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Abstract
The goal of this study is to offer an exclusive functional conversion to produce
(n + 1)-dimensional dual-mode nonlinear equations. This transformation has been
implemented and new (3 + 1)-dimensional dual-mode Gradner-type and KdV-type
have been established. Finally, the simplified bilinear method is used to tell the
necessary conditions on these new models to have multiple singular-solitons.
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1 Introduction
The main upstream of understanding the physical nature of mathematical models arising
in different disciplines of science is to extract their traveling wave solutions. Seeking for
possible reliable solutions require suggesting and developing mathematical methods with
supportive geometric analysis such as conservation laws and symmetry analysis [1–10].

Traveling wave solutions have different types which give a complete understanding of
the dynamics of a particular physical model. Solitons, kinks, and periodics are the most
popular types that propagate as single-moving-waves as in KdV, mKdV, and Burgers’. But,
in the case of Boussinesq equation, its traveling wave solutions propagate as dual-waves
with interaction phase velocity.

The phenomenon of dual-waves has been adopted by Korsunsky and developed by
Wazwaz [11, 12] when they considered the KdV equation of second order in time which
reads

φtt – s2φxx +
(

∂

∂t
– αs

∂

∂x

)
φφx +

(
∂

∂t
– βs

∂

∂x

)
φxxx = 0, (1.1)

where φ = φ(x, t) is a field function, s is the interaction phase velocity, α is the nonlinearity
factor, and β is the dispersive factor with s ≥ 0, |α| ≤ 1, |β| ≤ 1, and we refer to equation
(1.1) as the two-mode KdV equation (TMKdV). The equation given in (1.1) was revisited
by Alquran and Jarrah, and new Jacobi elliptic sine-cosine solutions were obtained [13].
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Inspired by the form of TMKdV, many new two-mode or dual-mode models have
been established. Two-mode Burgers equation (TMBE) and two-mode fifth-order KdV
equations (TMFKdV) [14, 15], the two-mode higher-order Boussinesq–Burger system
[16], two-mode coupled Burgers equation [17], two-mode coupled modified Korteweg–
de Vries [18], two-mode coupled Korteweg–de Vries [19], two-mode Korteweg–de Vries–
Burgers equation [20], the weak-dissipative two-mode perturbed Burgers and Ostro-
vsky models [21], two-mode Kuramoto–Sivashinsky [22], the dual-mode nonlinear
Schrodinger’s equation and Kerr-law nonlinearity [23], the two-mode second- and third-
order dispersive Fisher [24, 25] and the dual-mode Kadomtsev–Petviashvili model with
strong-weak surface tension [26]. Single and multiple soliton/kink solutions have been ob-
tained for the aforementioned models by using a simplified bilinear method, tanh method,
sine-cosine method, Kudryashov method, and the (G′/G)-expansion method.

The motivation of this work is to introduce for the first time a formulation of (n + 1)-
dimensional dual-mode equations and to establish new (3 + 1)-dimensional dual-mode
equations of type Gardner and KdV. Also, we aim to find the necessary constraint con-
ditions that enable such equations possess soliton solutions, singular soliton solutions,
multiple soliton solutions, and multiple singular soliton solutions by using the simplified
bilinear method.

The forms of single-mode (3 + 1)-dimensional Gardner and KdV-type equations are,
respectively, read as

vt + 6lvvx + vxxx –
3
2

k2v2vx + 3h2∂–1
x vyy – 3khvx∂

–1
x vy + 3h2∂–1

x vzz – 3khvx∂
–1
x vz = 0, (1.2)

and

vt + 6vxvy + vxxy + vxxxxz + 60v2
xvz + 10vxxxvz + 20vxvxxz = 0. (1.3)

The above two equations are widely used in physics and its applications such as quan-
tum field theory, plasma physics, and fluid physics. Also, different types of solutions have
been obtained by using many methods such as Hirota’s direct method, the Casorati and
Grammian determinant solutions, and the inverse scattering method [27–30].

