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Abstract
The dynamical behavior of the predator–prey system is influenced effectively due to
the mutual interaction of parasites. Regulations are imposed on biodiversity due to
such type of interaction. With implementation of nonlinear saturated incidence rate
and piecewise constant argument method of differential equations, a
three-dimensional discrete-time model of prey–predator–parasite type is studied. The
existence of equilibria and the local asymptotic stability of these steady states are
investigated. Moreover, explicit criteria for a Neimark–Sacker bifurcation and a
period-doubling bifurcation are implemented at positive equilibrium point of the
discrete-time model. Chaos control is discussed through implementation of a hybrid
control technique based on both parameter perturbation and a state feedback
strategy. At the end, some numerical simulations are provided to illustrate our
theoretical discussion.

Keywords: Eco–epidemiological model; Local stability; Hopf bifurcation; Flip
bifurcation; Chaos control

1 Introduction
Trophic interactions, keystone species, food webs, competition and biodiversity are
greatly affected due to interaction of parasites and consequently the community structure
can be reverted. Furthermore, qualitative analysis of prey and predator interaction is a dis-
tinguished field for investigation in mathematical ecology. On the other hand, presence
of some kind of disease in prey–predator interaction is a prominent topic for investiga-
tion, and this is a comparatively new subject in the field of eco-epidemiology. In order
to observe the spread of some sort of disease, both aspects for ecology and epidemiol-
ogy are included in such a field of study. It is important to point out some earlier studies
in the area related to mathematical ecology and epidemiology. For this purpose, Hadeler
and Freedman [1] studied a prey–predator system in which both types of species (prey
and predator) were subjected to parasitism. Freedman [2] investigated a prey–predator
model in which the predator population is always treated as primary host whereas the
prey population density may be either a secondary host or a primary host for the para-
site interaction. Beltrami and Carroll [3] studied a simple mathematical system of trophic
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type in which a mortality of virus–induced type is included, and the actual bloom patterns
for several species are also presented. Venturino [4] investigated prey–predator systems
subjected to some sort of disease in prey density. Moreover, Chattopadhyay and Arino [5]
examined a three species eco-epidemiological model, that is, the predator population, the
infected prey, and the sound prey. Keeping in view the interaction of three species for an
eco-epidemiological model consisting of predator density, infected prey and sound prey,
a mathematical model was investigated by Chattopadhyay et al. [6]. Furthermore, a Hopf
bifurcation was also studied at its positive steady state.

Next, keeping in view an eco-epidemiological model of pelicans at risk in the Salton Sea
studied by Chattopadhyay et al. [7], we consider the following predator–prey–parasite
model:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = sx(1 – x+y

k ) – αxy,
dy
dt = αxy – βyz

y+δ
– μy,

dz
dt = βγ yz

y+δ
– ηz,

(1.1)

where x(t), y(t), and z(t) denote densities of susceptible Tilapia fish population, infected
Tilapia fish population and predator population known as Pelican birds, respectively.
Moreover, x and y are the state variables to represent the susceptible prey population den-
sity and infected prey population density, respectively, at time t, and z represents predator
population density at time t. Furthermore, it is supposed that the population for prey obeys
the logistic growth function where s is taken as the growth rate and k represents the car-
rying capacity. Moreover, α denotes the coefficient for disease transmission, μ represents
the death rate of the infected Tilapia fish population, δ is a constant for half-saturation
rate, β is the capturing capacity of predators, γ is used for the conversion efficiency of
predator, and η represents the food-dependent death rate related to the predator popu-
lation. For more investigations and modifications related to system (1.1) we refer to [8–
12]. All these modifications and discussions are implemented to continuous counterparts
of system (1.1). Hence it is worthwhile to discuss discrete counterparts of system (1.1)
in which populations are treated as generations of non-overlapping type. Furthermore,
there are a lot of mathematical investigations related to flip bifurcation, Hopf bifurcation
and controlling chaos in planar discrete-time models and a little work is performed for
controlling chaos and bifurcation analysis for discrete-time systems of three or more di-
mensions. Hence, it is worthwhile to discuss the bifurcation analysis and controlling chaos
in the case of a three-dimensional discrete-time systems.

