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Abstract
In this paper we propose the balanced implicit numerical techniques for maintaining
the nonnegative path of the solution in stochastic
susceptible–infected–vaccinated–susceptible (SIVS) epidemic model. We can hardly
acquire the explicit solution for the SIVS model, so we often use the numerical
scheme to produce approximate solutions. The Euler–Maruyama (EM) method is a
useful and effective means in producing numerical solutions of SIVS model. The EM
method to simulate the stochastic SIVS model often results in the problem that the
numerical solution is not positive. In order to eliminate the negative path of the
solution in a stochastic SIVS epidemic model, we construct a numerical method
preserving positivity for the SIVS model. It is proved that the balanced implicit
method (BIM) can preserve positivity and we show the convergence of the BIM
numerical approximate solution to the exact solution. Finally, a numerical example is
offered to support the theoretical results and verify the availability of the approach.

Keywords: Euler–Maruyama scheme; SIVS model; Balanced implicit method;
Convergence

1 Introduction
Recent global infectious diseases (such as the outbreak of H7N9 influenza in 2013 and
Ebola disease in 2014) resulted in a lot of biological deaths and substantial financial ruins.
Infectious diseases are a major concern of public. The modeling of infection diseases is
extremely important to research the mechanisms of diseases. A mathematical model is
considered as an effective way to forecast the outbreak of disease. In particular, stochastic
epidemic models have come to play an important role in the control of diseases, which is
an extremely significant tool to account for the real world.

As is well known, the SIVS epidemic model is one of the most important models in epi-
demiology and biomathematics. Many authors have analyzed the susceptible–infected–
susceptible (SIS) epidemic model with vaccination. Shi et al. [1] analyzed the effect of
impulsive vaccination on a susceptible–infected–recovered (SIR) epidemic model. In [2],
Nie et al. presented the existence and orbital stability of an order-1 or order-2 periodic so-
lution for the SIVS model. Liu et al. [3] established two classes of susceptible–vaccinated–
infected–removed models to describe a continuous vaccination strategy and a fixed-time
pulse vaccination strategy, respectively. Omondi et al. [4] analyzed a mathematical model
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of a rotavirus infection incorporating vaccination. Lin et al. [5] pointed out the station-
ary distribution of a stochastic SIS epidemic model with vaccination. The classical SIVS
model was proposed by Tornatore et al. [6], which has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dS = [(1 – p)μ + αI – (μ + ψ)S – βSI] dt – σSI dw(t),

dI = [βSI + (1 – e)βVI – (μ + α)I] dt + σSI dw(t) + (1 – e)σVI dw(t),

dV = [pμ + ψS – μV – (1 – e)βVI] dt – (1 – e)σVI dw(t),

(1.1)

where S denotes the population sizes of susceptible individuals, I denotes the popula-
tion sizes of infected individuals, V denotes the density of vaccines who have begun the
vaccination process. μ represents the birth rate with susceptible individuals, where a pro-
portion p of them obtained vaccination immediately after birth. Susceptible individuals
can either die with rate μ, vaccinated with rate ψ or obtain infected with force of infec-
tion βI where β is the successful transformation rate from infected group to susceptible.
Infected individuals can either die with rate μ or be removed with rate α. Vaccinated in-
dividuals can either die with rate μ or acquire infection with force of infection (1 – e)βI
where e measures the efficacy of the vaccine-induced protection against infection. If e = 1,
then the vaccine is perfectly valid in preventing infection, while e = 0 means that the vac-
cine has no effect. Here w(t) is a standard Brownian motion with the intensity σ 2 > 0. All
parameters are usually assumed to be positive.

For model (1.1), by [7] and [8] existence and persistence were discussed, respectively.
In [9], Yang et al. provided the global threshold dynamics of an SIVS model with wan-
ing vaccine-induced immunity and nonlinear incidence. Zhao [10] gave the threshold of
a stochastic SIVS epidemic model with nonlinear saturated incidence. Wen et al. in [11]
remarked that the threshold of a periodic stochastic SIVS epidemic model with nonlin-
ear incidence. But the stochastic SIVS epidemic model (1.1) rarely has an explicit solution.
Therefore, numerical schemes or approximation techniques become the most focus prob-
lems in the analysis of stochastic SIVS model is their numerical solution. Up to now, the
Euler–Maruyama (EM) scheme is prevalent for stochastic differential equations, which is
due to the the simple structure and moderate computational cost. There are many arti-
cles investigating this method. In particular, Mao [12] made use of the truncated Euler–
Maruyama method to discretize the stochastic differential equations. Hu et al. [13] showed
a remarkable result of the semi-implicit Euler–Maruyama scheme for stiff stochastic equa-
tions. It also should be mentioned that in [14, 15] we find the Euler–Maruyama approxi-
mation of solutions to stochastic differential equations.

When we use EM scheme for the initial model (1.1), it is crucial that whether the nu-
merical approximate solution is able to converge to the exact solutions. On the other hand,
positivity is the most basic trait in many real world systems. For instance, featuring suscep-
tible individuals in the infectious disease modeling is inherently nonnegative. Therefore,
preserving the nonnegative path of the exact solution of stochastic SIVS model is also
important.

In fact, many numerical methods have been developed to preserve the positivity of the
approximate solution [16–18]. Nevertheless, for the preserving positivity numerical so-
lution issue of stochastic epidemic model, to the best of our knowledge, there is not any
result. Hence, the main purpose of this present paper is to structure a new method to main-
tain the nonnegative path of the solution for a stochastic epidemic SIVS model, which is
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the balanced implicit method. The main technique we developed is based on Tan’s prin-
ciple [19].