2 Formulation of (n + 1)-dimensional dual-mode equations
Wazwaz and Korsunsky [11, 12, 14, 15] established the (1 + 1)-dimensional two-mode
equation in a scaled form as

vtt – c2vxx +
(

∂

∂t
– cb

∂

∂x

)
L(vmx) +

(
∂

∂t
– cd

∂

∂x

)
N(v, vx, . . .) = 0, (2.1)

where m ≥ 2, L(vkx) is a linear term, N(v, vx, . . .) is a nonlinear term, c > 0 is the phase
velocities, x ∈ (–∞,∞), t > 0, |b| ≤ 1, and |d| ≤ 1.

In this study we propose a new scale for the (n + 1)-dimensional dual-mode equations
in the variables t, x1, x2, x3, . . . , xn. The new scale is suggested to have the following form:

0 = vtt –
n∑

i=1

c2vxixi +

(
∂

∂t
–

n∑
i=1

cai
∂

∂xi

)
L +

(
∂

∂t
–

n∑
i=1

cbi
∂

∂xi

)
N , (2.2)
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where L and N are, respectively, linear and nonlinear, |ai| ≤ 1, and |bi| ≤ 1, i = 1, 2, . . . , n.
Note that when c = 0 and integrating once with respect to t, (2.2) is reduced to the standard
single-mode (n + 1)-dimensional equation.

3 Analysis of the method
In this section, we give a brief description of the simplified bilinear method to find N-
soliton solutions for nonlinear partial differential equations (NPDEs) as follows:

First, we substitute

v(x1, x2, . . . , xn, t) = eωi(x1,x2,...,xn ,t),

where

ωi(x1, x2, . . . , xn, t) =
n∑

j=1

lji xj – λit, i = 1, 2, 3, . . . , N ,

in the problem under consideration, to find the relation among lji and λi. To find the soli-
ton solutions, we use an appropriate transformation formula. We often use one of the
following formulas:

v(x1, x2, . . . , xn, t) = R ln f (x1, x2, . . . , xn, t)

v(x1, x2, . . . , xn, t) = R
(
ln f (x1, x2, . . . , xn, t)

)
xi

,

v(x1, x2, . . . , xn, t) = R
(
ln f (x1, x2, . . . , xn, t)

)
xixj

,

where i, j ∈ {1, 2, . . . , N}, R ∈R.

For one-soliton solutions, we use the auxiliary function

f (x1, x2, . . . , xn, t) = 1 + c1eωi(x1,x2,...,xn ,t), c1 = ±1.

For two-soliton solutions, we use the auxiliary function

f (x1, x2, . . . , xn, t) = 1 + c1eω1 + c2eω2 + c1c2ν12eω1+ω2 , c1 = c2 = ±1.

For three-soliton solutions, we use the auxiliary function

f (x1, x2, . . . , xn, t) = 1 + c1eω1 + c2eω2 + c3eω3 + c1c2ν12eω1+ω2

+ c1c3ν13eω1+ω3 + c2c3ν23eω2+ω3 + c1c2c3ν123eω1+ω2+ω3 ,

c1 = c2 = c3 = ±1,

provided that three-soliton solutions exist if ν123 = ν12ν13ν23. Moreover, for any nonlinear
PDEs that have three-soliton solutions, they also have N-soliton solutions for N ≥ 4.