By replacing the bilinear incidence rate in the saturated incidence rate of nonlinear type
the following modification is proposed for the system (1.1):

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = sx(1 – x+y

k ) – αxy
1+cy ,

dy
dt = αxy

1+cy – βyz
y+δ

– μy,
dz
dt = βγ yz

y+δ
– ηz,

(1.2)

where c denotes the contact rate constant for the crowding effect. Moreover, system (1.2)
shows that other fish cannot be caught by Pelicans birds, besides Tilapia. This fact is com-
patible with natural phenomena because in the literature there are several experimental
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studies in favor of this argument. Moreover, since system (1.2) is a modification of an eco-
epidemiological model of Pelicans at risk in the Salton Sea by Chattopadhyay et al. [7], and
it is pointed out in [13] that very few fish species can endure living in the Salton Sea due
to the high salinity. Due to the presence of highly salty and polluted water, only Tilapia
fish have survival tendency in Salton Sea. Consequently, other species of freshwater fish
cannot survive in salty water.

According to survey reports published by US Geological Survey National Wildlife
Health Center from 1978 to 2003 many white pelicans were to die out due to type C bo-
tulism [14]. In 1996, over 8500 white pelicans had died at Salton Sea in California due to
infection of type C botulism. The major cause of that disaster were Tilapia fish which are
a key source for C botulism toxins produced in white pelican birds. In addition, the study
has indicated that bacterial infections take part in lowering oxygen levels in the tissues of
affected fish. Due to lack of oxygen, the fish find oxygen from the ocean surface and this
leads to an appropriate environment to produce botulism in the tissues of the infected fish.
When pelicans attack on these defenseless fish, the botulism toxins is ingested by pelican
birds and as a result avian botulism is produced in their bodies [15].

Moreover, in system (1.2), it is assumed that pelican birds only prey infected Tilapia, but
do not capture the healthy Tilapia because the infected fish are feeble and become easier
to prey. On the other hand, there is a significant number of infected Tilapia fish present
in the Salton Sea and due to their struggle against death these are more unprotected and
attractive to the Pelican birds [7]. Meanwhile, healthy Tilapia easily escape and predation
becomes difficult.

For qualitative analysis, including local stability, bifurcations analysis and chaos control
for a discrete counterpart of system (1.2), a piecewise constant argument is implemented
to obtain the following exponential form of nonlinear difference equations:

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = xn exp(s(1 – xn+yn
k ) – αyn

1+cyn
),

yn+1 = yn exp( αxn
1+cyn

– βzn
yn+δ

– μ),

zn+1 = zn exp( βγ yn
yn+δ

– η).

(1.3)

Moreover, the remaining discussion for this paper is organized as follows. In Sect. 2, we
explore the existence of equilibria and conditions for their local asymptotic stability. In
Sect. 3, an explicit criterion for Hopf bifurcation is implemented at positive steady state of
system (1.3). Section 4 is dedicated to an implementation of an explicit criterion for flip bi-
furcation at a positive equilibrium of system (1.3). In Sect. 5, a chaos control strategy based
on parameter perturbation and a state feedback control methodology is implemented to
system (1.3). Finally, some suitable numerical simulations are presented in Sect. 6 for ver-
ification of our theoretical discussion.

2 Existence of equilibria and stability
We investigate steady states and criteria for local asymptotic stability of these equilibria.
For this purpose, we suppose that μ < kα, then we obtain the following trivial and bound-
ary steady states for model (1.3):

E0 = (0, 0, 0), E1 = (k, 0, 0), E2 =
(
u∗, v∗, 0

)
,
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where

u∗ :=
μ(s + cks – kα) + μ

√
(s + cks)2 + k2α2 + 2ks(α – ckα + 2cμ)

2s(α + cμ)

and

v∗ :=
α(cks – s – kα) – 2csμ + α

√
(s + cks)2 + k2α2 + 2ks(α – ckα + 2cμ)

2cs(α + cμ)
.

Furthermore, there exists a unique positive steady state for system (1.3) if the following
conditions are satisfied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sδη(η – βγ – cδη) + k(βγ – η)(sβγ – η(s – csδ + αδ)) > 0,

βγ > η,

kα(βγ – η)(sβγ – η(s – csδ + αδ))

> s(βγ + η(cδ – 1))(αδη + μ(βγ – η + cδη)).

(2.1)

Assume that (2.1) holds true, then positive steady state for model (1.3) is written as E∗ =
(x∗, y∗, z∗), where

x∗ :=
sδη(η – βγ – cδη) + k(βγ – η)(sβγ – η(s – csδ + αδ))

s(βγ – η)(βγ + η(cδ – 1))
, y∗ :=

ηδ

βγ – η
,

and

z∗ :=
(
γ δ

(
kα(βγ – η)

(
sβγ – η(s – csδ + αδ)

)

– s
(
βγ + η(cδ – 1)

)(
αδη + μ(βγ – η + cδη)

)))

/
(
s(βγ – η)

(
βγ + η(cδ – 1)

)2).