The main innovation points of this paper are as follows:
(1) Structuring a balanced implicit method to maintain the nonnegative path of the true

solution for the stochastic epidemic SIVS model.
(2) The BIM approximate solution will converge to the true solution with order 1

2 (1 – 1
l )

for the stochastic SIVS epidemic model.
The arrangement of the paper is as follows. In Sect. 2, we give some necessary notations

and preliminaries. Then we define the balanced implicit method. To ensure the positivity
of the balanced implicit method, we build feedback controls. In Sect. 3, we show that the
balanced implicit method solutions can converge to the true solution. Finally, a numerical
example is presented to support the theoretical results and verify the availability of the
approach.

2 Preliminaries and BIM scheme
2.1 Necessary notations and preliminaries
To begin with, we use some notation. Throughout this paper, let (Ω ,F ,P) be a complete
probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing
and right continuous while F0) contains all P-null sets, and let E denote the expectation
corresponding to P. Let w(t) be a scalar Brownian motions defined on the space and T
be an arbitrary positive number. Moreover, for any a, b ∈ R, a ∨ b := max{a, b}, and a ∧
b := min{a, b}. If G is a set, its indicator function by 1G, namely 1G(x) = 1 if x ∈ G and 0
otherwise.

According to model (1.1), we denote the total population N(t) = S(t) + I(t) + V (t), N(0) =
S(0) + I(0) + V (0). It is easy to see that

d(S + I + V ) =
[
μ – μ(S + I + V )

]
dt.

Then

S + I + V = 1 + e–μt(S(0)+I(0)+V (0)–1)

≤
⎧
⎨

⎩

1, if S(0) + I(0) + V (0) ≤ 1,

S(0) + I(0) + V (0), if S(0) + I(0) + V (0) > 1,

:= K .

Thus the region

Γ =
{

(S, I, V ) : S > 0, I > 0, V > 0, S + I + V ≤ K
}

is a positively invariant set of model (1.1). Hence from now on, we always assume that the
initial value are bounded (S(0), I(0), V (0)) ∈ Γ .

Theorem 2.1 System (1.1) has a unique positive solution on [0, T].

Proof The proof of this theorem is similar to that in [20]. �
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2.2 Life time and BIM scheme
The idea of the life time of of numerical scheme was presented by Schurz in [21]. Schurz
employed the notion of an algorithm having eternal lifetime, where we utilized this life
time for (1.1) as follows.

Definition 2.1 Assume that the process St = S(t), It = I(t), Vt = V (t) : t > 0 satisfying
model (1.1) has only nonnegative values a.s. provided that S0 ≥ 0, I0 ≥ 0, V0 ≥ 0, i.e. we
have

⎧
⎪⎪⎨

⎪⎪⎩

P(St > 0) = 1,

P(It > 0) = 1,

P(Vt > 0) = 1,

∀t > 0. (2.1)

Then a numerical solution Stn , Itn , Vtn possesses an eternal life time if

⎧
⎪⎪⎨

⎪⎪⎩

P(Sn+1|Sn > 0) = 1,

P(In+1|In > 0) = 1,

P(Vn+1|Vn > 0) = 1,

∀n > 0. (2.2)

Applying the EM method to model (1.1) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + [(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn]� – σSnIn�wn,

In+1 = In + [βSnIn + (1 – e)βVnIn – (μ + α)In]� + σSnIn�wn

+ (1 – e)σVnIn�wn,

Vn+1 = Vn + [pμ + ψSn – μVn – (1 – e)βVnIn]� – (1 – e)σVnIn�wn,

(2.3)

let ti ∈ [0, T], i = 1, 2, . . . m. Let � = tn+1 – tn, �wn = w(tn+1) – w(tn) denote the increments
of the time and Brownian motion, respectively. Let tn = n · �, the time increment is � =
T
m � 1.

Lemma 2.1 The EM approximation (2.3) started in S0 > 0, I0 > 0, V0 > 0 has a finite life
time.

Proof For simplicity, we let

F1 =
[
(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn

]
,

F2 =
[
βSnIn + (1 – e)βVnIn – (μ + α)In

]
,

F3 =
[
pμ + ψSn – μVn – (1 – e)βVnIn

]
.

(2.4)

It is easy to see that

P{Sn+1 < 0} = P{Sn + F1� – σSnIn�wn < 0} > 0,

P{In+1 < 0} = P
{

In + F2� + σSnIn�wn + (1 – e)σVnIn�wn < 0
}

> 0,

P{Vn+1 < 0} = P
{

Vn + F3� – (1 – e)σVnIn�wn < 0
}

> 0.

(2.5)
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The EM approximation (2.3) fails to preserve positivity, since �wn take all values c ∈ R

with a positive probability.
Therefore, how it is possible to prevent an approximation integration method from be-

coming negative. In this paper, we construct the BIM to preserve positivity of rigid SDEs.�

The BIM numerical solution to this scheme is defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SB
n+1 = Sn + [(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn]� – σSnIn�wn

+ Cn(Sn – SB
n+1),

IB
n+1 = In + [βSnIn + (1 – e)βVnIn – (μ + α)In]� + σSnIn�wn

+ (1 – e)σVnIn�wn + Dn(In – IB
n+1),

V B
n+1 = Vn + [pμ + ψSn – μVn – (1 – e)βVnIn]� – (1 – e)σVnIn�wn

+ En(Vn – V B
n+1),

(2.6)

where

⎧
⎪⎪⎨

⎪⎪⎩

Cn = (μ + ψ + βIn)� + σ In|�wn|,
Dn = (μ + α)� + σ (Sn + Vn)|�wn|,
En = (μ + βIn)� + σ In|�wn|,

(2.7)

with initial values SB
0 = S0, IB

0 = I0, V B
0 = V0.

Suppose that Sn > 0, In > 0 and Vn > 0, then

⎧
⎪⎪⎨

⎪⎪⎩

0 < (1 + (μ + ψ + βIn)� + σ In|�wn|)–1 < M1,

0 < (1 + (μ + α)� + σ (Sn + Vn)|�wn|)–1 < M2,

0 < (1 + (μ + βIn)� + σ In|�wn|)–1 < M3,

(2.8)

let M = M1 ∨ M2 ∨ M3, where M1, M2, M3 and M are positive constant.
Now we give the following theorem for the positivity of the BIM.