4 Applications
The purposes of this section is to apply the above described method to solve new (3 + 1)-
dimensional dual-mode nonlinear PDEs.
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4.1 Soliton solutions for (3 + 1)-dimensional dual-mode Gardner equation
Applying the suggested prescribed scale (2.2) on (1.2), the (3 + 1)-dimensional dual-mode
Gardner equation will have the following form:

0 = vtt – c2vxx – c2vyy – c2vzz

+
(

∂

∂t
– ca1

∂

∂x
– ca2

∂

∂y
– ca3

∂

∂z

){
vxxx + 3h2∂–1

x vyy + 3h2∂–1
x vzz

}

+
(

∂

∂t
– cb1

∂

∂x
– cb2

∂

∂y
– cb3

∂

∂z

)

×
{

6lvvx –
3
2

k2v2vx – 3khvx∂
–1
x vy – 3khvx∂

–1
x vz

}
. (4.1)

We aim to find the needed necessary conditions in order to obtain multiple soliton and
multiple singular-soliton solutions by using a simplified bilinear method [31–41]. To drop
the presence of the operator ∂–1

x , we use the transformation

v(x, y, z, t) = wx(x, y, z, t).

Accordingly, a new equivalent version of (3 + 1)-TMGE (4.1) is given by

0 = wxtt – c2wxxx – c2wxyy – c2wxzz + wxxxxt – ca1wxxxxx – ca2wxxxxy – ca3wxxxxz

+ 3h2wyyt – 3h2ca1wyyx – 3h2ca2wyyy – 3h2ca3wyyz

+ 3h2wzzt – 3h2ca1wzzx – 3h2ca2wzzy – 3h2ca3wzzz

+ 6l(wxwxx)t – 6lcb1(wxwxx)x – 6lcb2(wxwxx)y – 6lcb3(wxwxx)z

–
3
2

k2(w2
xwxx

)
t +

3
2

k2cb1
(
w2

xwxx
)

x +
3
2

k2cb2
(
w2

xwxx
)

y +
3
2

k2cb3
(
w2

xwxx
)

z

– 3kh(wxxwy)t + 3khcb1(wxxwy)x + 3khcb2(wxxwy)y + 3khcb3(wxxwy)z

– 3kh(wxxwz)t + 3khcb1(wxxwz)x + 3khcb2(wxxwz)y + 3khcb3(wxxwz)z. (4.2)

Inserting

w(x, y, z, t) = eωi(x,y,z,t)

with

ωi(x, y, z, t) = αix + βiy + ζiz – γit, i = 1, 2, 3, . . . , N ,

into the linear terms of (4.2), we get the dispersion relations

γi =
–(α4

i + 3h2β2
i + 3h2ζ 2

i ) ±
√

(α4
i + 3h2β2

i + 3h2ζ 2
i )2 + 4αi�i

2αi
, (4.3)
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where

�i =
(
c2α3

i + ca1α
5
i + ca2α

4
i βi + ca3α

4ζi + c2β2
i αi

+ 3h2ca1β
2
i αi + 3h2ca2β

3
i + 3h2ca3β

2
i ζi

+ c2αiζ
2
i + 3h2ca1ζ

2
i αi + 3h2ca2ζ

2
i βi + 3h2ca3ζ

3
i
)
. (4.4)

Now, we consider the Cole–Hopf transformation

v(x, y, t) = R
(
ln f (x, y, z, t)

)
x (4.5)

which leads to

w(x, y, t) = R ln f (x, y, z, t) (4.6)

provided that R is a constant and f (x, y, z, t) is an auxiliary function. For the one-soliton
solution, we consider

f (x, y, z, t) = 1 + c1eα1x+β1y+ζ1z–
–(α4

1 +3k2β2
1 +3h2ζ2

1 )±
√

(α4
1 +3k2β2

1 +3h2ζ2
1 )2+4α1�1

2α1
t , (4.7)

where c1 = ±1. Following (4.3), inserting (4.6) and (4.7) into (4.2) and solving for R, the
one soliton solution of (4.2) exists if

R =
2
k

, (4.8)

a1 = a2 = a3 = b1 = b2 = b3,

β1 =
2α1l – kα2

1 – hkζ1

hk
.

