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Abstract
Consider an anisotropic parabolic equation with a nonlinear convection term
depending on the spatial variable. If the diffusion coefficients are degenerate, in
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1 Introduction
In this paper, the anisotropic parabolic equation

ut =
N∑

i=1

∂

∂xi

(
ai(x)|uxi |pi–2uxi

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT , (1.1)

is considered, where Ω is a bounded domain in R
N with a C2 smooth boundary ∂Ω , pi > 1,

QT = Ω × (0, T), ai(x) ∈ C1(Ω), bi(·, x, t) ∈ C(QT ).
Equation (1.1) arises in the mathematical modeling of various physical processes such

as flows of incompressible turbulent fluids or gases in pipes, and processes of filtration in
glaciology [1–3]. A particular case of Eq. (1.1) is the usual non-Newtonian fluid equation,

ut = div
(|∇u|p–2∇u

)
, (1.2)

which has been researched far and widely, one can refer to [4–6] and the references
therein. In recent years, there are more and more mathematicians interested in the
anisotropic parabolic equations

ut =
N∑

i=1

∂

∂xi

(|uxi |pi–2uxi

)
+ f (x, t,∇u), (x, t) ∈ QT ,

one can refer to [7–14].
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In this paper, we suppose that

ai(x)|x∈Ω > 0, ai(x)|x∈∂Ω = 0, i = 1, 2, . . . , N , (1.3)

then Eq. (1.1) is always degenerate on the boundary. To study the well-posedness of the
solutions of Eq. (1.1), the initial value

u(x, 0) = u0(x), x ∈ Ω , (1.4)

is always indispensable. Moreover, the usual boundary value condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.5)

may be invalid. This is due to the fact that the weak solution of Eq. (1.1) may lack the
enough regularity to be defined the trace on the boundary [15]. Accordingly, one has tried
to study the uniqueness of weak solution only depending on the initial value condition (1.4)
[16, 17]. In fact, for a degenerate parabolic equation, that the boundary value (1.5) may be
overdetermined is well known, one can refer to [18–27]. But how to impose a suitable
boundary value condition instead of (1.5) has been a difficult and interesting unsolved
problem for a long time.

Inspired by [15–27], we may conjecture that the degeneracy of ai(x) on the boundary
may take the place of the usual boundary value condition (1.5). In other words, the stabil-
ity of weak solutions can be proved without the condition (1.5). Comparing with our pre-
vious work [16, 17], not only the anisotropic case is more complicated than the isotropic
case, but also the nonlinear convection term

∑N
i=1

∂bi(u,x,t)
∂xi

adds difficulties. We employ
some special techniques to overcome these difficulties. Moreover, we will introduce a gen-
eral method to study the stability of weak solutions for a parabolic equation without the
boundary value condition.

2 Definitions and main results
We denote

p– = min{p1, p2, . . . , pN–1, pN }, p– > 1,

p+ = max{p1, p2, . . . , pN–1, pN }.

In the first place, we introduce definition of weak solutions.

Definition 2.1 A function u(x, t) is said to be a weak solution of Eq. (1.1) with the initial
value (1.4), if

u ∈ L∞(QT ), ai(x)|uxi |pi ∈ L1(QT ), ut ∈ L2(QT ), (2.1)

and for any function ϕ ∈ C1
0(QT ),

∫∫

QT

utϕ dx dt +
N∑

i=1

∫∫

QT

[
ai(x)|uxi |pi–2uxi · ϕxi + bi(u, x, t) · ϕxi

]
dx dt = 0. (2.2)
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The initial value is satisfied in the following sense:

lim
t→0

∫

Ω

∣∣u(x, t) – u0(x)
∣∣dx = 0. (2.3)

Definition 2.2 The function u(x, t) is said to be the weak solution of Eq. (1.1) with the
initial boundary values (1.4)–(1.5) if u satisfies Definition 2.1, and the boundary value
condition (1.5) is satisfied in the sense of trace.

Theorem 2.3 If p– > 2, ai(x) ∈ C1(Ω) satisfies (1.3), bi(s, x, t) is a C1 function on R× Ω ×
[0, T],

u0 ∈ L∞(Ω), |u0xi | ∈ Lpi (Ω), i = 1, 2, . . . , N , (2.4)

either

∫

Ω

a
– 2

pi–2
i (x) dx < ∞, (2.5)

or

∣∣bis(s, x, t)
∣∣ ≤ ca

1
pi (x), (2.6)

then Eq. (1.1) with initial value (1.4) has a weak solution.

Theorem 2.4 Let p– > 2, for every 1 ≤ i ≤ N , either condition (2.5) be true, or
∫
Ω

a
– 1

pi–1
i (x) dx < ∞ and condition (2.6) be true, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) be a

C1 function on R× Ω × [0, T]. Then the initial boundary value problem (1.1)–(1.4)–(1.5)
has a solution.

If bi ≡ 0, then only if p– > 1 and
∫
Ω

a
– 1

pi–1
i (x) dx < ∞, Theorem 2.3 and Theorem 2.4

are still true. However, if bi ≡ 0 is not valid, when p– > 1, then it is difficult to prove that
ut ∈ L2(QT ). If we do not require ut ∈ L2(QT ), in other words, if we admit ut belonging to
another kind of Banach space, then the conditions (2.5) and (2.6) may not be necessary,
one can refer to our previous work [28]. Moreover, the condition (2.6) (also the condition
(2.9)) reflects that there are some relationships between the diffusion coefficient and the
convection term. At least, one of our motivations on condition (2.6) (also the condition
(2.9)) initially comes from the study of a model of strong degenerate parabolic equation
arising in mathematical finance [29], which has the form

∂u
∂t

=
2∑

i=1

∂

∂xi

(
aij(u)

∂u
∂xj

)
+

2∑

i=1

∂bi(u)
∂xi

, in QT = Ω × (0, T),

and satisfies

∣∣b′
i(s)

∣∣ ≤ aii(s), i = 1, 2, . . . , N ,
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where Ω ⊂ R
2 is a bounded domain with the smooth boundary ∂Ω . From this, one can

see that there are some relationships between the diffusion coefficient and the convection
term.

Since we mainly are concerned about how the degeneracy of the coefficient ai(x) affects
the uniqueness or the stability of weak solutions, we have no intention to make a deep
research on the existence. The main results of this paper are the following stability theo-
rems.