Theorem 2.2 The balanced numerical method (2.6) has an eternal life time.

Proof Under the condition (2.8), the scheme of BIM (2.3) can be rewritten

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SB
n+1 = (1 + Cn)–1[Sn + ((1 – p)μ + αIn – (μ + ψ)Sn – βSnIn + μSn + ϕSn

+ βSnIn)� – σSnIn�Wn + σSnIn|�wn|],
IB

n+1 = (1 + Dn)–1[In + (βSnIn + (1 – e)βVnIn – (μ + α)In + μIn + αIn)�

+ σSnIn�wn + (1 – e)σVnIn�wn + σ (Sn + Vn)In|�wn|],
V B

n+1 = (1 + En)–1[Vn + (pμ + ψSn – μVn – (1 – e)βVnIn + μVn + βVnIn)�

– (1 – e)σVnIn�wn + σ InVn|�wn|].

(2.9)



Li and Zhang Advances in Difference Equations         (2019) 2019:25 Page 6 of 19

We can easily see that

SB
n+1 ≥ (1 + Cn)–1(Sn +

(
(1 – p)μ + αIn

)
�

) ≥ 0,

IB
n+1 ≥ (1 + Dn)–1(In +

(
βSnIn + (1 – e)βVnIn

)
�

) ≥ 0,

V B
n+1 ≥ (1 + En)–1(Vn + (pμ + ψSn + eβVnIn)�

) ≥ 0.

(2.10)

This completes the proof. �

3 Convergence of the balanced method
In this section, we show the main results for the strong convergence of the balanced
method.

For model (2.3), when t ∈ [tn, tn+1), we define the continuous approximation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SE
t = S0 + [(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn](t – tn) – σSnIn(wt – wtn ),

IE
t = I0 + [βSnIn + (1 – e)βVnIn – (μ + α)Ik](t – tn) + σSnIn(wt – wtn )

+ (1 – e)σVnIn(wt – wtn ),

V E
t = V0 + [pμ + ψSn – μVn – (1 – e)βVnIn](t – tn) – (1 – e)σVnIn(wt – wtn ).

(3.1)

Hence, (3.1) can be rewritten in the integral form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SE
t = S0 +

∫ t
0 [(1 – p)μ + αIs – (μ + ψ)Ss – βSsIs] ds – σSsIs dw(s),

IE
t = I0 +

∫ t
0 [βSsIs + (1 – e)βV sIs – (μ + α)Is] ds +

∫ t
0 σSsIs dw(s)

+
∫ t

0 (1 – e)σV sIs dw(s),

V E
t = V0 +

∫ t
0 [pμ + ψSs – μV s – (1 – e)βV sIs] ds –

∫ t
0 (1 – e)σV sIs dw(s),

(3.2)

where S(t) =
∑[ T

�
]

n=0 Sn1[tn ,tn+1)(t), I(t) =
∑[ T

�
]

n=0 In1[tn ,tn+1)(t), and V (t) =
∑[ T

�
]

n=0 Vn1[tn ,tn+1)(t) are
step processes.

To prove the convergence theorem, we first need to consider the following lemma, which
reveals that the continuous EM solution SE

t , IE
t , V E

t will converge to the step process St , It ,
V t . Since the drift and diffusion coefficients of model (1.1) do not satisfy the linear growth
condition, the traditional theory of convergence is not applicable for model (1.1). To tackle
this problem, we introduce a stopping time.

Lemma 3.1 For any positive number K , define the stopping time [22] q = ρK ∧γK ∧T , where
ρK = inf{t ∈ [0, T]; {S(t), I(t), V (t)} /∈ [ 1

K , K]} and γK = inf{t ∈ [0, T]; {S(t), I(t), V (t)} /∈
[ 1

K , K]}. Then, for any integer l ≥ 2, there exists a constant C1 independent of � such that

E

(
sup

0≤t≤T

[(
SE

t (t ∧ q) – S(t ∧ q)
)2 +

(
IE

t (t ∧ q) – I(t ∧ q)
)2 +

(
V E

t (t ∧ q) – V (t ∧ q)
)2]

)

≤ C1�
1– 1

l . (3.3)

Proof For t ∈ [0, T], let [ t
�

] be the integer part of t
�

. For simplicity, we show that the ap-
proximate solution SE

t , IE
t , V E

t are close to St , It , V t , respectively.
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First, we have

SE
t (t ∧ q) – S(t ∧ q) =

∫ t∧q

[ t∧q
�

]�

[
(1 – p)μ + αI(u) – (μ + ψ)S(u) – βS(u)I(u)

]
du

–
∫ t∧q

[ t∧q
�

]�
σS(u)I(u) dw(u), (3.4)

which gives

[
SE

t (t ∧ q) – S(t ∧ q)
]2

≤ 2
(∫ t∧q

[ t∧q
�

]�

[
(1 – p)μ + αI(u) – (μ + ψ)S(u) – βS(u)I(u)

]
du

)2

+ 2
(∫ t∧q

[ t∧q
�

]�
σS(u)I(u) dw(u)

)2

≤ 2
∫ t∧q

[ t∧q
�

]�
1 du

∫ t∧q

[ t∧q
�

]�

[
(1 – p)μ + αI(u) – (μ + ψ)S(u) – βS(u)I(u)

]2 du

+ 2σ 2K4
[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2

≤ 2�

∫ t∧q

[ t∧q
�

]�

[
(1 – p)μ + αI(u) – (μ + ψ)S(u) – βS(u)I(u)

]2 du

+ 2σ 2K4
[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2

≤ 8
[
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4]�2

+ 2σ 2K4
[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2

. (3.5)

We hence have

E

(
sup

0≤t≤T

[
SE

t (t ∧ q) – S(t ∧ q)
]2

)