Keeping in view the local asymptotic stability for three-dimensional systems of discrete
type, the following lemma is presented.

Lemma 2.1 ([16]) We consider a cubic polynomial equation of the following type:

λ3 + α2λ
2 + α1λ + α0 = 0, (2.2)

where α2, α1 and α0 represent real constants. Furthermore, all roots for the polynomial
Eq. (2.2) lie within the open unit disk if and only if the following conditions are satisfied:

|α2 + α0| < 1 + α1, |α2 – 3α0| < 3 – α1, and α2
0 + α1 – α0α2 < 1.

Furthermore, the Jacobian matrix J(1.3)(E0) for system (1.3) evaluated at the trivial equi-
librium E0 is given by

J(1.3)(E0) =

⎡

⎢
⎣

exp(s) 0 0
0 exp(–μ) 0
0 0 exp(–η)

⎤

⎥
⎦ .
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Then it follows from J(1.3)(E0) that E0 is an unstable steady state for system (1.3). Moreover,
the variational matrices computed about E1 and E2 are given by

J(1.3)(E1) =

⎡

⎢
⎣

1 – s –αk – s 0
0 ekα–μ 0
0 0 e–η

⎤

⎥
⎦

and

J(1.3)(E2) =

⎡

⎢
⎢
⎣

1 – su∗
k

u∗(s+kα+csv∗(2+cv∗))
k(1+cv∗)2 0

αv∗
1+cv∗

1+cv∗(2–αu∗+cv∗)
(1+cv∗)2 – βv∗

δ+v∗

0 0 e
βγ v∗
δ+v∗ –η

⎤

⎥
⎥
⎦ .

Furthermore, the characteristic polynomial equation for J(1.3)(E2) is calculated as follows:

P1(λ) = λ3 + β2λ
2 + β1λ + β0 = 0, (2.3)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2 = –1 – e–η+ βγ v∗
δ+v∗ + su∗

k – 1
(1+cv∗)2 – 2cv∗

(1+cv∗)2 + cαu∗v∗
(1+cv∗)2 – c2(v∗)2

(1+cv∗)2 ,

β1 = e–η+ βγ v∗
δ+v∗ – e–η+ βγ v∗

δ+v∗ su∗
k + sαu∗v∗

k(1+cv∗)3 + α2u∗v∗
(1+cv∗)3 + 2csαu∗(v∗)2

k(1+cv∗)3

+ c2sαu∗(v∗)3

k(1+cv∗)3 + 1
(1+cv∗)2 + e–η+ βγ v∗

δ+v∗
(1+cv∗)2 – su∗

k(1+cv∗)2 + 2cv∗
(1+cv∗)2

+ 2ce–η+ βγ v∗
δ+v∗ v∗

(1+cv∗)2 – 2csu∗v∗
k(1+cv∗)2 – cαu∗v∗

(1+cv∗)2 – ce–η+ βγ v∗
δ+v∗ αu∗v∗

(1+cv∗)2 + csα(u∗)2v∗
k(1+cv∗)2

+ c2(v∗)2

(1+cv∗)2 + c2e–η+ βγ v∗
δ+v∗ (v∗)2

(1+cv∗)2 – c2su∗(v∗)2

k(1+cv∗)2 ,

β0 = – e–η+ βγ v∗
δ+v∗ sαu∗v∗

k(1+cv∗)3 – e–η+ βγ v∗
δ+v∗ α2u∗v∗

(1+cv∗)3 – 2ce–η+ βγ v∗
δ+v∗ sαu∗(v∗)2

k(1+cv∗)3 – e–η+ βγ v∗
δ+v∗

(1+cv∗)2

– c2e–η+ βγ v∗
δ+v∗ sαu∗(v∗)3

k(1+cv∗)3 + e–η+ βγ v∗
δ+v∗ su∗

k(1+cv∗)2 – 2ce–η+ βγ v∗
δ+v∗ v∗

(1+cv∗)2 + 2ce–η+ βγ v∗
δ+v∗ su∗v∗

k(1+cv∗)2

+ ce–η+ βγ v∗
δ+v∗ αu∗v∗

(1+cv∗)2 – ce–η+ βγ v∗
δ+v∗ sα(u∗)2v∗
k(1+cv∗)2 – c2e–η+ βγ v∗

δ+v∗ (v∗)2

(1+cv∗)2 + c2e–η+ βγ v∗
δ+v∗ su∗(v∗)2

k(1+cv∗)2 .

(2.4)

Furthermore, the local asymptotic behavior for steady states E1 and E2 of the system (1.3)
is given in the following lemma.