Theorem 2.5 Let p– > 1, for 1 ≤ i ≤ N , ai(x) ∈ C1(Ω) satisfy (1.3),
∫
Ω

a
– 1

pi–1
i (x) dx < ∞

and bi(s, x, t) be a Lipchitz function R× Ω × [0, T]. If u and v are two solutions of Eq. (1.1)
with the same homogeneous boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.7)

and with different initial values u0(x) and v0(x), respectively, then

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, t ∈ [0, T). (2.8)

Roughly speaking, the condition
∫
Ω

a
– 1

pi–1
i (x) dx < ∞ can guarantee that the boundary

value condition (1.5) is true in the sense of trace. If this condition is invalid, for example,

∫

Ω

a
– 1

p1–1
1 (x) dx < ∞

and
∫

Ω

a
– 1

p2–1
2 (x) dx = ∞,

that whether Theorems 2.4–2.5 are true or not is an open problem. Fortunately, by adding
some restrictions on ai(x) and bi(s, x, t), we are able to prove the following stability of weak

solutions without any boundary value condition, no matter whether
∫
Ω

a
– 1

pi–1
i (x) dx < ∞

or not.

Theorem 2.6 Let p– > 1, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) be a Lipschitz function on
R× Ω × [0, T]. Let u and v be two solutions of (1.1) with the initial values u0(x) and v0(x),
respectively. If bi(s, x, t) satisfies

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ ca

1
pi
i |u – v|, i = 1, 2, . . . , N , (2.9)

and, for η small enough,

1
η

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi

≤ c, i = 1, 2, . . . , N , (2.10)

then the stability (2.8) is true.
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Here, Ωη = {x ∈ Ω : (
∏N

j=1 aj(x)) > η}.
Comparing Theorem 2.6 with Theorem 2.5, we find that, in some cases, the degeneracy

of ai(x) on the boundary can take the place of the usual boundary value condition (1.5).
Even, for some given kind of the weak solutions, the condition (2.10) may not be necessary.
For example, we have the following result.

Theorem 2.7 Let p– > 1, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) be a Lipschitz function on
R× Ω × [0, T]. Let u and v be two solutions of (1.1) with the initial values u0(x) and v0(x),
respectively, and for η small enough,

1
η

(∫

Ω\Ωη

ai(x)|uxi |pi dx
) pi–1

pi ≤ c,

1
η

(∫

Ω\Ωη

ai(x)|vxi |pi dx
) pi–1

pi ≤ c, i = 1, 2, . . . , N .

(2.11)

If bi(s, x, t) satisfies (2.9), then the stability (2.8) is true.

However, for some weak solutions, condition (2.9) may not be necessary. In fact, if the
convection term is independent of the diffusion coefficient, we have the following result.

Theorem 2.8 Let p– > 1, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) be a Lipschitz function on
R × Ω × [0, T]. If u and v are two solutions of Eq. (1.1) with the initial values u0(x) and
v0(x), respectively, then, for any Ω1 ⊂⊂ Ω ,

∫

Ω1

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤ c(Ω1)

∫

Ω

∣∣u0(x) – v0(x)
∣∣2 dx, (2.12)

which implies that the uniqueness of weak solution is true.

Actually, by the general method introduced in the last section of this paper, many kinds
of stability theorems of weak solutions can be found.

3 The weak solutions dependent on the initial value
We consider the following regularized problem:

uεt –
N∑

i=1

∂

∂xi

((
ai(x) + ε

)|uεxi |pi–2uεxi

)
–

N∑

i=1

∂bi(uε , x, t)
∂xi

= 0, (x, t) ∈ QT , (3.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (3.2)

uε(x, 0) = uε0(x), x ∈ Ω . (3.3)

Here, uε0 ∈ C∞
0 (Ω), |uε0|L∞(Ω) ≤ |u0|L∞(Ω), |∇uε0| converges to |∇u0(x)| in Lp+ (Ω). It is

well known that the above problem has an unique weak solution uε ∈ L∞(0, T ; W 1,
p
0 (ai(x),

Ω)) [5, 30].
By the maximum principle [5], there is a constant c only dependent on ‖u0‖L∞(Ω) but

independent on ε, such that

‖uε‖L∞(QT ) ≤ c.
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Multiplying (3.1) by uε and integrating it over QT , then

1
2

∫

Ω

u2
ε dx +

N∑

i=1

∫∫

QT

(
ai(x) + ε

)|uεxi |pi dx dt +
∫∫

QT

∂bi(uε , x, t)
∂xi

uε dx dt

=
1
2

∫

Ω

u2
0 dx. (3.4)

If
∫
Ω

a
– 2

pi–2
i (x) dx < ∞, we know that

∫
Ω

a
– 1

pi–1
i (x) dx < ∞, then

∣∣∣∣
∫

Ω

∂bi(uε , x, t)
∂xi

uε dx
∣∣∣∣ ≤

∫

Ω

∣∣∣∣
∂bi(s, x, t)

∂s

∣∣∣∣
s=uε

uεxi

∣∣∣∣|uε|dx

≤ c
∫

Ω

∣∣∣∣
∂bi(s, x, t)

∂s

∣∣∣∣
s=uε

uεxi

∣∣∣∣dx

≤ 1
2

∫

Ω

ai(x)|uεxi |pi dx +
c
2

∫

Ω

a
– 1

pi–1
i (x) dx

≤ 1
2

∫

Ω

ai(x)|uεxi |pi dx + c.

If the condition (2.6) is true, then

∣∣∣∣
∫

Ω

∂bi(uε , x, t)
∂xi

uε dx
∣∣∣∣ ≤ c

∫

Ω

∣∣∣∣
∂bi(s, x, t)

∂s

∣∣∣∣
s=uε

uεxi

∣∣∣∣dx

≤ 1
2

∫

Ω

ai(x)|uεxi |pi dx + c,

clearly. Accordingly, by (3.4), we have

∫

Ω

u2
ε dx +

N∑

i=1

∫∫

QT

(
ai(x) + ε

)|uεxi |pi dx dt ≤ c. (3.5)

For any Ω1 ⊂⊂ Ω , since p– = min{pi} > 2, ai(x) satisfies (1.3),

ai(x) ≥ c(Ω1) > 0, i = 1, 2, . . . , N ,

by (3.5),

∫ T

0

∫

Ω1

|∇uε|2 dx dt ≤ c
(∫ T

0

∫

Ω1

|∇uε|p– dx dt
) 2

p–

≤ c(Ω1)
N∑

i=1

(∫ T

0

∫

Ω1

ai(x)|uεxi |pi dx dt
) 2

pi

≤ c(Ω1)
N∑

i=1

(∫ T

0

∫

Ω

ai(x)|uεxi |pi dx dt
) 2

pi

≤ c, (3.6)
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where c(Ω1) represents the constant depending upon the compact subset Ω1, but it may
be different from one to another.