≤ 8
[
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4]�2

+ 2σ 2K4
E

(

sup
0≤t≤T∧q

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

≤ 8
[
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4]�2

+ 2σ 2K4
E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

. (3.6)

Next, we have

IE
t (t ∧ q) – I(t ∧ q)

=
∫ t∧q

[ t∧q
�

]�

[
βS(u)I(u) + (1 – e)βV (u)I(u) – (μ + α)I(u)

]
du
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+
∫ t∧q

[ t∧q
�

]�
(1 – e)σV (u)I(u) dw(u) +

∫ t∧q

[ t∧q
�

]�
σS(u)I(u) dw(u), (3.7)

which gives

[
IE

t (t ∧ q) – I(t ∧ q)
]2

≤ 3
(∫ t∧q

[ t∧q
�

]�

[
βS(u)I(u) + (1 – e)βV (u)I(u) – (μ + α)I(u)

]
du

)2

+ 3(1 – e)2σ 2
(∫ t∧q

[ t∧q
�

]�
V (u)I(u) dw(u)

)2

+ 3σ 2
(∫ t∧q

[ t∧q
�

]�
S(u)I(u) dw(u)

)2

≤ 9
[
β2K4 + (1 – e)2β2K4 + (μ + ψ)2K2]�2

+ 3
[
(1 – e)2σ 2K4 + 3σ 2K4]

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2

. (3.8)

We hence have

E

(
sup

0≤t≤T

[
IE

t (t ∧ q) – I(t ∧ q)
]2

)

≤ 9
[
β2K4 + (1 – e)2β2K4 + (μ + ψ)2K2]�2

+ 3
[
(1 – e)2σ 2K4 + 3σ 2K4]

E

(

sup
0≤t≤T∧q

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

≤ 9
[
β2K4 + (1 – e)2β2K4 + (μ + ψ)2K2]�2

+ 3
[
(1 – e)2σ 2K4 + 3σ 2K4]

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

. (3.9)

Then we have

V E
t (t ∧ q) – V (t ∧ q) =

∫ t∧q

[ t∧q
�

]�

[
pμ + ψS(u) – μV (u) – (1 – e)βV (u)I(u)

]
du

+
∫ t∧q

[ t∧q
�

]�
(1 – e)σ

∣
∣V (u)

∣
∣
∣
∣I(u)

∣
∣dw(u), (3.10)

which gives

[
V E

t (t ∧ q) – V (t ∧ q)
]2 ≤ 8

(
p2μ2 + ψ2K2 + (1 – e)2β2K4)�2

+ 2(1 – e)2σ 2K4
[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2

. (3.11)

We hence have

E

(
sup

0≤t≤T

[
V E

t (t ∧ q) – V (t ∧ q)
]2

)

≤ 8
[
p2μ2 + ψ2K2 + (1 – e)2β2K4]�2

+ 2(1 – e)2σ 2K4
E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

. (3.12)
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By the Hölder inequality,

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

≤
(

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2l)) 1
l
. (3.13)

By the Doob martingale inequality, we get

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2l)

≤ E

(
sup

0≤k≤[ T
�

]
sup

k�≤r≤�(k+1)

[
w(r) – w(�k)

]2l
)

≤
[ T
�

]
∑

k=0

E

[
sup

k�≤r≤�(k+1)

∣
∣w(r) – w(�k)

∣
∣2l

]

≤
(

2l
2l – 1

) [ T
�

]
∑

k=0

E
∣
∣w

(
�(k + 1)

)
– w(�k)

∣
∣2l

≤
(

2l
2l – 1

)2l [ T
�

]
∑

k=0

(2l – 1)!!�l

≤
(

2l
2l – 1

)2l

(2l – 1)!!�l–1(T + 1),

therefore, we have

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

≤
((

2l
2l – 1

)2l

(2l – 1)!!�l–1(T + 1)
) 1

l

≤
(

2l
2l – 1

)2

(2l – 1)!!
1
l �1– 1

l (T + 1)
1
l . (3.14)

From (3.4) to (3.14), we obtain

E

(
sup

0≤t≤T

[[
SE

t (t ∧ q) – S(t ∧ q)
]2 +

[
IE

t (t ∧ q) – I(t ∧ q)
]2 +

[
V E

t (t ∧ q) – V (t ∧ q)
]2]

)

≤ 8
[
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4]�2

+ 2σ 2K4
E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

+ 9
[
β2K4 + (1 – e)2β2K4 + (μ + ψ)2K2]�2

+ 3
[
(1 – e)2σ 2K4 + 3σ 2K4]

E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

+
[
p2μ2 + ψ2K2 + (1 – e)2β2K4]�2
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+ 2(1 – e)2σ 2K4
E

(

sup
0≤t≤T

[

w(t ∧ q) – w
([

t ∧ q
�

]

�

)]2)

≤ 8
[
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4]�2

+ 9
[
β2K4 + (1 – e)2β2K4 + (μ + ψ)2K2]�2

+
[
p2μ2 + ψ2K2 + (1 – e)2β2K4]�2 +

[
2σ 2K4

+ 3
[
(1 – e)2σ 2K4 + 3σ 2K4] + 2(1 – e)2σ 2K4]

(
2l

2l – 1

)2

(2l – 1)!!
1
l �1– 1

l (T + 1)
1
l

≤ C1�
1– 1

l . (3.15)

The proof of the lemma is complete. �

Now we estimate the main result, that is to say, the convergence of the EM approximate
solution SE

t , IE
t , V E

t to the solution S(t), I(t), V (t).