Lemma 2.2
(i) Equilibrium point E1 for model (1.3) is a sink and locally asymptotically stable if and

only if the following conditions are satisfied:

s < 2, kα < μ.

(ii) Suppose that μ < kα, then the equilibrium point E2 for model (1.3) is a sink and
locally asymptotically stable if and only if the following conditions are satisfied:

|β2 + β0| < 1 + β1, |β2 – 3β0| < 3 – β1, and β2
0 + β1 – β0β2 < 1,

where β2, β1 and β0 are written in (2.4).
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Furthermore, the Jacobian matrix denoted by J(1.3)(E∗) for system (1.3) evaluated about
the equilibrium point E∗ is calculated as follows:

J(1.3)(E∗) =

⎛

⎜
⎝

1 – sx∗
k a12 0

αδη

βγ –η+cδη 1 + a22 – η

γ

0 a32 1

⎞

⎟
⎠ ,

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a12 = –x∗( s
k + α

(1+cy∗)2 ),

a22 = βy∗z∗
(δ+y∗)2 – cαx∗y∗

(1+cy∗)2 ,

a32 = βγ δz∗
(δ+y∗)2 .

(2.5)

Next, the characteristic polynomial equation for J(1.3)(E∗) is given by

P1(λ) = λ3 + γ2λ
2 + γ1λ + γ0 = 0, (2.6)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2 = –3 + sx∗
k + cαx∗y∗

(1+cy∗)2 – βy∗z∗
(δ+y∗)2 ,

γ1 = 3 – 2sx∗
k + sαδηx∗

k(βγ –η+cδη)(1+cy∗)2 + α2δηx∗
(βγ –η+cδη)(1+cy∗)2

– 2cαx∗y∗
(1+cy∗)2 + 2csαδηx∗y∗

k(βγ –η+cδη)(1+cy∗)2 + csα(x∗)2y∗
k(1+cy∗)2

+ c2sαδηx∗(y∗)2

k(βγ –η+cδη)(1+cy∗)2 + βδηz∗
(δ+y∗)2 + 2βy∗z∗

(δ+y∗)2 – sβx∗y∗z∗
k(δ+y∗)2 ,

γ0 = –1 + sx∗
k – sαδηx∗

k(βγ –η+cδη)(1+cy∗)2 – α2δηx∗
(βγ –η+cδη)(1+cy∗)2

+ cαx∗y∗
(1+cy∗)2 – 2csαδηx∗y∗

k(βγ –η+cδη)(1+cy∗)2 – csα(x∗)2y∗
k(1+cy∗)2

– c2sαδηx∗(y∗)2

k(βγ –η+cδη)(1+cy∗)2 – βδηz∗
(δ+y∗)2 + sβδηx∗z∗

k(δ+y∗)2 – βy∗z∗
(δ+y∗)2 + sβx∗y∗z∗

k(δ+y∗)2 .

(2.7)

One can implement Lemma 2.1 to investigate the stability conditions for E∗ as follows.

Lemma 2.3 Suppose that the conditions given in (2.1) are satisfied, then the steady state
E∗ for model (1.3) is a sink and it is locally asymptotically stable if and only if the following
inequalities are satisfied:

|γ2 + γ0| < 1 + γ1, |γ2 – 3γ0| < 3 – γ1, and γ 2
0 + γ1 – γ0γ2 < 1,

where γ2, γ1 and γ0 are written in (2.7).

3 Hopf bifurcation analysis
Here we investigate the parametric conditions for which the positive steady state for
discrete-time system (1.3) undergoes a Neimark–Sacker (Hopf) bifurcation. For such an
investigation an explicit criterion of Hopf bifurcation is used without computing the eigen-
values for the variational matrix of system under consideration (see also [17, 18]). For this
purpose, an explicit criterion for Hopf bifurcation is given below.
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Lemma 3.1 ([19]) An n-dimensional system of discrete type is considered as follows:

Zk+1 = Fξ (Zk),

where ξ ∈ R is used for bifurcation parameter. Furthermore, considering characteristic
polynomial of the Jacobian matrix J(Z∗) = (θij)n×n evaluated at fixed point Z∗ ∈ R

n for
Fξ as follows:

Pξ (λ) = λn + τ1λ
n–1 + · · · + τn–1λ + τn, (3.1)

where τi = τi(ξ , u), i = 1, 2, . . . , n, and u is referred to as the controlling parameter, or it may
be some other parameter which is to be determined. Next, we take into account a sequence
of the form (D±

i (ξ , u))n
i=0 of determinants such that D±

0 (ξ , u) = 1, and it is defined as follows:

D
±
i (ξ , u) = det(T1 ± T2), (3.2)

where

T1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 τ1 τ2 · · · τi–1

0 1 τ1 · · · τi–2

0 0 1 · · · τi–3

· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

τn–i+1 τn–i+2 · · · τn–1 τn

τn–i+2 τn–i+3 · · · τn 0
· · · · · · · · · · · · · · ·
τn–1 τn · · · 0 0
τn 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.3)

Furthermore, the following conditions are satisfied:
(C1) We assume that D

–
n–1(ξ0, u) = 0, D

+
n–1(ξ0, u) > 0, Pξ0 (1) > 0, (–1)nPξ0 (–1) > 0,

D
±
i (ξ0, u) > 0, for i = n – 3, n – 5, . . . , 2 (or 1), when n is odd (or even), this is known

as the eigenvalue criterion.
(C2) Next, we suppose that ( d

dξ
(D–

n–1(ξ , u)))ξ=ξ0 �= 0, and this is known as the transversal-
ity criterion for the Hopf bifurcation.

(C3) Finally, we consider that cos( 2π
l ) �= ϕ, or the resonance condition cos( 2π

l ) = ϕ, where
l = 3, 4, 5, . . . , and ϕ = 1 – 0.5Pξ0 (1)D–

n–3(ξ0, u)/D+
n–2(ξ0, u), which is called the non-

resonance, or resonance criterion, then Hopf bifurcation takes place for the critical
value ξ0.

If we take n = 3, then the following lemma provides us with the parametric conditions
for which model (1.3) undergoes a Hopf bifurcation whenever s is chosen as bifurcation
parameter.

Lemma 3.2 The equilibrium point E∗ for model (1.3) undergoes a Hopf bifurcation at crit-
ical parametric value s = s0 if the following conditions are satisfied:

1 – γ1 + γ0(γ2 – γ0) = 0, 1 + γ1 – γ0(γ2 + γ0) > 0,
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1 + γ2 + γ1 + γ0 > 0, 1 – γ2 + γ1 – γ0 > 0,

d
ds

(
1 – γ1 + γ0(γ2 – γ0)

)

s=s0
�= 0,

and

cos

(
2π

l

)

�= 1 –
1 + γ2 + γ1 + γ0

2(1 + γ0)
, l = 3, 4, 5, . . . ,

where γ2, γ1, and γ0 are listed in (2.7), and s0 denotes a possible real root for 1 – γ1(s) +
γ0(s)(γ2(s) – γ0(s)) = 0.

Proof By choosing n = 3 and selecting s as bifurcation parameter, it follows from
Lemma 3.1 and Eq. (2.6) that

D
–
2 (s) = 1 – γ1 + γ0(γ2 – γ0) = 0, D

+
2 (s) = 1 + γ1 – γ0(γ2 + γ0) > 0,

Ps(1) = 1 + γ2 + γ1 + γ0 > 0, (–1)3Ps(–1) = 1 – γ2 + γ1 – γ0 > 0,
(

d
ds

(
D

–
2 (s)

)
)

s=s0

=
d
ds

(
1 – γ1 + γ0(γ2 – γ0)

)

s=s0
�= 0,

and

1 – 0.5Ps(1)D–
0 (s)/D+

1 (s) = 1 –
1 + γ2 + γ1 + γ0

2(1 + γ0)
. �

4 Flip bifurcation analysis
Now we investigate the parametric conditions for which a unique positive steady state
for discrete-time system (1.3) encounters a period-doubling (flip) bifurcation. For such an
investigation, we use an explicit criterion of the period-doubling (flip) bifurcation without
computing the eigenvalues for the Jacobian matrix of a given model. For this purpose, we
need the following result.

Lemma 4.1 ([20]) An n-dimensional system of discrete type is considered as follows: Zk+1 =
Fξ (Zk) with similar conditions (3.1), (3.2) and (3.3) to those stated in Lemma 3.1. Next, it
is assumed that the following criteria are satisfied:

(H1) Pξ0 (–1) = 0, D±
n–1(ξ0, u) > 0, Pξ0 (1) > 0, D±

i (ξ0, u) > 0, i = n – 2, n – 4, . . . , 1 (or 2),
when n is even (or odd, respectively), and this is known as the eigenvalue criterion
for flip bifurcation.

(H2)
∑n

i=1(–1)n–iτ ′
i∑n

i=1(–1)n–i(n–i+1)τi–1
�= 0, where τ ′

i denotes derivative of τ (ξ ) at ξ = ξ0, and this is called
the transversality criterion, then a flip bifurcation occurs for the critical value ξ0.