Multiplying (2.5) by uεt , integrating it over QT , it yields

∫∫

QT

|uεt|2 dx dt

=
N∑

i=1

∫∫

QT

∂

∂xi

((
ai(x) + ε

)|uεxi |pi–2uεxi

)
uεt dx dt

+
N∑

i=1

∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt. (3.7)

Noticing that

|uεxi |pi–2uεxi uεxit =
1
2

d
dt

∫ |uεxi |2

0
s

pi–2
2 ds,

then

∫∫

QT

∂

∂xi

((
ai(x) + ε

)|uεxi |pi–2uεxi

)
uεt dx dt

= –
∫∫

QT

(
ai(x) + ε

)|uεxi |pi–2uεxi uεxit dx dt

= –
1
2

∫∫

QT

(
ai(x) + ε

) d
dt

∫ |uεxi |2

0
s

pi–2
2 ds dx dt. (3.8)

If
∫
Ω

a
– 2

pi–2
i (x) dx < ∞,

∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt ≤

∫∫

QT

∣∣biu(uε , x, t)
∣∣|uεxi ||uεt|dx dt

+
∫∫

QT

∣∣bixi (uε , x, t)
∣∣|uεt|dx dt

≤ 1
2

∫∫

QT

|uεt|2 dx dt + c
∫∫

QT

|uεxi |2 dx dt + c, (3.9)

by the Hölder inequality

∫∫

QT

|uεxi |2 dx dt = c
∫∫

QT

a– 2
pi a

2
pi |uεxi |2 dx dt

≤ c
(∫∫

QT

a– 2
pi–2 dx dt

) pi–2
pi

(∫∫

QT

ai(x)|uεxi |pi dx dt
) 2

pi

≤ c. (3.10)
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If |bis(s, x, t)| ≤ ca
2
pi
i (x), pi ≥ 2, then by the Young inequality

∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt ≤

∫∫

QT

∣∣biu(uε , x, t)
∣∣|uεxi ||uεt|dx dt

+
∫∫

QT

∣∣bixi (uε , x, t)
∣∣|uεt|dx dt

≤
∫∫

QT

a
2
pi
i (x)|uεxi |2 dx dt +

1
2

∫∫

QT

|uεt|2 dx dt + c

≤ c
∫∫

QT

ai(x)|uεxi |pi dx dt +
1
2

∫∫

QT

|uεt|2 dx dt + c.

Combining (3.7)–(3.10), we have

∫∫

QT

|uεt|2 dx dt +
N∑

i=1

∫∫

QT

(
ai(x) + ε

) d
dt

∫ |uεxi |2

0
s

pi–2
2 ds dx dt ≤ c,

by the above inequality, we have

∫∫

QT

|uεt|2 dx dt ≤ c + c
N∑

i=1

∫

Ω

(
ai(x) + ε

)|uε0xi |pi dx ≤ c. (3.11)

Now, by (3.4), (3.5), (3.6) and (3.11), there exist a function u and an n-dimensional vector

function
−→
ζ = (ζ1, . . . , ζn) satisfying uε → u a.e. in QT , and

u ∈ L∞(QT ), |ζi| ∈ L
pi

pi–1 (QT ),

uε ⇀ ∗u, in L∞(QT ),

bi(uε , x, t) → bi(u, x, t), a.e. in QT , (3.12)

uεxi ⇀ uxi , in Lpi
loc(QT ),

ai(x)|uεxi |pi–2uεxi ⇀ ζi, in L
pi

pi–1 (QT ).

It is easy to show that

lim
ε→0

N∑

i=1

∫∫

QT

(
ai(x) + ε

)|uεxi |pi–2uεxiϕxi dx dt

= lim
ε→0

N∑

i=1

∫∫

QT

ai(x)|uεxi |pi–2uεxiϕxi dx dt

=
∫∫

QT

−→
ζ · ∇ϕ dx dt, (3.13)

for any ϕ ∈ C1
0(QT ).

Now, we will prove that

N∑

i=1

∫∫

QT

ai(x)|uxi |pi–2uxiϕ1xi dx dt =
∫∫

QT

−→
ζ · ∇ϕ1 dx dt, (3.14)
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for any given function ϕ1 ∈ C1
0(QT ). In detail, we notice that, for any function ϕ ∈ C1

0(QT ),

∫∫

QT

[
∂uε

∂t
ϕ +

N∑

i=1

(
ai(x) + ε

)|uεxi |pi–2uεxiϕxi +
N∑

i=1

bi(uε , x, t)ϕxi

]
dx dt = 0. (3.15)

Let ε → 0. Then

∫∫

QT

[
∂u
∂t

ϕ +
N∑

i=1

ζiϕxi +
N∑

i=1

bi(u, x, t)ϕxi

]
dx dt = 0. (3.16)

Let 0 ≤ ψ ∈ C∞
0 (QT ) and ψ = 1 on suppϕ1. Let v ∈ L∞(QT ), ai(x)|vxi |pi ∈ L1(QT ). One

has
∫∫

QT

ψai(x)
(|uεxi |pi–2uεxi – |vxi |pi–2vxi

)
(uεxi – vxi ) dx dt ≥ 0. (3.17)

By choosing ϕ = ψuε in (3.15),

∫∫

QT

[
∂uε

∂t
ψuε +

N∑

i=1

(
ai(x) + ε

)|uεxi |pi–2uεxi (ψuε)xi +
N∑

i=1

bi(uε , x, t)(ψuε)xi

]
dx dt

= 0. (3.18)

By (3.17)–(3.18), we have

1
2

∫∫

QT

ψtu2
ε dx dt –

N∑

i=1

∫∫

QT

(
ai(x) + ε

)|uεxi |pi–2uεxiψxi uε dx dt

–
N∑

i=1

∫∫

QT

(
ai(x) + ε

)|vxi |pi–2vxi (uεxi – vxi )ψ dx dt

–
N∑

i=1

∫∫

QT

(
ai(x) + ε

)|uεxi |pi–2uεxi vxiψ dx dt

–
N∑

i=1

∫∫

QT

bi(uε , x, t)(uεxiψ + uεψxi ) dx dt

≥ 0. (3.19)

Let ε → 0. Then

1
2

∫∫

QT

ψtu2 dx dt –
N∑

i=1

∫∫

QT

uζiψxi dx dt

–
N∑

i=1

∫∫

QT

ai(x)|vxi |pi–2vxi (uxi – vxi ) dx dt –
N∑

i=1

∫∫

QT

ai(x)ζxi vxiψ dx dt

–
N∑

i=1

∫∫

QT

bi(u, x, t)(uxiψ + uψxi ) dx dt

≥ 0. (3.20)
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Let ϕ = ψu in (3.16). We get

1
2

∫∫

QT

u2ψt dx dt –
N∑

i=1

∫∫

QT

ψζiuxi dx dt –
N∑

i=1

∫∫

QT

uζiψxi dx dt

–
N∑

i=1

∫∫

QT

bi(u, x, t)(uxiψ + uψxi ) dx dt

= 0. (3.21)

Thus

N∑

i=1

∫∫

QT

ψ
(
ζi – ai(x)|vxi |pi–2vxi

)
(uxi – vxi ) dx dt ≥ 0. (3.22)

Let v = u – λϕ1, λ > 0. Then

N∑

i=1

∫∫

QT

ψ
(
ζi – ai(x)

∣∣(u – λϕ1)xi

∣∣pi–2)
ϕ1xi dx dt ≥ 0.