Theorem 3.1 Let S(t), I(t), V (t) be the true solution and SE
t , IE

t , V E
t be the continuous EM

approximate solution to the model (1.1). For any integer l ≥ 2, there exists a constant C2

independent of � such that

E

(
sup

0≤t≤T

[(
S(t ∧ q) – SE

t (t ∧ q)
)2 +

(
I(t ∧ q) – IE

t (t ∧ q)
)2 +

(
V (t ∧ q) – V E

t (t ∧ q)
)2]

)

≤ C2�
1– 1

l

Proof For any 0 ≤ t ≤ T , we adopt similar method. First, we clearly have

[
S(t ∧ q) – SE

t (t ∧ q)
]2

≤ 2
[∫ t∧q

0

[
α
(
I(u) – I(u)

)
– (μ + ψ)

(
S(u) – S(u)

)
– β

(
S(u)I(u) – S(u)I(u)

)]
du

]2

+ 2σ 2
[∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)
dw(u)

]2

, (3.16)

for any t1 ∈ [0, T], using the Hölder inequality and the Doob martingale inequality, we
then have

E

(
sup

0≤t≤t1

[
S(t ∧ q) – SE

t (t ∧ q)
]2

)

≤ 2TE

∫ t1∧q

0

[
α
(
I(u) – I(u)

)
– (μ + ψ)

(
S(u) – S(u)

)
– β

(
S(u)I(u) – S(u)I(u)

)]2 du

+ 2σ 2
E

(

sup
0≤t≤t1

[∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)
dw(u)

]2)

≤ 6α2TE

∫ t1∧q

0

(
I(u) – I(u)

)2 du + 6(μ + ψ)2TE

∫ t1∧q

0

(
S(u) – S(u)

)2 du

+ 6β2TE

∫ t1∧q

0

(
S(u)I(u) – S(u)I(u)

)2 du + 8σ 2
E

∫ t1∧q

0

(
S(u)I(u) – S(u)I(u)

)2 du

≤ 6α2TE

∫ t1∧q

0

(
I(u) – I(u)

)2 du + 6(μ + ψ)2TE

∫ t1∧q

0

(
S(u) – S(u)

)2 du



Li and Zhang Advances in Difference Equations         (2019) 2019:25 Page 11 of 19

+ 2
(
6β2T + 8σ 2)

[

E

∫ t1∧q

0
I(u)2(S(u) – S(u)

)2 + E

∫ t1∧q

0
S(u)2(I(u) – I(u)

)2 du
]

≤ f1E

∫ t1∧q

0

(
I(u) – I(u)

)2 du + f2E

∫ t1∧q

0

(
S(u) – S(u)

)2 du

≤ 2f1

[

E

∫ t1∧q

0

(
I(u) – IE

t (u)
)2 du + E

∫ t1∧q

0

(
IE

t (u) – I(u)
)2 du

]

+ 2f2

[

E

∫ t1∧q

0

(
S(u) – SE

t (u)
)2 du + E

∫ t1∧q

0

(
SE

t (u) – S(u)
)2 du

]

, (3.17)

where f1 = 6α2T + 12β2K2T + 16σ 2K2, f2 = 6(μ + ψ)2T + 12β2K2T + 16σ 2K2.
Similarly, we have

[
I(t ∧ q) – IE

t (t ∧ q)
]2

≤ 3
[∫ t∧q

0

[
β
(
S(u)I(u) – S(u)I(u)

)
+ (1 – e)(β

(
V (u)I(u) – V (u)I(u)

)

– (μ + α)
(
I(u) – I(u)

)]
du

]2

+ 3(1 – e)2σ 2
[∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)
dw(u)

]2

+ 3σ 2
[∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)
dw(u)

]2

, (3.18)

we then compute

E

(
sup

0≤t≤t1

[
I(t ∧ q) – IE

t (t ∧ q)
]2

)

≤ 9TE

∫ t∧q

0

[
β2(S(u)I(u) – S(u)I(u)

)2 + (1 – e)2β2(V (u)I(u) – V (u)I(u)
)2

+ (μ + α)2(I(u) – I(u)
)2]du + 12(1 – e)2σ 2

E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du

+ 12σ 2
E

∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)2 du

≤ (
9β2T + 12σ 2)

E

∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)2 du

+ 9(μ + α)2TE

∫ t∧q

0

(
I(u) – I(u)

)2 du

+
[
9(1 – e)2β2T + 12(1 – e)2σ 2]

E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du

≤ (
18β2T + 24σ 2)

[

E

∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)2 + E

∫ t∧q

0

(
S(u)I(u) – S(u)I(u)

)2
]

+
[
18(1 – e)2β2T + 24(1 – e)2σ 2]

[

E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du

+ E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du
]

+ 9(μ + α)2TE

∫ t∧q

0

(
I(u) – I(u)

)2 du

≤ g1E

∫ t∧q

0

(
S(u) – S(u)

)2 du + g2E

∫ t∧q

0

(
V (u) – V (u)

)2 du
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+ g3E

∫ t∧q

0

(
I(u) – I(u)

)2 du

≤ 2g1

[

E

∫ t∧q

0

(
S(u) – SE

t (u)
)2 du + E

∫ t∧q

0

(
SE

t (u) – S(u)
)2 du

]

+ 2g2

[

E

∫ t∧q

0

(
V (u) – V E

t (u)
)2 du + E

∫ t∧q

0

(
V E

t (u) – V (u)
)2 du

]

+ 2g3

[

E

∫ t∧q

0

(
I(u) – IE

t (u)
)2 du + E

∫ t∧q

0

(
IE

t (u) – I(u)
)2 du

]

, (3.19)

where g1 = (18β2T + 24σ 2)K2, g2 = [(1 – e)2(18β2T + 24σ 2)]K2, g3 = (18β2T + 24σ 2)K2 +
18(1 – e)2β2TK2 + 24(1 – e)2σ 2K2 + 9(μ + α)2T .