By the Cole–Hopf transformation (4.6), we conclude the one-soliton solution of (4.2) as

w(x, y, z, t) =
2
k

ln
(
1 + c1eα1x+

2α1l–kα2
1 –hkζ1

hk y+ζ1z–
–(α4

1 +3k2β2
1 +3h2ζ2

1 )±
√

(α4
1 +3k2β2

1 +3h2ζ2
1 )2+4α1�1

2α1
t),

and then,

v(x, y, z, t) =
2
k

α1c1e
α1x+

2α1 l–kα2
1 –hkζ1

hk y+ζ1z–
–(α4

1 +3k2β2
1 +3h2ζ2

1 )±
√

(α4
1 +3k2β2

1 +3h2ζ2
1 )2+4α1�1

2α1
t

1 + c1eα1x+
2α1 l–kα2

1 –hkζ1
hk y+ζ1z–

–(α4
1 +3k2β2

1 +3h2ζ2
1 )±

√
(α4

1 +3k2β2
1 +3h2ζ2

1 )2+4α1�1
2α1

t

.

In the case c1 = 1, we get the single-soliton solution as follows:

v(x, y, z, t) =
2
k

α1eα1x+
2α1 l–kα2

1 –hkζ1
hk y+ζ1z–

–(α4
1 +3k2β2

1 +3h2ζ2
1 )±

√
(α4

1 +3k2β2
1 +3h2ζ2

1 )2+4α1�1
2α1

t

1 + eα1x+
2α1 l–kα2

1 –hkζ1
hk y+ζ1z–

–(α4
1 +3k2β2

1 +3h2ζ2
1 )±

√
(α4

1 +3k2β2
1 +3h2ζ2

1 )2+4α1�1
2α1

t

=
α1

k

[
1 + tanh

(
ω1(x, y, z, t)

2

)]
.



Jaradat et al. Advances in Difference Equations         (2019) 2019:19 Page 6 of 12

For the case c1 = –1, we get the singular single-soliton solution as follows:

v(x, y, z, t) =
2
k

α1eα1x+
2α1 l–kα2

1 –hkζ1
hk y+ζ1z–

–(α4
1 +3k2β2

1 +3h2ζ2
1 )±

√
(α4

1 +3k2β2
1 +3h2ζ2

1 )2+4α1�1
2α1

t

–1 + eα1x+
2α1 l–kα2

1 –hkζ1
hk y+ζ1z–

–(α4
1 +3k2β2

1 +3h2ζ2
1 )±

√
(α4

1 +3k2β2
1 +3h2ζ2

1 )2+4α1�1
2α1

t

=
α1

k

[
1 + coth

(
ω1(x, y, z, t)

2

)]
,

where

ω1(x, y, z, t) = α1x +
2α1l – kα2

1 – hkζ1

hk
y + ζ1z

–
–(α4

1 + 3h2β2
1 + 3h2ζ 2

1 ) ± √
(α4

1 + 3h2β2
1 + 3h2ζ 2

1 )2 + 4α1�1

2α1
t.

For the two-soliton solutions, we set the auxiliary function

f (x, y, z, t) = 1 + c1eω1(x,y,z,t) + c2eω2(x,y,z,t)t + c1c2ν12eω1(x,y,z,t)+ω2(x,y,z,t), (4.9)

where ci = ±1 and i = 1, 2. Inserting (4.6), (4.8), and (4.9) in (4.2), the two-soliton solution
of (4.2) exists if

a1 = a2 = a3 = b2 = b2 = b3 = ±1, (4.10)

β1 =
2α1l – kα2

1 – hkζ1

hk
, (4.11)

β2 =
2α2l – kα2

2 – hkζ2

hk
, (4.12)

ζ1 = aα1, ζ2 = aα2, (4.13)