If λ → 0, then

N∑

i=1

∫∫

QT

ψ
(
ζi – ai(x)|uxi |pi–2uxi

)
ϕ1xi dx dt ≥ 0.

Moreover, if λ < 0, similarly we can get

N∑

i=1

∫∫

QT

ψ
(
ζi – ai(x)|uxi |pi–2uxi

)
ϕ1xi dx dt ≤ 0.

Thus

N∑

i=1

∫∫

QT

ψ
(
ζi – ai(x)|uxi |pi–2uxi

)
ϕ1xi dx dt = 0.

Noticing that ψ = 1 on suppϕ1, then (3.14) holds.
At last, we are able to prove (2.3) as in [31], then u is a solution of Eq. (1.1) with the initial

value (1.4) in the sense of Definition 2.1. Thus we have Theorem 2.3.
Now, by a similar method as in [32], we can prove the following.

Lemma 3.1 If
∫
Ω

a
– 1

pi–1
i (x) dx < ∞, u is a weak solution of Eq. (1.1) with the initial condi-

tion (1.4). Then, for any given t ∈ [0, T),
∫

Ω

|uxi |dx ≤ c, i = 1, 2, . . . , N . (3.23)

For simplicity, we omit the details of the proof of Lemma 3.1 here. By (3.23) and the
fact

∫∫
QT

|ut|dx dt ≤ c, we know that u ∈ BV (QT ), C∞
0 (QT ) is dense in BV (QT ) and the

trace of u on the boundary ∂Ω can be defined in the traditional way. By Theorem 2.3 and
Lemma 3.1, we clearly have Theorem 2.4.
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4 The stability of the initial boundary value problem
In order to prove the stability of the weak solutions, for small η > 0, let

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
.

Obviously, hη(s) ∈ C(R), and

hη(s) ≥ 0,
∣∣shη(s)

∣∣ ≤ 1,
∣∣Sη(s)

∣∣ ≤ 1;

lim
η→0

Sη(s) = sgn s, lim
η→0

sS′
η(s) = 0.

(4.1)

Clearly, if we denote Hη(s) =
∫ s

0 Sη(τ ) dτ , then we have

lim
η→0

Hη(s) = |s|, s ∈ (–∞, +∞). (4.2)

Lemma 4.1 Let p– > 1, for 1 ≤ i ≤ N ,
∫
Ω

a
– 1

pi–1
i (x) dx < ∞ and

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ ca

1
pi
i |u – v|. (4.3)

If u and v are two solutions of Eq. (1.1) with the same homogeneous value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (4.4)

and with different initial values u0(x) and v0(x), respectively, then

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, t ∈ [0, T).

Proof Let u and v be two weak solutions of Eq. (1.1). Since
∫
Ω

a
– 1

pi–1
i (x) dx < ∞, by

Lemma 3.1, u, v ∈ BV (QT ) we can choose ϕ = χ[τ ,s]Sη(u – v) as the test function. Here
χ[τ ,s] is the characteristic function of [τ , s] ⊂ (0, T). Then

∫ s

τ

∫

Ω

Sη(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(u – v)xi hη(u – v) dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx dt

= 0. (4.5)

As usual, one has

∫ s

τ

∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(u – v)xi hη(u – v) dx dt ≥ 0. (4.6)
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Since
∫∫

QT
|ut|dx dt ≤ c,

∫∫
QT

|vt|dx dt ≤ c, using the dominated convergence theorem,
one has

lim
η→0

∫ s

τ

∫

Ω

Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫

Ω

[
Hη(u – v)(x, s) – Hη(u – v)(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx, (4.7)

where Hη(u – v)(x, s) = Hη(u(x, s) – v(x, s)).
Moreover, since bi(s, x, t) satisfies the condition (4.3), one has

lim
η→0

N∑

i=1

∣∣∣∣
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφηhη(u – v) dx dt

∣∣∣∣

≤ c lim
η→0

N∑

i=1

∫ s

τ

∫

Ω

∣∣hη(u – v)(u – v)a
1
pi
i (u – v)xiφη

∣∣dx dt

≤ c lim
η→0

N∑

i=1

(∫ s

τ

∫

Ω

ai
(|uxi |pi + |vxi |pi

)
dx dt

) 1
pi

·
(∫ s

τ

∫

Ω

∣∣(u – v)hη(u – v)
∣∣

pi
pi–1 dx dt

) pi–1
pi

= 0. (4.8)

Now, let η → 0 in (4.5). By (4.6)–(4.8), one has
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx.

Let τ → 0. Then
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx.

Lemma 4.1 is proved. �

In fact, the condition (4.3) in Lemma 4.1 is not the optimal. Without the condition (4.3),
we have Theorem 2.5.

Proof of Theorem 2.5 From the above proof of Lemma 4.1, we only need to prove that

lim
η→0

∣∣∣∣
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣∣∣∣ = 0, (4.9)

without the condition (4.3). In detail, we have
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx

=
∫

{Ω :|u–v|<η}

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx.
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If the set {Ω : |u – v| = 0} has zero a measure, then

lim
η→0

∣∣∣∣
∫

{Ω :|u–v|<η}

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣∣∣∣

≤ c
(∫

{Ω :|u–v|=0}

(
a

1
pi
i |uxi – vxi |

)pi dx
) 1

pi
(∫

Ω

a
– 1

pi–1
i dx

) pi–1
pi

= 0.

If the set {Ω : |u – v| = 0} only has a positive measure, then by, a
– 1

pi–1
i ∈ L1(Ω),

lim
η→0

∣∣∣∣
∫

{Ω :|u–v|<η}

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi hη(u – v) dx

∣∣∣∣

≤ c
(∫

Ω

(
a

1
pi
i |uxi – vxi |

)pi dx
) 1

pi
(∫

{Ω :|u–v|=0}
a

– 1
pi–1

i dx
) pi–1

pi

≤ c
(∫

Ω

ai(x)
(|uxi |pi + |vxi |pi

)
dx

) 1
pi

(∫

{Ω :|u–v|=0}
a

– 1
pi–1

i dx
) pi–1

pi

= 0.

Thus, we have the conclusion. �

5 The global stability without the boundary value condition
Proof of Theorem 2.6 Let u and v be two weak solutions of Eq. (1.1) with the initial values
u0(x), v0(x), respectively.