Moreover, we have

[
V (t ∧ q) – V E

t (t ∧ q)
]2

≤ 2
[∫ t∧q

0

[
ψ

(
S(u) – S(u)

)
– μ

(
V (u) – V (u)

)

– (1 – e)β
(
V (u)I(u) – V (u)I(u)

)]
du

]2

+ 2(1 – e)2σ 2
[∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)
dw(u)

]2

, (3.20)

and we compute that

E

(
sup

0≤t≤t1

[
V (t ∧ q) – V E

t (t ∧ q)
]2

)

≤ 6TE

∫ t∧q

0

[
ψ2(S(u) – S(u)

)2 + μ2(V (u) – V (u)
)2

+ (1 – e)2β2(V (u)I(u) – V (u)I(u)
)2]du

+ 8(1 – e)2σ 2
E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du

≤ 6ψ2TE

∫ t∧q

0

(
S(u) – S(u)

)2 du + 6μ2TE

∫ t∧q

0

(
V (u) – V (u)

)2 du

+ 2
[
6(1 – e)2β2T + 8(1 – e)2σ 2]

[

E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du

+ E

∫ t∧q

0

(
V (u)I(u) – V (u)I(u)

)2 du
]

≤ h1E

∫ t∧q

0

(
S(u) – S(u)

)2 du + h2E

∫ t∧q

0

(
V (u) – V (u)

)2 du

+ h3E

∫ t∧q

0

(
I(u) – I(u)

)2 du

≤ 2h1

[

E

∫ t∧q

0

(
S(u) – SE

t (u)
)2 du + E

∫ t∧q

0

(
SE

t (u) – S(u)
)2 du

]

+ 2h2

[

E

∫ t∧q

0

(
V (u) – V E

t (u)
)2 du + E

∫ t∧q

0

(
V E

t (u) – V (u)
)2 du

]
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+ 2h3

[

E

∫ t∧q

0

(
I(u) – IE

t (u)
)2 du + E

∫ t∧q

0

(
IE

t (u) – I(u)
)2 du

]

, (3.21)

where h1 = 6ψ2T , h2 = 6μ2T + 12(1 – e)2β2TK2 + 16(1 – e)2σ 2K2, h3 = 12(1 – e)2β2TK2 +
16(1 – e)2σ 2K2.

By Lemma 3.1 plus Eqs. (3.17), (3.19) and (3.21), we have

E

(
sup

0≤t≤T

[[
S(t ∧ q) – SE

t (t ∧ q)
]2 +

[
I(t ∧ q) – IE

t (t ∧ q)
]2 +

[
V (t ∧ q) – V E

t (t ∧ q)
]2]

)

≤ HE

∫ t∧q

0

[(
S(u) – SE

t (u)
)2 +

(
V (u) – V E

t (u)
)2 +

(
I(u) – IE

t (u)
)2]du

+ C1�
1– 1

l , (3.22)

where H is a positive constant.
An application of the Gronwall inequality will lead to the proof. �

Next, we will prove the theorem for the positivity of the balanced method for model
(2.8); we can rewrite (2.8) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SB
n+1 = Sn + (1 + Cn)–1[(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn]� – (1 + Cn)–1σSnIn�wn,

IB
n+1 = In + (1 + Dn)–1[βSnIn + (1 – e)βV nIn – (μ + α)In]� + (1 + Dn)–1σSnIn�wn

+ (1 + Dn)–1(1 – e)σV nIn�wn,

V B
n+1 = Vn + (1 + En)–1[pμ + ψSn – μV n – (1 – e)βV nIn]�

– (1 + En)–1(1 – e)σV nIn�wn,

when t ∈ [tn, tn+1), we define the continuous approximation of the BIM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SB
n+1 = Sn + (1 + Cn)–1[[(1 – p)μ + αIn – (μ + ψ)Sn – βSnIn](t – tn)

– σSnIn(w(t) – w(tn))
]
,

IB
n+1 = In + (1 + Dn)–1[[βSnIn + (1 – e)βV nIn – (μ + α)In](t – tn)

+ σSnIn(w(t) – w(tn))
]

+ (1 + Dn)–1(1 – e)σV nIn(w(t) – w(tn)),

V B
n+1 = Vn + (1 + En)–1[[pμ + ψSn – μV n – (1 – e)βV nIn](t – tn)

– (1 – e)σV nIn(w(t) – w(tn))
]
.

(3.23)

Thus we can rewritten (3.23) in the integral form as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SB
t = S0 +

∫ t
0 (1 + Cs)–1[(1 – p)μ + αIs – (μ + ψ)Ss – βSsIs] ds

–
∫ t

0 (1 + Cs)–1σSsIs dw(s),

IB
t = I0 +

∫ t
0 (1 + Cs)–1[βSsIs + (1 – e)βV sIs – (μ + α)Is] ds

+
∫ t

0 (1 + Cs)–1σSsIs dw(s) +
∫ t

0 (1 + Cs)–1(1 – e)σV sIs dw(s),

V B
t = V0 +

∫ t
0 (1 + Cs)–1[pμ + ψSs – μV s – (1 – e)βV sIs] ds

–
∫ t

0 (1 + Cs)–1(1 – e)σV sIs dw(s).

(3.24)

In order to estimate if the BIM approximation solution will converge to the true solution,
we plan to prove a strong convergence result.



Li and Zhang Advances in Difference Equations         (2019) 2019:25 Page 14 of 19

Theorem 3.2 For any constant C3 and integer l ≥ 2, the BIM (2.8) converge to the true
solution of model (1.1) with strong order 1

2 (1 – 1
l ), i.e., such that

E

(
sup

0≤t≤T

[[
St – SB

t
]2 +

[
It – IB

t
]2 +

[
Vt – V B

t
]2]

)
≤ C3�

1– 1
l (3.25)

Proof By Theorem 3.1, telling us that the Euler solution is convergent with order (1 – 1
l )

in the mean square sense, for t ∈ T , we have

E

(
sup

0≤t≤T

[[
St – SB

t
]2 +

[
It – IB

t
]2 +

[
Vt – V B

t
]2]

)

= E

(
sup

0≤t≤T

[(
St – SE

t + SE
t – SB

t
)2 +

(
It – IE

t + IE
t – IB

t
)2

+
(
Vt – V E

t + V E
t – V B

t
)2]

)