Furthermore, if we take n = 3 in Lemma 4.1, then we obtain the following result for
model (1.3) providing conditions for a flip bifurcation when s is chosen as the bifurcation
parameter.

Lemma 4.2 The equilibrium E∗ for model (1.3) undergoes a flip bifurcation at critical
value s = s0 if the following conditions are satisfied:

1 – γ1 + γ0(γ2 – γ0) > 0, 1 + γ1 – γ0(γ2 + γ0) > 0,
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1 + γ2 + γ1 + γ0 > 0, 1 – γ2 + γ1 – γ0 = 0, 1 ± γ0 > 0,

and

γ2′ – γ ′
1 + γ ′

0
3 – 2γ2 + γ1

�= 0,

where γ2, γ1, and γ0 are written in (2.7), γ ′
i is derivative of γ (s) at the critical value s = s0,

and s0 represents a possible real root for 1 – γ2(s) + γ1(s) – γ0(s) = 0.

5 Chaos control
Next, we investigate a chaos control technique for the discrete-time model (1.3). Keeping
in view the simplicity, a hybrid control methodology is chosen which was firstly proposed
by Luo et al. [21]. The hybrid chaos control method consists of a single control param-
eter which lies inside the open unit interval. Furthermore, the implementation for such
a hybrid control strategy is comparatively simple one and it is based on both parameter
perturbation and state feedback control strategy. It is worthwhile to mention some other
investigations for controlling chaos in discrete-time systems and the interested reader is
referred to [22–31].

One can apply a hybrid control method to obtain a corresponding control model of the
following type:

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = Bxn exp(s(1 – xn+yn
k ) – αyn

c+yn
) + (1 – B)xn,

yn+1 = Byn exp( αxn
c+yn

– βzn
yn+δ

– μ) + (1 – B)yn,

zn+1 = Bzn exp( βγ yn
yn+δ

– η) + (1 – B)zn,

(5.1)

where 0 < B < 1 is used for the controlling parameter. Moreover, the variational matrix for
model (5.1) evaluated at its positive steady state (x∗, y∗, z∗) is calculated as follows:

⎛

⎜
⎝

1 – Bsx∗
k Ba12 0

Bαδη

βγ –η+cδη 1 + Ba22 – Bη

γ

0 Ba32 1

⎞

⎟
⎠ ,

where a12, a22 and a32 are listed in (2.5). Then the characteristic polynomial equation for
the aforementioned variational matrix of controlled model (5.1) is calculated as follows:

P3(λ) = λ3 + δ2λ
2 + δ1λ + δ0 = 0, (5.2)

where

⎧
⎪⎪⎨

⎪⎪⎩

δ2 = –3 – Ba22 + Bsx∗
k ,

δ1 = 3 – B2αδηa12
βγ –η+cδη + 2Ba22 + B2ηa32

γ
– 2Bsx∗

k – B2sa22x∗
k ,

δ0 = –1 + B2αδηa12
βγ –η+cδη – Ba22 – B2ηa32

γ
+ Bsx∗

k + B2sa22x∗
k + B3sηa32x∗

kγ
.

(5.3)

Then it is obvious that the equilibrium point for model (5.1) is a sink as long as the regula-
tor poles are of modulus less than 1. Such parametric conditions are stated in the following
lemma.
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Lemma 5.1 The equilibrium E∗ for model (5.1) is a sink and locally asymptotically stable
if and only if the following inequalities are satisfied:

|δ2 + δ0| < 1 + δ1, |δ2 – 3δ0| < 3 – δ1, and δ2
0 + δ1 – δ0δ2 < 1.

6 Numerical simulation and discussion
Example 6.1 First of all, we select the parametric values as follows: α = 0.5, k = 6.2, β = 0.9,
δ = 0.85, μ = 0.5, γ = 1.5, η = 0.1, c = 8.5 and s ∈ [1.8, 2.8]. Moreover, the initial values
are taken as (x0, y0, z0) = (6.06, 0.068, 1.45), then it is observed that system (1.3) undergoes
period-doubling (flip) bifurcation as we choose s = 2.09247. Furthermore, it is easy to see
that, for the selected parametric values α = 0.5, k = 6.2, β = 0.9, δ = 0.85, μ = 0.5, γ =
1.5, η = 0.1, c = 8.5 and s = 2.09247, one can easily calculate the characteristic polynomial
equation for model (1.3):

λ3 – 0.35314λ2 – 0.865105λ + 0.488035 = 0. (6.1)