Let Ωη = {x ∈ Ω :
∏N

i=1 ai(x) > η}, and

φη(x) =

⎧
⎨

⎩
1, if x ∈ Ωη,
1
η

∏N
i=1 ai(x), if x ∈ Ω \ Ωη.

(5.1)

Let us recall

J(x) =

⎧
⎨

⎩
k exp[ –1

1–|x|2 ], |x| < 1,

0, |x| ≥ 1,

where k is a constant such that
∫
RN J(x) dx = 1. The usual mollifier is defined as

Jε(x) =
1
εN J

(
x
ε

)

for small ε > 0. Let

fε(x) = Jεf (x) = Jε ∗ f (x) =
∫

RN
Jε(x – y)f (y) dy,

for any f (x) ∈ L1
loc(Ω).
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Let φηε(x) be the mollified function of φη(x). We can choose χ[τ ,s]φηε(x)Sη(u – v) as the
test function. By the process of taking the limit, ε → 0, we can choose χ[τ ,s]φη(x)Sη(u – v)
as the test function finally. Then

∫ s

τ

∫

Ω

φηSη(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2∇v

)
(uxi – vxi )hη(u – v)φη(x) dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(u – v)Sη(u – v)φηxi dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
φηxi Sη(u – v) dx dt

+
N∑

i=1

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφηhη(u – v) dx dt

= 0. (5.2)

Let us observe every term on the left-hand side of (5.2).
For the first term, using the dominated convergence theorem, we have

lim
η→0

∫ s

τ

∫

Ω

φη(x)Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫ s

τ

∫

Ω

∂[φη(x)Hη(u – v)]
∂t

dx dt

= lim
η→0

∫

Ω

φη(x)
[
Hη(u – v)(x, s) – Hη(u – v)(x, τ )

]
dx

=
∫

Ω

|u – v|(x, s) dx –
∫

Ω

|u – v|(x, τ ) dx. (5.3)

For the second term, we have

∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(uxi – vxi )hη(u – v)φη(x) dx ≥ 0. (5.4)

For the third term, obviously, φηxi = 1
η

(
∏N

j=1 aj(x))xi when x ∈ Ω \Ωη , in the other places,
it is identical to zero. By the condition (2.10), we have

∣∣∣∣
∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
φηxi Sη(u – v) dx

∣∣∣∣

=
∣∣∣∣
∫

Ω\Ωη

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
φηxi Sη(u – v) dx

∣∣∣∣

≤ 1
η

∫

Ω\Ωη

ai(x)
(|uxi |pi–1 + |vxi |pi–1)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

Sη(u – v)

∣∣∣∣∣dx
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≤ c
1
η

(∫

Ω\Ωη

(
ai(x)|uxi |pi + |vxi |pi

)
dx

) pi–1
pi

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi

≤ c
[(∫

Ω\Ωη

ai(x)|uxi |pi dx
) pi–1

pi
+

(∫

Ω\Ωη

ai(x)|vxi |pi dx
) pi–1

pi
]

·
[

1
η

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi

]

≤ c
[(∫

Ω\Ωη

ai(x)|uxi |pi dx
) pi–1

pi
+

(∫

Ω\Ωη

ai(x)|vxi |pi dx
) pi–1

pi
]

. (5.5)

Then

lim
η→0

∣∣∣∣
∫ s

τ

∫

Ω

ai(x)
(|uxi |p–2uxi – |vxi |pi–2vxi

)
φηxi Sη(u – v) dx dt

∣∣∣∣

≤ c lim
η→0

∫ s

τ

[(∫

Ω\Ωη

ai(x)|uxi |pi dx
) pi–1

pi
+

(∫

Ω\Ωη

ai(x)|vxi |pi dx
) pi–1

pi
]

dt

= 0. (5.6)

For the fourth term, since bi(s, x, t) satisfies the condition (2.9), we have

lim
η→0

N∑

i=1

∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiφηhη(u – v) dx dt = 0, (5.7)

as before.
Finally, for the fifth term, by the condition (2.10), we have

lim
η→0

∣∣∣∣
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣∣∣

= lim
η→0

∣∣∣∣
∫

Ω\Ωη

[
bi(u, x, t) – bi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣∣∣

≤ lim
η→0

1
η

∫

Ω\Ωη

a
1
pi
i

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣
∣∣Sη(u – v)(u – v)

∣∣dx

≤ lim
η→0

1
η

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi (∫

Ω

∣∣Sη(u – v)(u – v)
∣∣

pi
pi–1 dx

) pi–1
pi

≤ c lim
η→0

(∫

Ω

∣∣Sη(u – v)(u – v)
∣∣

pi
pi–1 dx

) pi–1
pi

≤ c
(∫

Ω

|u – v|dx
) pi–1

pi
, (5.8)

since u, v ∈ L∞(QT ).
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Now, let η → 0 in (5.2). Then

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx + c

(∫ t

0

∫

Ω

|u – v|dx dt
)l

, (5.9)

where l < 1.
Let κ(s) =

∫
Ω

|u(x, s)–v(x, s)|dx. Without loss of the generality, we may assume that there
exists τ ∈ [0, T), κ(τ ) > 0. Then, for any s > τ ,

∫ s
τ

k(t) dt > 0. If we denote

τ0 = max
{

t ∈ [τ , s],κ(t) > 0
}

,
∫ τ0

τ

k(t) dt = c1,

then τ < τ0 ≤ s, and

∫ s

τ

k(t) dt ≥
∫ τ0

τ

k(t) dt = c1.

By u, v ∈ L∞(QT ), there exists a constant C > 0 such that

c(
∫ s
τ

k(t) dt)l
∫ s
τ

k(t) dt
≤ c(

∫ s
τ

k(t) dt)l

c1
≤ C = C(c, c1, T , q). (5.10)

By (5.9) and (5.10), we have

κ(s) – κ(τ ) ≤ (C + c)
∫ s

τ

k(t) dt,

using the Gronwall inequality, we easily get

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤ c

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx.

then, by the arbitrariness of τ ,

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx. �

Proof of Theorem 2.7 Similar to the proof of Theorem 2.6, we have (5.1)–(5.4). Now, by
the condition (2.11), we have

lim
η→0

∣∣∣∣
∫

Ω

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
φηxi Sη(u – v) dx

∣∣∣∣

= lim
η→0

∣∣∣∣
∫

Ω\Ωη

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
φηxi Sη(u – v) dx

∣∣∣∣

≤ lim
η→0

1
η

∫

Ω\Ωη

ai(x)
(|uxi |pi–1 + |vxi |pi–1)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

Sη(u – v)

∣∣∣∣∣dx

≤ c lim
η→0

1
η

(∫

Ω\Ωη

ai(x)
(|uxi |pi + |vxi |pi

)
dx

) pi–1
pi

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi
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≤ c lim
η→0

(∫

Ω\Ωη

ai(x)

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣

pi

dx

) 1
pi

= 0. (5.11)

