, v)|5),

dv
dt = q10u + q01v +

∑
2≤i+j≤4 qijuivj + O(|(u, v)|5),

(3.5)

where

p10 = –d –
y1(ay1 + 1)

y2
4 + c

, p01 = σ –
–y2

1 + 2acy1 + c
(y2

1 + c)2 x1, p11 = –
–y2

1 + 2acy1 + c
(y2

1 + c)2 ,

p02 = –
x1(ac2 – 3acy2

1 – 3cy1 + y3
1)

(c + y2
1)3 , p12 =

–ac2 + 3acy2
1 + 3cy1 – y3

1
(c + y2

1)3 ,

p03 =
x1(4ac2y1 – 4acy3

1 + c2 – 6cy2
1 + y4

1)
(c + y2

1)4 ,

p13 =
v3(4ac2y1 – 4acy3

1 + c2 – 6cy2
1 + y4

1)
(c + y2

1)4 ,

p04 =
x1(ac3 – 10ac2y2

1 + 5acy4
1 – 5c2y1 + 10cy3

1 – y5
1)

(c + y2
1)5 ,

q10 =
y1(ay1 + 1)

y2
4 + c

, q01 = –1 +
–y2

1 + 2acy1 + c
(y2

1 + c)2 x1, q11 =
2acy1 + c – y2

1
(c + y2

1)2 ,

q02 =
x1(ac2 – 3acy2

1 – 3cy1 + y3
1)

(c + y2
1)3 , q12 =

(ac2 – 3acy2
1 – 3cy1 + y3

1)
(c + y2

1)3 ,

q03 =
x1(4ac2y1 – 4acy3

1 + c2 – 6cy2
1 + y4

1)
(c + y2

1)4 ,

q13 =
(–4ac2y1 + 4acy3

1 – c2 + 6cy2
1 – y4

1)
(c + y2

1)4 ,
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q04 =
x1(ac3 – 10ac2y2

1 + 5acy4
1 – 5c2y1 + 10cy3

1 – y5
1)

(c + y2
1)5 ,

p20 = p21 = p22 = p30 = p31 = p40 = q20 = q21 = q22 = q30 = q31 = q40 = 0.

Another transformation T2 : (u, v) → (x, y), defined by x = v, y = q10u – p10v, reduces
system (3.5) to

⎧
⎨

⎩

dx
dt = y +

∑
2≤i+j≤4 aijxiyj + O(|(x, y)|5),

dy
dt =

∑
2≤i+j≤4 bijxiyj + O(|(x, y)|5),

where

a11 =
q11

q10
, a20 = q02 +

p10q11

q10
, a21 =

q12

q10
, a30 =

q03q10 + p10q12

q10
,

a40 = q04, b11 = p11 –
p10q11

q10
, b20 = p10p11 – p10q02 + p02q10 –

p2
10q11

q10
,

b21 = p12 –
p10q12

q10
, b30 = p10(p12 – q03) + p03q10 –

p2
10q12

q10
,

b40 = –p10q04 + p04q10,

and the other coefficients are equal to zero.
Then using the near-identity transformation T3 : (x, y) → (u, v), defined by u = x+ 1

2 (a11 +
b02)x2 – a02xy, v = y + a20x2 – b20xy, and parameters (a0, d0, c0,Λ0,σ0) make b11 + 2a20 = 0,
so we obtain

⎧
⎨

⎩

du
dt = v +

∑
3≤i+j≤4 dijuivj + O(|(u, v)|5),

dv
dt = b20u2 +

∑
3≤i+j≤4 eijxiyj + O(|(u, v)|5),

(3.6)

where

d30 = a30 + a20(a11 + b02) – a02b20, d21 = –a02(a20 – b11) + a21 + a11(a11 + b02),

d12 = 2a12, d13 = a13 + a03(a11 + 4b02) – a02(3a02b02 + b03), d03 = –a2
02 + a03,

d40 = a40 – (a11 + b02)
(

a11a20 +
1
2

a30 –
3
2

a02b20

)

–
3
2

a20(a11 + b02)2

– a20a21 – a02b30,

d31 = a31 – a3
11 + a02

(
2a30 + 3a20b02 + a11(4a20 + b11) – b21 – 3a02b20

)

+ b02
(
a21 – a2

11
)

– 2a12a20,

d22 = a22 – 3a03a20 +
1
2

a12(a11 + 5b02) + a2
02(a20 – 2b11)

+ a02
(
a21 + 2a11(a11 + b02) – b12

)
,

d04 = –a02a03 + a04, e30 = b30 – a20b11 – (a11 + 2b02)b20,

e21 = a11a20 –
1
2

(a11 + b02)b11 + 2a02b20 + b21,
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e12 = –b02(a11 + b02) + a02(4a20 + b11) + b12,

e03 = a02a20 + b03, e04 = b04 + a03a20,

e40 = a20
(
2(a30 – a11a20 – a02b20) – a20b02 – b21

)

+
3
2

(a11 + b02)(a20b11 + b02b20 – b30) +
5
4

(a11 + b02)2b20 – b02b30 + b40,

e31 = a20
(
2a21 – 2b12 + 3b2

02
)

– b02(a30 + b21) +
b2

02b11

2
+

1
2

a2
11(–2a20 + b11)

+ a11
(
b02(3a20 + b11) – 4a02b20 – b21

)

– a02
(
a20(6a20 + 4b11) + 5b02b20 – 3b30

)
+ b31,

e22 =
1
2
(
a20(4a12 – 6b03) +

(
a2

11 – 2a21 + 14a02a20 + b12 – 3b2
02

)
b02

+ (6a02b20 + 4b21 – b02b11)a02 + 2b22 – a11
(
2b2

02 + 3a02b11 + b12
))

,

e13 = 2a03a20 – a12b02 + 2b02b03 + a2
02(4a20 + b11) + a02

(
–b02(a11 + 4b02) + b12

)
+ b13.