Furthermore, the roots for Eq. (6.1) are calculated as λ1,2 = 0.67657 ± 0.174034i, and
λ3 = –1, so that we have | λ1,2 |= 0.698595. Consequently, the eigenvalues condition flip
bifurcation is justified. Obviously, all conditions in Lemma 4.2 are listed and justified:

1 – γ1 + γ0(γ2 – γ0) = 1.45458 > 0,

1 + γ1 – γ0(γ2 + γ0) = 0.0690615 > 0,

1 + γ2 + γ1 + γ0 = 0.26979 > 0, 1 – γ2 + γ1 – γ0 = 0,

1 + γ0 = 1.48803 > 0, 1 – γ0 = 0.511965 > 0,

and

γ2′ – γ ′
1 + γ ′

0
3 – 2γ2 + γ1

= 1.00616 �= 0.

Furthermore, diagrams related to bifurcation and maximum Lyapunov exponents
(MLEs) are presented in Fig. 1.

We select parameters α = 0.5, k = 6.2, β = 0.9, δ = 0.85, μ = 0.5, γ = 1.5, η = 0.1, c =
8.5 and s = 2.8 to demonstrate the effectiveness of chaos control strategy given in system
(5.1). For these selected parametric values model (1.3) has a positive steady state given by
(x∗, y∗, z∗) = (6.08429, 0.068, 1.45641). On the other hand, the variational matrix of model
(5.1) at the steady state (x∗, y∗, z∗) = (6.08429, 0.068, 1.45641) is computed as follows:

⎛

⎜
⎝

1 – 2.74774B –3.96945B 0
0.0215463B 1 – 0.600378B –0.0666667B

0 1.98312B 1

⎞

⎟
⎠ .

An application of the Jury condition shows that the steady state for controlled model (5.1)
is a sink if and only if 0 < B < 0.738529, and consequently the length for the stability interval
is given by 0.738529. This shows that the length of the stability interval is comparatively
suitable although the value s = 2.8 is selected from the extreme right end of the chaotic
interval.
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Bifurcation diagram for zn (d) Maximum Lyapunov exponents

Figure 1 Bifurcation diagrams and MLE for system (1.3) with α = 0.5, k = 6.2, β = 0.9, δ = 0.85, μ = 0.5,
γ = 1.5, η = 0.1, c = 8.5, s ∈ [1.8, 2.8] and initial conditions (x0, y0, z0) = (6.06, 0.068, 1.45)

Example 6.2 Next, we choose the parametric and initial values as follows: α = 1.6, k = 1.4,
β = 0.13, δ = 0.4, μ = 0.15, γ = 2.95, η = 0.1, c = 0.5, (x0, y0, z0) = (1.10514, 0.141, 6.2505)
and bifurcation parameter s ∈ [1.8, 2.8]. In this case, it is observed that for these selected
values system (1.3) undergoes a Hopf bifurcation at s = 1.93866, and bifurcation diagrames
are depicted in Fig. 2. Furthermore, if we take values as α = 1.6, k = 1.4, β = 0.13, δ = 0.4,
μ = 0.15, γ = 2.95, η = 0.1, c = 0.5 and s = 1.93866, then the characteristic polynomial
equation for model (1.3) is calculated, thus:

λ3 – 1.75076λ2 + 0.8277λ + 0.0934286 = 0.

Keeping in view the above selected values the roots for the aforementioned characteristic
equation are given by λ1 = –0.0934286, and λ2,3 = 0.922095 ± 0.386964i so that the mod-
ulus for complex conjugate roots is | λ2,3 |= 1. Consequently, the eigenvalues condition for
Hopf bifurcation is justified. On the other hand, all other conditions in Lemma 3.2 are
verified:

D
–
2 (1.93866) = 1 – γ1 + γ0(γ2 – γ0) = 0,

D
+
2 (1.93866) = 1 + γ1 – γ0(γ2 + γ0) = 1.98254 > 0,

P1.93866(1) = 1 + γ2 + γ1 + γ0 = 0.170367 > 0,

(–1)3P1.93866(–1) = 1 – γ2 + γ1 – γ0 = 3.48503 > 0,
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(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Bifurcation diagram for zn (d) Maximum Lyapunov exponents

Figure 2 Bifurcation diagrams and MLE for system (1.3) with α = 1.6, k = 1.4, β = 0.13, δ = 0.4, μ = 0.15,
γ = 2.95, η = 0.1, c = 0.5, (x0, y0, z0) = (1.10514, 0.141, 6.2505) and s ∈ [1.8, 2.8]

(
d
ds

(
D

–
2 (s)

)
)

s=1.93866
=

d
ds

(
1 – γ1 + γ0(γ2 – γ0)

)

s=1.93866 = –0.146935 �= 0,

and

1 – 0.5P1.93866(1)D–
0 (1.93866)/D+

1 (1.93866) = 1 –
1 + γ2 + γ1 + γ0

2(1 + γ0)
= 0.922095.