Last but not least, since ai(x) ∈ C1(Ω), ai(x) = 0 when x ∈ ∂Ω , we have

a
1
pi
i (x)

( N∏

j=1

aj(x)

)

xi

= 0, x ∈ ∂Ω . (5.12)

According to the definition of Ωη , we have

lim
η→0

∣∣∣∣
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣∣∣

= lim
η→0

∣∣∣∣
∫

Ω\Ωη

[
bi(u, x, t) – bi(v, x, t)

]
φηxi Sη(u – v) dx

∣∣∣∣

≤ lim
η→0

1
η

∫

Ω\Ωη

a
1
pi
i

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣
∣∣Sη(u – v)(u – v)

∣∣dx

≤ c lim
η→0

1
η

∫

Ω\Ωη

a
1
pi
i

∣∣∣∣∣

( N∏

j=1

aj(x)

)

xi

∣∣∣∣∣dx

≤ c max
x∈∂Ω

a
1
pi
i (x)

( N∏

j=1

aj(x)

)

xi

= 0. (5.13)

Now, let η → 0 in (5.2). Then

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx.

By the arbitrariness of τ ,

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx. �

6 The uniqueness of the solution
Theorem 2.6 and Theorem 2.7 both imply that the uniqueness of the weak solution is true,
their proofs are based on the condition (2.9). Actually, without the condition (2.9), we still
can prove the uniqueness of the solution without any boundary value condition.

Theorem 6.1 Let p– > 1, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) be a Lipschitz function on
R × Ω × [0, T]. If u and v are two solutions of Eq. (1.1) with the initial values u0(x) and
v0(x), respectively, then there exists a positive constant βj ≥ 2 such that

∫

Ω

( N∏

j=1

aβj
j (x)

)
∣∣u(x, t) – v(x, t)

∣∣2 dx ≤ c
∫

Ω

( N∏

j=1

aβj
j (x)

)
∣∣u0(x) – v0(x)

∣∣2 dx. (6.1)
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In particular, for any small enough constant δ > 0,

∫

Ωδ

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤ c(δ,βj)

∫

Ω

∣∣u0(x) – v0(x)
∣∣2 dx, (6.2)

where Ωδ = {x ∈ Ω :
∏N

j=1 aβj
j (x) > δ}.

Proof Let u and v be two solutions of Eq. (1.1) with the initial values u0(x) and v0(x), re-
spectively. By the process of taking the limit, we may choose ϕ = χ[τ ,s]

∏N
j=1 aβj

j (u – v) as a
test function. Denoting that Qτ s = Ω × [τ , s], then

∫∫

Qτ s

(u – v)
N∏

j=1

aβj
j

∂(u – v)
∂t

dx dt

= –
N∑

i=1

∫∫

Qτ s

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
[

(u – v)
N∏

j=1

aβj
j

]

xi

dx dt

–
N∑

i=1

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
[

(u – v)
N∏

j=1

aβj
j

]

xi

dx dt. (6.3)

In the first place, we have

∫∫

Qτ s

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(u – v)xi

N∏

j=1

aβj
j dx dt ≥ 0 (6.4)

and

∣∣∣∣∣

∫∫

Qτ s

(u – v)ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
( N∏

j=1

aβj
j

)

xi

dx dt

∣∣∣∣∣

≤
∫∫

Qτ s

|u – v|ai(x)
(|uxi |pi–1 + |vxi |pi–1)

∣∣∣∣∣

( N∏

j=1

aβj
j

)

xi

∣∣∣∣∣dx dt

≤ c
(∫ s

τ

∫

Ω

ai(x)
(|uxi |pi + |vxi |pi

)
dx dt

) pi–1
pi

·
(∫ s

τ

∫

Ω

ai(x)

∣∣∣∣∣

( N∏

j=1

aβj
j

)

xi

∣∣∣∣∣

pi

|u – v|pi dx dt

) 1
pi

≤ c
(∫ s

τ

∫

Ω

ai(x)
(|uxi |pi + |vxi |pi

)
dx dt

) pi–1
pi

·
(∫ s

τ

∫

Ω

ai(x)
N∏

j=1

∣∣aβj–1
j ajxi

∣∣
)pi

|u – v|pi dx dt)
1
pi

≤ c

(∫ s

τ

∫

Ω

ai(x)
N∏

j=1

∣∣aβj–1
j ajxi

∣∣pi |u – v|pi dx dt

) 1
pi

. (6.5)
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Here, we have used the fact that |axi | ≤ c. Now, we choose βi ≥ 2. If pi ≥ 2,

(∫ s

τ

∫

Ω

ai(x)
N∏

j=1

∣∣aβj–1
j ajxi

∣∣pi |u – v|pi dx dt

) 1
pi

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

) 1
pi

. (6.6)

If 1 < pi < 2, by the Hölder inequality

(∫ s

τ

∫

Ω

ai(x)
N∏

j=1

∣∣aβj–1
j ajxi

∣∣pi |u – v|pi dx dt

) 1
pi

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

) 1
2

. (6.7)

Combining (6.5)–(6.7), we obtain

∣∣∣∣∣

∫∫

Qτ s

(u – v)ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
( N∏

j=1

aβj
j

)

xi

dx dt

∣∣∣∣∣

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

)l

, (6.8)

where l < 1.
In the second place,

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
[

(u – v)
N∏

j=1

aβj
j

]

xi

dx dt

=
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)

( N∏

j=1

aβj
j

)

xi

dx dt

+
∫∫

Qs

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi

N∏

j=1

aβj
j dx dt. (6.9)

For the first term on the right-hand side of (6.7), since βj ≥ 2, |ajxi | ≤ c, by the Hölder
inequality,

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)

( N∏

j=1

aβj
j

)

xi

dx dt

=
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)

N∑

k=1

(
βkaβk –1

k akxi

N∏

j=1,j �=k

aβj
j

)
dx dt
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≤ c
∫ s

τ

∫

Ω

|u – v|
N∑

k=1

(
βkaβk –1

k akxi

N∏

j=1,j �=k

aβj
j

)
dx dt

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

) 1
2

. (6.10)

For the second term on the right-hand side of (6.9), since βi ≥ 1, denoting p′
i = pi

pi–1 as
usual, we have

(
βi –

1
pi

)
p′

i ≥ βi.