ν12 = 0, (4.14)

where a is any real number.
Combining (4.9)–(4.14) and (4.6), the two-soliton solution is

w(x, y, z, t) =
2
k

ln
(
1 + c1eα1x+

2α1l–kα2
1 –ahkα1

hk y+aα1z–
–(α4

1 +3k2β2
1 +3h2ζ2

1 )±
√

(α4
1 +3k2β2

1 +3h2ζ2
1 )2+4α1�1

2α1
t

+ c2eα2x+
2α2 l–kα2

2 –ahkα2
hk y+aα2z–

–(α4
2 +3k2β2

2 +3h2ζ2
2 )±

√
(α4

2 +3k2β2
2 +3h2ζ2

2 )2+4α2�2
2α2

t),

and thus,

v(x, y, z, t) =
2
k

α1c1eω1(x,y,z,t) + α2c2eω2(x,y,z,t)

1 + c1eω1(x,y,z,t) + c2eω2(x,y,z,t) . (4.15)

By setting c1 = c2 = 1 in (4.15), the two-soliton solution is

v(x, y, z, t) =
2
k

α1eω1(x,y,z,t) + α2eω2(x,y,z,t)

1 + eω1(x,y,z,t) + eω2(x,y,z,t) , (4.16)
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and the singular two-soliton solution by substituting c1 = c2 = –1 is

v(x, y, z, t) =
2
k

α1eω1(x,y,z,t) + α2eω2(x,y,z,t)

–1 + eω1(x,y,z,t) + eω2(x,y,z,t) . (4.17)

For the three-soliton solution, we use the auxiliary function

f (x, y, z, t) = 1 + c1eω1(x,y,z,t) + c2eω2(x,y,z,t) + c3eω3(x,y,z,t), (4.18)

where ci = ±1, i = 1, 2, 3. Accordingly, the three-soliton solution is

w(x, y, z, t) =
2
k

ln
(
1 + c1eα1x+

2α1l–kα2
1 –ahkα1

hk y+aα1z–
–(α4

1 +3k2β2
1 +3h2ζ2

1 )±
√

(α4
1 +3k2β2

1 +3h2ζ2
1 )2+4α1�1

2α1
t

+ c2eα2x+
2α2 l–kα2

2 –ahkα2
hk y+aα2z–

–(α4
2 +3k2β2

2 +3h2ζ2
2 )±

√
(α4

2 +3k2β2
2 +3h2ζ2

2 )2+4α2�2
2α2

t

+ c3eα3x+
2α3 l–kα2

3 –ahkα3
hk y+aα3z–

–(α4
3 +3k2β2

3 +3h2ζ2
3 )±

√
(α4

3 +3k2β2
3 +3h2ζ2

3 )2+4α3�3
2α3

t)

and then,

v(x, y, z, t) =
2
k

α1c1eω1(x,y,z,t) + α2c2eω2(x,y,z,t) + α3c3eω3(x,y,z,t)

1 + c1eω1(x,y,z,t) + c2eω2(x,y,z,t) + c3eω3(x,y,z,t) . (4.19)

By setting ci = 1 for i = 1, 2, 3, we obtain the three-soliton solution

v(x, y, z, t) =
2
k

α1eω1(x,y,z,t) + α2eω2(x,y,z,t) + α3eω3(x,y,z,t)

1 + eω1(x,y,z,t) + eω2(x,y,z,t) + eω3(x,y,z,t) . (4.20)

Setting ci = –1 for i = 1, 2, 3, the singular three-soliton solution is

v(x, y, t) =
2
k

α1eω1(x,y,z,t) + α2eω2(x,y,z,t) + α3eω3(x,y,z,t)

–1 + eω1(x,y,z,t) + eω2(x,y,z,t) + eω3(x,y,z,t) . (4.21)

Remark For a finite N , where N ≥ 4 and under the conditions a1 = a2 = a3 = b1 = b2 = b3 =
±1 and βi = 2αil–kα2

i –hkζi
hk , ζi = aαi, i = 1, 2, . . . , N , (4.2) has N-soliton solutions and singular