By considering the equation cos( 2π
l ) = 0.922095, we obtain l = ±15.8133. Therefore, the

condition for non-resonance is also correctly justified. Furthermore, some phase portraits
for various values of s are depicted in Fig. 3. Moreover, in Fig. 3(b) the appearance of closed
invariant circle at s = 1.93866 is clearly observed.

Furthermore, we choose values as α = 1.6, k = 1.4, β = 0.13, δ = 0.4, μ = 0.15, γ =
2.95, η = 0.1, c = 0.5 and s = 2.8 in order to show the effectiveness for hybrid control
method implemented in model (5.1). With these selected values, one can easily obtain
the following variational matrix for model (5.1) computed at its positive steady state
(1.15347, 0.141093, 6.55112):

⎛

⎜
⎝

1 – 2.30694B –3.91727B 0
0.210873B 1 + 0.296809B –0.0338983B

0 3.43239B 1

⎞

⎟
⎠ .
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(a) Phase portrait at s = 1.92 (b) Phase portrait at s = 1.93866

(c) Phase portrait at s = 1.95 (d) Phase portrait at s = 2

(e) Phase portrait at s = 2.1 (f ) Phase portrait at s = 2.8

Figure 3 Phase portraits of system (1.3) with various values of s

An application of the Jury condition shows that the steady state for controlled model (5.1)
is a sink if and only if 0 < B < 0.446796. Consequently, in this case of a Hopf bifurcation,
the length for the stability interval is less than as that of flip bifurcation.

Example 6.3 Finally, in order to select the parametric values in a range observed in an ac-
tual predator–prey system, we choose most of our basic parametric values from the study
of eco-epidemiological models of pelicans at risk in the Salton Sea by Chattopadhyay et al.
[7, 9]. These parametric values are given in Table 1. Keeping in view the tabulated values
in Table 1, we choose c = 1.2 as the crowding effect in the contact rate and s ∈ [1.5, 3] as the
bifurcation parameter. Then the positive equilibrium of system (1.3) undergoes a period-
doubling bifurcation at s = 2.00701. The bifurcation diagrams and MLE are depicted in
Fig. 4.

7 Concluding remarks
In this paper, the qualitative nature of discrete-time system (1.3) is investigated. The
discrete-time system is obtained with implementation of a piecewise constant argument
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Table 1 Estimation for values of the parameters

Parameter Value Source

k 40.0 tonnes [7]
α 0.006 per day [7, 9]
β 14.5 per day [7]
δ 14.0 tonnes [7]
μ 0.0019 per day [7]
γ 0.765517 per day [7]
η 0.09 per day [9]

(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

(c) Maximum Lyapunov exponents

Figure 4 Bifurcation diagrams and MLE for system (1.3) with α = 0.006, k = 40, β = 14.5, δ = 14, μ = 0.0019,
γ = 0.765517, η = 0.09, c = 1.2, (x0, y0, z0) = (39.8735, 0.114441, 0.20291) and s ∈ [1.5, 3]

and bifurcating and chaotic behavior is studied with the help of standard mathematical
techniques. The local behavior for equilibria is investigated by implementing the method
of linearization. Furthermore, explicit criteria for Neimark–Sacker bifurcation and period-
doubling bifurcation are used for the investigation of the bifurcating behavior about pos-
itive equilibrium point. On the other hand, parametric values are also selected in a range
observed in an actual predator–prey system, and in this case there is a brighter chance of
occurrence of period-doubling bifurcation in the discrete-time model. A hybrid control
strategy based on parameter perturbation and state feedback method is used for control-
ling the fluctuating and chaotic behavior of model (1.3). Moreover, it is noticed that the hy-
brid chaos control method can stabilize the chaotic orbits more effectively due to the emer-
gence of a period-doubling (flip) bifurcation as compared to that of a Neimark–Sacker
(Hopf) bifurcation. Furthermore, it is investigated that the parameter c, representing the
crowding effect in the system, is more appropriate for the emergence of period-doubling
(flip) and Neimark–Sacker (Hopf) bifurcations whenever it is varied in some suitable in-
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terval. It is examined that larger values of c may result flip bifurcation, meanwhile smaller
values for c may result from a Neimark–Sacker bifurcation.
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