By this inequality, we have

∣∣∣∣∣

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi

N∏

j=1

aβj
j dx dt

∣∣∣∣∣

≤ c

(∫ s

τ

∫

Ω

a
(βi– 1

pi
)p′

i
i

( N∏

j=1,j �=i

aβj
j
∣∣bi(u, x, t) – bi(v, x, t)

∣∣
)p′

i

dx dt

) 1
p′

i

·
(∫ s

τ

∫

Ω

ai
(|uxi |pi + |vxi |pi

)
dx dt

) 1
pi

≤ c

(∫ s

τ

∫

Ω

a
(βi– 1

pi
)p′

i
i

( N∏

j=1,j �=i

aβj
j
∣∣bi(u, x, t) – bi(v, x, t)

∣∣
)p′

i

dx dt

) 1
p′

i

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|p′

i dx dt

) 1
p′

i
. (6.11)

If pi > 2, then 1 < p′
i < 2. By the Hölder inequality,

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|p′

i dx dt

) 1
p′

i ≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

) 1
2

. (6.12)

If 1 < pi ≤ 2, then p′
i ≥ 2,

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|p′

i dx dt

) 1
p′

i ≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

) 1
p′

i
. (6.13)

Combining (6.11)–(6.13), we have

∣∣∣∣∣

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi

N∏

j=1

aβj
j dx dt

∣∣∣∣∣

≤ c

(∫ s

τ

∫

Ω

N∏

j=1

aβj
j |u – v|2 dx dt

)l

, (6.14)

where l < 1.
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Moreover,

∫∫

Qτ s

(u – v)
N∏

j=1

aβj
j

∂(u – v)
∂t

dx dt

=
∫∫

Qτ s

(u – v)

√√√√
N∏

j=1

aβj
j

∂[
√∏N

j=1 aβj
j (u – v)]

∂t
dx dt

=
∫

Ω

N∏

j=1

aβj
j
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

N∏

j=1

aβj
j
[
u(x, τ ) – v(x, τ )

]2 dx. (6.15)

According to (6.3), (6.4), (6.8), (6.10), (6.14) and (6.15), we have

∫

Ω

N∏

j=1

aβj
j
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

N∏

j=1

aβj
j
[
u(x, τ ) – v(x, τ )

]2 dx

≤ c

(∫ s

0

∫

Ω

N∏

j=1

aβj
j
∣∣u(x, t) – v(x, t)

∣∣2 dx dt

)l

, (6.16)

where l < 1. By (6.16), we easily show that

∫

Ω

N∏

j=1

aβj
j
∣∣u(x, τ ) – v(x, τ )

∣∣2 dx ≤
∫

Ω

N∏

j=1

aβj
j
∣∣u(x, τ ) – v(x, τ )

∣∣2 dx. (6.17)

Thus, by the arbitrariness of τ , we have

∫

Ω

N∏

j=1

aβj
j
∣∣u(x, s) – v(x, s)

∣∣2 dx ≤
∫

Ω

N∏

j=1

aβj
j
∣∣u0(x) – v0(x)

∣∣2 dx. (6.18)

By (6.18), we clearly have (6.1) and (6.2). The proof is complete. �

By this theorem, Theorem 2.8 is true.

7 The general method to prove the stability of weak solutions
We can generalize the method used in Sect. 6 to prove various kinds of stability of weak
solutions.

Let χ (x) be a C1(Ω) function satisfying

χ (x) = 0, if x ∈ ∂Ω ; χ (x) > 0, if x ∈ Ω . (7.1)

Theorem 7.1 Let p– ≥ 2, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) is bounded when s is
bounded and (x, t) ∈ Ω × [0, T). If there exist constants 0 < σi < 1, 0 < δi < 1, and there
exists χ (x) satisfying (7.1) and

∫

Ω

∣∣∣∣
(χ (x))xi

χ
δi
2 (x)

∣∣∣∣

2
2–δi

dx ≤ c, (7.2)
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∫

Ω

∣∣(χ (x)
)p′

i–
σi
2 a

– 1
pi–1

i (x)
∣∣ 2

2–σi dx ≤ c. (7.3)

Let u and v are be solutions of Eq. (1.1) with the initial values u0(x) and v0(x), respectively.
Then, for any Ω1 ⊂⊂ Ω ,

∫

Ω1

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤ c(Ω1)

∫

Ω

∣∣u0(x) – v0(x)
∣∣2 dx.

Here, p′
i = pi

pi–1 as usual.

Proof Let u and v be two solutions of Eq. (1.1) with the initial values u0(x) and v0(x), re-
spectively. By the process of taking the limit, we may choose ϕ = χ[τ ,s]χ (x)(u – v) as a test
function. Denoting Qτ s = Ω × [τ , s], then

∫∫

Qτ s

(u – v)χ (x)
∂(u – v)

∂t
dx dt

= –
N∑

i=1

∫∫

Qτ s

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)[
(u – v)χ (x)

]
xi

dx dt

–
N∑

i=1

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
(u – v)χ (x)

]
xi

dx dt. (7.4)

In the first place, we have

∫∫

Qτ s

ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)
(u – v)xiχ (x) dx dt ≥ 0, (7.5)

and using (7.2) we deduce that

∣∣∣∣
∫∫

Qτ s

(u – v)ai(x)
(|uxi |pi–2uxi – |vxi |pi–2vxi

)(
χ (x)

)
xi

dx dt
∣∣∣∣

≤
∫∫

Qτ s

|u – v|ai(x)
(|uxi |pi–1 + |vxi |pi–1)∣∣(χ (x)

)
xi

∣∣dx dt

≤ c
(∫ s

τ

∫

Ω

ai(x)
(|uxi |pi + |vxi |pi

)
dx dt

) pi–1
pi

·
(∫ s

τ

∫

Ω

ai(x)
∣∣(χ (x)

)
xi

∣∣pi |u – v|pi dx dt
) 1

pi

≤ c
(∫ s

τ

∫

Ω

ai(x)
∣∣(χ (x)

)
xi

∣∣pi |u – v|pi dx dt
) 1

pi

= c
(∫ s

τ

∫

Ω

ai(x)
|(χ (x))xi |pi

χ
δi
2 (x)

χ
δi
2 |u – v|δi |u – v|pi–δi dx dt

) 1
pi

≤ c
(∫ s

τ

∫

Ω

( |(χ (x))xi |pi

χ
δi
2 (x)

) 2
2–δi

dx dt
) 1

pi
2–δi

2
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·
(∫ s

τ

∫

Ω

χ (x)|u – v|2 dx
) δi

2
1
pi

≤ c
(∫ s

τ

∫

Ω

χ (x)|u – v|2 dx
) δi

2
1
pi

. (7.6)

In the second place,

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
(u – v)χ (x)

]
xi

dx dt

=
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)

(
χ (x)

)
xi

dx dt

+
∫∫

Qs

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiχ (x) dx dt. (7.7)

For the first term on the right-hand side of (7.7), since bi(u, x, t) and bi(v, x, t) are bounded
when u ∈ L∞(QT ), v ∈ L∞(QT ), and by that p– ≥ 2 implies p′

i – 2δi
(2–δi)(pi–1) ≥ 0, by the Hölder

inequality, using (7.2), we have

∣∣∣∣
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)