N-soliton solutions given by [31, 32]

v(x, y, z, t) =
2
k

∑N
i=1αie

αix+
2αi l–kα2

i –ahkαi
hk y+aαiz–

–(α4
i +3h2β2

i +3h2ζ2
i )±

√
(α4

i +3h2β2
i +3h2ζ2

i )2+4αi�i
2αi

t

1 +
∑N

i=1eαix+
2αi l–kα2

i –ahkαi
hk y+aαiz–

–(α4
i +3h2β2

i +3h2ζ2
i )±

√
(α4

i +3h2β2
i +3h2ζ2

i )2+4αi�i
2αi

t

,

and

v(x, y, z, t) =
2
k

∑N
i=1αie

αix+
2αi l–kα2

i –ahkαi
hk y+aαiz–

–(α4
i +3h2β2

i +3h2ζ2
i )±

√
(α4

i +3h2β2
i +3h2ζ2

i )2+4αi�i
2αi

t

–1 +
∑N

i=1eαix+
2αi l–kα2

i –ahkαi
hk y+aαiz–

–(α4
i +3h2β2

i +3h2ζ2
i )±

√
(α4

i +3h2β2
i +3h2ζ2

i )2+4αi�i
2αi

t

.
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4.2 Soliton solutions for (3 + 1)-dimensional dual-mode KdV-type
Applying the new formulation (2.2), the new (3+1)-dimensional dual-mode KdV equation
((3 + 1)-TMKdV) has the following form:

0 = vtt – c2vxx – c2vyy – c2vzz + vxxyt – ca1vxxyx – ca2vxxyy – ca3vxxyz

+ vxxxxzt – ca1vxxxxzx – ca2vxxxxzy – ca3vxxxxzz

+ 6(vxvy)t – 6cb1(vxvy)x – 6cb2(vxvy)y – 6cb3(vxvy)z

+ 60
(
v2

xvz
)

t – 60cb1
(
v2

xvz
)

x – 60cb2
(
v2

xvz
)

y – 60cb3
(
v2

xvz
)

z

+ 10(vxxxvz)t – 10cb1(vxxxvz)x – 10cb2(vxxxvz)y – 10cb3(vxxxvz)z

+ 20(vxvxxz)t – 20cb1(vxvxxz)x – 20cb2(vxvxxz)y – 20cb3(vxvxxz)z. (4.22)

Inserting

w(x, y, z, t) = eωi(x,y,z,t)

with

ωi(x, y, z, t) = αix + βiy + ζiz – γit, i = 1, 2, 3, . . . , N ,

into the linear terms of (4.22), we get the dispersion relations

γi =
(α2

i βi + α4
i ζi) ±

√
(α2

i βi + α4
i ζi)2 + 4�i

2
, (4.23)

where

�i =
(
c2α2

i + c2β2
i + c2ζ 2

i + ca1α
3
i βi + ca2α

2
i β

2
i

+ ca3α
2
i βiζi + ca1α

5
i ζi + ca2α

4
i βiζi + ca3α

4
i ζ

2
i
)
.

Now, we consider the Cole–Hopf transformation

v(x, y, t) = R
(
ln f (x, y, z, t)

)
x (4.24)

and the auxiliary function

f (x, y, z, t) = 1 + c1eα1x+β1y+ζ1z–
(α2

i βi+α4
i ζi)±

√
(α2

i βi+α4
i ζi)2+4�i

2 t . (4.25)

Using (4.23), inserting (4.24) and (4.25) into the (3 + 1)-TMGE (4.22) and solving for R, the
one-soliton solution of (4.22) exists if

R = 1,

a1 = a2 = a3 = b2 = b2 = b3.
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Therefore, the one-soliton solution of the (3 + 1)-TMGE is

v(x, y, z, t) =
α1c1eω1/2

1 + c1eω1/2 .

In case c1 = 1, we get the single-soliton solution

v(x, y, z, t) =
αeω1/2

1 + eω1/2

= α1

[
1 + tanh

(
ω1(x, y, z, t)

4

)]
,

and for the case c1 = –1, we get the singular single-soliton solution

v(x, y, z, t) =
α1eω1/2

–1 + eω1/2

= α1

[
1 + coth

(
ω1(x, y, z, t)

4

)]
.