≤ 2E
(

sup
0≤t≤T

[(
St – SE

t
)2 +

(
SE

t – SB
t
)2 +

(
It – IE

t
)2 +

(
IE

t – IB
t
)2

+
(
Vt – V E

t
)2 +

(
V E

t – V B
t
)2]

)

≤ 2E
(

sup
0≤t≤T

[(
St – SE

t
)2 +

(
It – IE

t
)2 +

(
Vt – V E

t
)2]

)

+ 2E
(

sup
0≤t≤T

[(
SE

t – SB
t
)2 +

(
IE

t – IB
t
)2 +

(
Vt – V E

t
)2]

)

≤ C1�
1– 1

l + 2E
(

sup
0≤t≤T

[(
SE

t – SB
t
)2 +

(
IE

t – IB
t
)2 +

(
V E

t – V B
t
)2]

)
. (3.26)

Now, we estimate the terms of Eq. (3.26).
First, for (SE

t – SB
t )2, we have

(
SE

t – SB
t
)2 =

(∫ t

0

[
1 – (1 + Cs)–1][(1 – p)μ + αIs – (μ + ψ)Ss – βSsIs

]
ds

–
∫ t

0

[
1 – (1 + Cs)–1]σSsIs dw(s)

)2

,

we hence have

E

[
sup

0≤t≤T

(
SE

t – SB
t
)2

]

≤ 8TE

∫ T

0

[
1 – (1 + Cs)–1]2[(1 – p)2μ2 + α2I2

s + (μ + ψ)2S2
s + β2S2

s I2
s
]

ds

+ 8E
∫ T

0

[
1 – (1 + Cs)–1]2

σ 2S2
s I2

s ds

≤ 8T
∫ T

0
E

(
Cs(1 + Cs)–1)2[(1 – p)2μ2 + α2I2

s + (μ + ψ)2S2
s + β2S2

s I2
s
]

ds

+ 8
∫ T

0
E

(
Cs(1 + Cs)–1)2

σ 2S2
s I2

s ds

≤ 8M2T
∫ T

0
E(Cs)2[(1 – p)2μ2 + α2I2

s + (μ + ψ)2S2
s + β2S2

s I2
s
]

ds

+ 8M2
∫ T

0
E(Cs)2σ 2S2

s I2
s ds. (3.27)
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Noticing that the control functions (μ + ψ + βIn) and σ In are bounded, that is to say, there
exists a positive constant A1 such that E(Cs)2 ≤ A1(�2 + �), where A1 = max{6(μ2 + ψ2 +
β2K2), 2σ 2K2}, we can get

E

[
sup

0≤t≤T

(
SE

t – SB
t
)2

]
≤ 8M2T

(
(1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4)A1

(
�2 + �

)

+ 8M2K4σ 2A1
(
�2 + �

)

≤ C4�, (3.28)

where C4 = 16M2T((1 – p)2μ2 + α2K2 + (μ + ψ)2K2 + β2K4)A1 + 16M2K4σ 2A1.
Next, for (IE

t – IB
t )2, we have

(
IE

t – IB
t
)2

=
(∫ t

0

[
1 – (1 + Ds)–1][βSsIs + (1 – e)βV sIs – (μ + α)Is

]
ds

+
∫ t

0

[
1 – (1 + Cs)–1]σSsIs dw(s)

+
∫ t

0

[
1 – (1 + Ds)–1](1 – e)σV sIs dw(s)

)2

, (3.29)

we hence have

E

[
sup

0≤t≤T

(
IE

t – IB
t
)2

]

≤ 9TE

∫ t

0

[
1 – (1 + Ds)–1]2[

β2S2
s I2

s + (1 – e)2β2V 2
s I2

s + (μ + α)2I2
s
]

ds

+ 12E
∫ t

0

[
1 – (1 + Ds)–1]2

σ 2S2
s I2

s ds + 12E
∫ t

0

[
1 – (1 + Ds)–1]2(1 – e)2σ 2V 2

s I2
s ds

≤ 9T
∫ t

0
E

(
Ds(1 + Ds)–1)2[

β2S2
s I2

s + (1 – e)2β2V 2
s I2

s + (μ + α)2I2
s
]

ds

+ 12
∫ t

0
E

(
Ds(1 + Ds)–1)2

σ 2S2
s I2

s ds + 12
∫ t

0
E

(
Ds(1 + Ds)–1)2(1 – e)2σ 2V 2

s I2
s ds

≤ 9TM2
∫ t

0
E(Ds)2[β2S2

s I2
s + (1 – e)2β2V 2

s I2
s + (μ + α)2I2

s
]

ds

+ 12M2
∫ t

0
E(Ds)2σ 2S2

s I2
s ds + 12M2

∫ t

0
E(Ds)2(1 – e)2σ 2V 2

s I2
s ds. (3.30)

Noticing that the control functions (μ + α) and σ (Sn + Vn) are bounded, that is to say,
there exists a positive constant A2 such that E(Ds)2 ≤ A2(�2 + �), where A2 = max{4(μ2 +
α2), 8σ 2K2}, we can get

E

[
sup

0≤t≤T

(
IE

t – IB
t
)2

]
≤ 9TM2[β2K4 + (1 – e)2β2K4 + (μ + α)2K2]A2

(
�2 + �

)

+ 12M2[σ 2K4 + (1 – e)2σ 2K4]A2
(
�2 + �

)

≤ C5�, (3.31)
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where C5 = 18TM2[β2K4 + (1 – e)2β2K4 + (μ + α)2K2]A2 + 24M2[σ 2K4 + (1 – e)2σ 2K4]A2.
And then, for (V E

t – V B
t )2, we have

(
V E

t – V B
t
)2 =

(∫ t

0

[
1 – (1 + Es)–1][pμ + ψSs – μV s – (1 – e)βV sIs

]
ds

–
∫ t

0

[
1 – (1 + Es)–1](1 – e)σV sIs dw(s)