(
χ (x)

)
xi

dx dt
∣∣∣∣

≤ c
[∫∫

Qτ s

( |(χ (x))xi |
2

2–δi

(χ (x))
δi

(2–δi)pi

)pi

dx
] 1

pi
(∫∫

Qτ s

[
χ

δi
(2–δi)pi |u – v|]p′

i dx
) 1

p′
i

≤ c
(∫∫

Qτ s

[
χ

δi
(2–δi)pi |u – v|]p′

i dx
) 1

p′
i

= c
(∫∫

Qτ s

[
χ

δi
(2–δi)(pi–1) |u – v|]

2δi
(2–δi)(pi–1) |u – v|p′

i–
2δi

(2–δi)(pi–1) dx
) 1

p′
i

≤ c
(∫∫

Qτ s

χ (x)|u – v|2 dx
) δi

(2–δi)pi
. (7.8)

For the second term on the right-hand side of (7.7), by this inequality and the condition
(7.3), we have

∣∣∣∣
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiχ (x) dx dt

∣∣∣∣

=
∣∣∣∣
∫∫

Qτ s

(
ai(x)

) 1
pi (u – v)xiχ (x)

(
ai(x)

)– 1
pi (u – v) dx dt

∣∣∣∣

≤ c
(∫ s

τ

∫

Ω

∣∣χ (x)a
– 1

pi
i (u – v)

∣∣p′
i dx dt

) 1
p′

i
(∫ s

τ

∫

Ω

ai(x)
(|uxi |pi + |vxi |pi

)
dx dt

) 1
pi

≤ c
(∫ s

τ

∫

Ω

∣∣χ (x)a
– 1

pi
i (u – v)

∣∣p′
i dx dt

) 1
p′

i

= c
(∫ s

τ

∫

Ω

|χ (x)|p′
i–

σi
2 a

– 1
pi–1

i |χ (x)| σi
2 |u – v|σi (u – v)|p′

i–σi dx dt
) 1

p′
i
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≤ c
(∫ s

τ

∫

Ω

(
χp′

i–
σi
2 a

– 1
pi–1

i
) 2

2–σi dx dt
) 2–σi

2p′
i
(∫ s

τ

∫

Ω

χ (x)|u – v|2 dx dt
) σi

2p′
i

≤ c
(∫ s

τ

∫

Ω

χ (x)|u – v|2 dx dt
) σi

2p′
i . (7.9)

Moreover,

∫∫

Qτ s

(u – v)χ (x)
∂(u – v)

∂t
dx dt

=
∫∫

Qτ s

(u – v)
√

χ (x)
∂[

√
χ (x)(u – v)]

∂t
dx dt

=
∫

Ω

χ (x)
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

χ (x)
[
u(x, τ ) – v(x, τ )

]2 dx. (7.10)

According to (7.4)–(7.10), we have

∫

Ω

χ (x)
[
u(x, s) – v(x, s)

]2 dx –
∫

Ω

χ (x)
[
u(x, τ ) – v(x, τ )

]2 dx

≤ c
(∫ s

τ

∫

Ω

χ (x)
∣∣u(x, t) – v(x, t)

∣∣2 dx dt
)l

, (7.11)

where l < 1. By (7.11), we easily can show that

∫

Ω

χ (x)
∣∣u(x, τ ) – v(x, τ )

∣∣2 dx ≤
∫

Ω

χ (x)
∣∣u(x, τ ) – v(x, τ )

∣∣2 dx. (7.12)

By the arbitrariness of τ , then

∫

Ω

χ (x)
∣∣u(x, s) – v(x, s)

∣∣2 dx ≤
∫

Ω

χ (x)
∣∣u0(x) – v0(x)

∣∣2 dx. (7.13)

Since (7.1), by (7.13), the inequality (7.3) is true clearly.
One can see that the condition p– ≥ 2 is only used to estimate (7.8). We are sure that it

can weakened to p– > 1. For example, if there exists constant γi > 0 such that

∣∣bi(u, x, t)
∣∣ ≤ c

∣∣χ (x)
∣∣γi , (7.14)

then we obtain
∣∣∣∣
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xiχ (x) dx dt

∣∣∣∣

≤ c
(∫∫

Qτ s

χ (x)|u – v|2 dx dt
)l

, (7.15)

where l < 1. Thus, we still have the conclusion of Theorem 7.1. �

However, we are not ready to discuss how to weaken the condition p– ≥ 2 again in what
follows. We prefer to explain the importance of Theorem 7.1. That is, if we choose various
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kinds of functions χ (x), we can obtain the corresponding stability theorems. Let us give
some examples.

If we choose χ (x) =
∏N

i=1 aβ

i (x), we have a similar conclusion to Theorem 2.8. By the
process of taking the limit, we can choose χ (x) = dα(x), where α > 0 is a constant, d(x) =
dist(x, ∂Ω) is the distance function from the boundary. Then we have the following theo-
rem.

Theorem 7.2 Let p– ≥ 2, ai(x) ∈ C1(Ω) satisfy (1.3), bi(s, x, t) is bounded when s is
bounded and (x, t) ∈ Ω × [0, T). Assume α > 1, and assume there exist constants 0 < σi < 1,

∫

Ω

∣∣(dα(x)
)p′

i–
σi
2 a

– 1
pi–1

i (x)
∣∣ 2

2–σi dx ≤ c. (7.16)

Let u and v are be solutions of Eq. (1.1) with the initial values u0(x) and v0(x), respectively.
Then, for any Ω1 ⊂⊂ Ω ,

∫

Ω1

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤ c(Ω1)

∫

Ω

∣∣u0(x) – v0(x)
∣∣2 dx.

Proof Since χ (x) = dα(x), α > 1, for any 0 < σi < 1, it is not difficult to show the inequality
(7.1) is true. Then we have the conclusion. �

As long as one wants, one can choose other types of the functions χ (x), e.g. χ (x) =
∑N

i=1 ai(x), χ (x) = eai(x) – 1 for any given i ∈ {1, 2, . . . , N}, or χ (x) = max{ai(x)}, to obtain
the corresponding stability theorems.

8 Conclusion
The anisotropic parabolic equations considered in this paper arise from many applied
fields such as non-Newtonian fluid theory, reaction–diffusion problems. If the convec-
tion term depends on the diffusion coefficient which is degenerate on the boundary, then
the stability of weak solutions may be proved without any boundary value condition. If the
convection term is independent of the diffusion coefficient, the uniqueness of the weak so-
lution is still true only if the convection function bi(u, x, t) is bounded when |u| ≤ c. More-
over, a general method to prove the stability of the weak solutions without the boundary
value condition is introduced for the first time in this paper. We believe such a method
can be used in many kinds of parabolic equations, especially those lacking the regularity
for the trace on the boundary to be defined.
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