For the two-soliton solutions, we use the auxiliary function

f (x, y, z, t) = 1 + c1eω1(x,y,z,t) + c2eω2(x,y,z,t)t + c1c2ν12eω1(x,y,z,t)+ω2(x,y,z,t), (4.26)

where ci = ±1 and i = 1, 2. Inserting (4.23), (4.24), and (4.26) in (4.22), the two-soliton
solution of (4.22) exists if

R = 1,

a1 = a2 = a3 = b2 = b2 = b3 = ±1,

v12 =
(α1 – α2)((α2

1β1 + 2α1α2β1 – 2α1α2β2 – α2
2β1) + θ1)

θ2
where,

θ1 =
[
α4

1ζ2 + (2α1α2ζ1 – 2α1α2ζ2)
(
2α2

1 – 3α1α2 + 2α2
2
)

– α4
2ζ1

]
,

θ2 = (α1 + α2)
[(

α2
1β2 + 2α1α2β1 + 2α1α2β2 + α2

2β1
)

+ θ3
]
,

θ3 =
[
α4

1ζ1 + (2α1α2ζ1 + 2α1α2ζ2)
(
2α2

1 + 3α1α2 + 2α2
2
)

+ α4
1ζ1

]
.

Therefore, the two-soliton solution of the (3 + 1)-TMKDVE is given by

v(x, y, z, t) =
α1c1eω1/2 + α2c1eω1/2 + c1c2v12e(ω1+ω2)/2

(α1+α2)

1 + α1c1eω1/2 + α2c1eω1/2 + c1c2v12eω1
.

In case c1 = 1, we get the two-soliton solution

v(x, y, z, t) =
α1eω1/2 + α2eω1/2 + v12e(ω1+ω2)/2

(α1+α2)

1 + eω1/2 + eω2/2 + v12e(ω1+ω2)/2 ,

and for the case c1 = –1, we get the singular two-soliton solution

v(x, y, z, t) =
–α1eω1 – α2eω1 + v12e(ω1+ω2)/2

(α1+α2)

1 – α1eω1/2 – α2eω2/2 + v12e(ω1+ω2)/2 .
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We should remark here that we cannot find three or more soliton solutions for (4.22)
because this type of KdV equation is not integrable.

5 Conclusions
In this work, we proposed a functional conversion that produces (n + 1)-dimensional dual-
mode equations of the form

0 = vtt –
n∑

i=1

c2vxixi +

(
∂

∂t
–

n∑
i=1

cbi
∂

∂xi

)
L +

(
∂

∂t
–

n∑
i=1

cdi
∂

∂xi

)
N .

These types of equations describe the spreading of dual-waves moving simultaneously
with interaction phase velocity. The simplified bilinear method with the aid of some Cole–
Hopf transformations is used to study (3 + 1)-dimensional dual-mode Gardner-type and
KdV-type. We concluded the following results:

• Kink solutions and singular kink solutions for (3 + 1)-TMGE exist only if
a1 = a2 = a3 = b1 = b2 = b3 and β1 = 2α1l–kα2

1 –hkζ1
hk , while the N-soliton and singular

N-soliton solutions exist only if a1 = a2 = a3 = b1 = b2 = b3 = ±1, ζi = aαi and
βi = 2αil–kα2

i –hkζi
hk , i = 1, 2, . . . , N .

• One-soliton solutions for (3 + 1)-TMKdV exist only if a1 = a2 = a3 = b2 = b2 = b3 and
two-soliton solutions exist if a1 = a2 = a3 = b2 = b2 = b3 = ±1. This equation is
non-integrable, it possesses no k-soliton solutions for k = 3, 4, . . . .

As future work, we may consider a fractional version of dual-mode equations and conduct
the same analysis as that used in [42–47].
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