)2

(3.32)

we hence have

E

[
sup

0≤t≤T

(
V E

t – V B
t
)2

]

≤ 8TE

∫ t

0

[
1 – (1 + Es)–1]2[p2μ2 + ψ2S2

s + μ2V 2
s + (1 – e)2β2V 2

s I2
s
]

ds

+ 8E
∫ t

0

[
1 – (1 + Es)–1]2(1 – e)2σ 2V 2

s I2
s ds

≤ 8T
∫ t

0
E

(
Es(1 + Es)–1)2[p2μ2 + ψ2S2

s + μ2V 2
s + (1 – e)2β2V 2

s I2
s
]

ds

+ 8
∫ t

0
E

(
Es(1 + Es)–1)2(1 – e)2σ 2V 2

s I2
s ds

≤ 8TM2
∫ t

0
E(Es)2[p2μ2 + ψ2S2

s + μ2V 2
s + (1 – e)2β2V 2

s I2
s
]

ds

+ 8M2
∫ t

0
E(Es)2(1 – e)2σ 2V 2

s I2
s ds. (3.33)

Noticing that the control functions (μ + βIn) and σ In are bounded, that is to say, there
exists a positive constant A3 such that E(Es)2 ≤ A3(�2 + �), where A3 = max{4(μ2 +
β2K2), 2σ 2K2}, we can get

E

[
sup

0≤t≤T

(
V E

t – V B
t
)2

]
≤ 8TM2[p2μ2 + ψ2K2 + μ2K2 + (1 – e)2β2K4]A3

(
�2 + �

)

+ 8M2(1 – e)2σ 2K4A3
(
�2 + �

)

≤ C6�, (3.34)

where C6 = 16TM2[p2μ2 + ψ2K2 + μ2K2 + (1 – e)2β2K4]A3 + 16M2(1 – e)2σ 2K4A3.
Thus, taking (3.28), (3.31) and (3.34) into (3.26), we can obtain

E

(
sup

0≤t≤T

[[
St – SB

t
]2 +

[
It – IB

t
]2 +

[
Vt – V B

t
]2]

)
≤ C1�

1– 1
l + C6�

≤ C3�
1– 1

l . (3.35)

The proof is completed. �

Remark 3.1 Theorem 3.2 shows that S(t), I(t), V (t) be the true solution and SB
t , IB

t , V B
t be

the BIM approximate solution are close to each other in the sense, and the BIM converges
to the true solution of stochastic SIVS epidemic model with order 1

2 (1 – 1
l ).
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4 Numerical experiments
In this section, we will give one example to illustrate the theoretical results. Let us consider
the following stochastic SIVS epidemic model with scalar Brownian motion.

⎧
⎪⎪⎨

⎪⎪⎩

dS = [(1 – p)μ + αI – (μ + ψ)S – βSI] dt – σSI dw(t),

dI = [βSI + (1 – e)βVI – (μ + α)I] dt + σSI dw(t) + (1 – e)σVI dw(t),

dV = [pμ + ψS – μV – (1 – e)βVI] dt – (1 – e)σVI dw(t),

where initial data (S(0), I(0), V (0)) = (0.8, 0.1, 0.2), with parameter values p = 0.8, β = 0.65,
μ = 0.43, α = 0.2, ψ = 0.32, e = 0.2 and σ = 1.3.

Now, we resort MATLAB to investigate the numerical approximation solution of EM
scheme and BIM scheme for the stochastic epidemic model. And fixing T = 100, � = 0.05.
We choose the control function Ck = (βIk + μ + ψ)� + σ Ik|�wk|, Dk = (μ + α)� + σ (Sk +
Vk)|�wk| and Ek = (βIk + μ)� + σ Ik|�wk|. Then we compare the BIM and EM method in
Fig. 1.

Figure 1 draws the numerical solution obtained from BIM and EM method. We present
results for three different variables for the SIVS model. Figure 1(a) delineates the path of
the EM solution and BIM numerical solution for S(t). Figure 1(b) depicts the sample paths
of the EM solution and BIM numerical solution for I(t). Figure 1(c) describes the sample
paths of the EM solution and BIM numerical solution for V (t). Through the comparison
between EM and BIM method, we clearly that the numerical solution of BIM can pre-
serve positivity, and the EM path becomes negative. That is to say, the EM method cannot
maintain the positivity of Fig. 1.

Figure 1 The EM and BIM method numerical simulations of solution S(t), I(t), V(t) for model (1.1)
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Table 1 Percentage of negative paths for the EM scheme and BIM

Number S I V

� = 0.1 � = 0.05 � = 0.01 � = 0.1 � = 0.05 � = 0.01 � = 0.1 � = 0.05 � = 0.01

EM 33.15% 28.67% 13.59% 32.55% 20.77% 15.35% 20.68% 15.56 % 12.56%
BIM 0% 0% 0% 0% 0% 0% 0% 0% 0%

In Table 1, we propose the percentage of negative paths simulating the stochastic SIVS
epidemic model (1.1). Just as the theoretical results, by averaging overall of the 1000 sam-
ples, we found that the EM method have negative values on a certain probability of sus-
ceptible S, infected I and vaccinated V , respectively. But the BIM can preserve positivity
for all step sizes in [0, T]. This analysis may offer us some advise when we are faced with
epidemic diseases.

5 Conclusions
The positivity-preserving numerical method for the stochastic SIVS epidemic model has
been systematically discussed in this paper. First, we propose a SIVS epidemic model with
vaccination and investigate the EM numerical approximate solution to the model (1.1).
Meanwhile, we prove the convergence property of EM approximate solution to the true
solution. Then we establish the balanced implicit method for the stochastic SIVS model.
Preserving positivity of the proposed method is proved. Numerical results reveal that the
BIM is verifying the availability of the approach for maintaining positivity.

Another interesting topic should be further conducted to reveal how to construct a nu-
merical method preserving positivity for stochastic age-structured SIVS epidemic model.
We regard that as our future work.
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