We perform a near-identity smooth change of coordinates,

x = u –
(

1
3

d21 +
1
6

e12

)

u3 –
(

1
2

d12 +
1
2

e03

)

u2v,

y = v + d30u3 + d03v3 –
1
2

e12u2v – e03uv2.

Then system (3.6) becomes

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = y + d40x4 + d04y4 + g31x3y + d13xy3 + d22x2y2 + O(|(x, y)|5),
dy
dt = b20x2 + e30x3 + f40x4 + y(f21x2 + f31x3) + f13xy3 + e04y4

+ f22x2y2 + O(|(x, y)|5),

(3.7)

where

g31 =
(

d31 –
e11

2
(d12 + e03)

)

, f21 = 3d30 + e21, f40 =
1
6
(
b20(4d21 – e12) + 6e40

)
,

f31 = b20d12 – b20e03 + e31, f13 = e13, f22 = 3b20d03 + e22.

In order to kill the non-resonant cubic terms of system (3.7), we let

u = x +
1

12
(d04 + d13 + e04 + f13 – f22 – 3g31)x4 + d04y4

+
1
6

(–2d22 + d04 + d13 + e04 + f13)x3y,

v = y + d40x4 +
1
3

(d04 + d13 + e04 + f13 – f22)x3y

+ (d04 + d13)xy3 –
1
2

(d04 + d13 + e04 + f13)x2y2,
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system (3.7) becomes

⎧
⎨

⎩

du
dt = v + O(|(u, v)|5),
dv
dt = b20u2 + e30u3 + f40u4 + (f21u2 + (4d40 + f31)u3)v + O(|(u, v)|5).

(3.8)

Finally, we set x = b20u, y = b20(v + O(|(u, v)|5)), system (3.8) becomes

⎧
⎨

⎩

dx
dt = y,
dy
dt = x2 + e30

b2
20

x3 + f40
b3

20
x4 + y( f21

b2
20

x2 + 4d40+f31
b3

20
x3) + O(|(x, y)|5).

According to Lemma 3.8 the above system is equivalent to the system

⎧
⎨

⎩

dx
dt = y,
dy
dt = x2 + Gx3y + O(|(x, y)|3),

where G = b20(4d40+f31)–e30f21
b4

20
. Computing the coefficients b20, d40, f31, e30, f21 with the

condition (a, d, c,Λ,σ ) = (a0, d0, c0,Λ0,σ0) and straightforward calculation lead to G =
–1.061119 × 106 < 0. Thus, E1 is a cusp type of Bogdanov–Takens singularity with codi-
mension 3. �

Remark 3.12 The authors in [13, 18] proved their epidemic model with saturated inci-
dence rate undergoes a Bogdanov–Takens bifurcation of codimension 2. When we con-
sider the incidence of a combination of the saturated incidence rate and a non-monotonic
incidence, the codimension of Bogdanov–Takens bifurcation can grow up to 3.

Remark 3.13 Xiao and Ruan (see [11]) showed that either the number of infective individ-
uals tends to zero as time evolves or the disease persists. The authors in [13, 18] proved
that their epidemic model with saturated incidence rate undergoes a Bogdanov–Takens
bifurcation of codimension 2. When we consider the incidence of a combination of the
saturated incidence rate and a non-monotonic incidence, the codimension of Bogdanov–
Takens bifurcation can grow up to 3.

4 Conclusions
In this paper, by combining qualitative and bifurcation analyses we study an SIS epidemic
model with the incidence rate aI2

c+I2 + bI
c+I2 , which is a combination of the saturated inci-

dence rate studied in [13, 18], describing the inhibition effect from the behavioral change
and the non-monotonic incidence studied by Ruan in [11], interpreting the “psychologi-
cal” effect. In Sect. 2, we give a full-scale analysis for the types and stability of the equilibria
Ei (i = 0, 1, 2, 3, 4, 5). We prove that for system (2.1) there can occur backward bifurcation
and the backward bifurcation will disappear if a = 0. At equilibrium Ei (i = 3, 5), a de-
generate Hopf bifurcation arises under certain conditions. When the critical condition Ψi

(i = 3, 5) satisfied, we calculate the Liapunov value of the weak focus and obtain the max-
imal multiplicity of the weak focus is two, indicating that there exist at most two limit
cycles around Ei (i = 3, 5). In Fig. 6 and Fig. 8, we give the phase portraits corresponding
to equilibrium E3 and E5 exhibiting a unique limit cycle and adding a new limit cycle after
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a small perturbation of the parameters Λ and c. In Sect. 3.3, we proved that the model ex-
hibits Bogdanov–Takens bifurcation of codimension 2 and codimension 3, under certain
conditions. If the parameter a = 0, the model can just have a Bogdanov–Takens bifurcation
of codimension 2, shown in [13].

In reality, we show that the model exhibits multi-stable states. This interesting phe-
nomenon indicates that the initial states of an epidemic can determine the final states
of an epidemic to go extinct or not. Moreover, the periodical oscillations signify that the
trend of the disease may be affected by the behavior of the susceptible and the effect of
psychology of the disease.
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