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Motivated by such problems, here in the same way, we are concerned with a sequen-
tial second order Cauchy problem with nonlocal condition in the framework of the con-
formable derivative. Precisely, we are interested in the following sequential evolution con-
formable differential equations of second order with nonlocal condition:

⎧
⎪⎪⎨

⎪⎪⎩

dα

dtα [ d
αx(t)
dtα ] = Ax(t) + f (t,x(t)), 0 < t ≤ τ , 0 < α < 1,

x(0) = x0 + g(x),
dαx(0)
dtα = x1 + h(x).

(1.1)

The functional framework of problem (1.1) is described as follows. The parameter t be-
longs to an interval [0, τ ], where τ is a fixed positive real number. The operator A is the
infinitesimal generator of a cosine family {C(t),S(t)}t∈R acting on a Banach space (X, ‖ · ‖).
The elements x0 and x1 are two fixed vectors in the Banach space X. The function f , con-
sidered in equation (1.1), is defined on the set [0, τ ] ×X and has its values in X. We denote
by C = C([0, τ ],X) the Banach space of continuous functions from [0, τ ] onto X equipped
with the norm |x| = sup{‖x(t)‖, t ∈ [0, τ ]}. We give precisely that g and h are two functions
defined on C with values in X.

Based on the fact that the sequential problem (1.1) is well adapted with the fractional
Laplace transform [1], we will be interested in the mild solutions of the above nonlocal
Cauchy problem. Our method shares similarities with the standard techniques used in
the classical cases [11, 21]. Precisely, we use the classical cosine family to elaborate a for-
mula of Duhamel type. This formula leads us to treating our problem by using fixed point
theory. Concretely, under the compactness of the cosine family associated with the op-
erator A and the boundedness condition for the function f (t,x), we prove that problem
(1.1) admits at least one solution. Furthermore, by adding some contraction conditions,
we prove the uniqueness of the mild solution and its continuous dependance with respect
to initial data. Moreover, under some regularity conditions for the function f (t,x) com-
bined with a suitable condition on the domain D(A), we obtain the differentiability of the
mild solution with respect to the conformable derivative.

This paper is summarized as follows. In Sect. 2, we review some tools related to the
conformable derivative as well as some needed results. Section 3 will be devoted to the
statements and the proof of the main results. In Sect. 4, as application, we study a concrete
sequential conformable second order partial differential equation with nonlocal condition.
In Sect. 5, we tried to discuss the problem of a definition for α-cosine family.

2 Preliminaries
We start this by recalling some concepts on conformable calculus [12].

Definition 2.1 The conformable derivative of x of order α at t > 0 is defined as

dαx(t)
dtα

= lim
ε−→0

x(t + εt1–α) – x(t)
ε

.

When the limit exists, we say that x is (α)-differentiable at t.
If x is (α)-differentiable and lim

t−→0+
dαx(t)
dtα exists, then we define

dαx(0)
dtα

= lim
t−→0+

dαx(t)
dtα

.



Bouaouid et al. Advances in Difference Equations         (2019) 2019:21 Page 3 of 13

The (α)-fractional integral of a function x is given by

Iα(x)(t) =
∫ t

0
sα–1x(s)ds.

Theorem 2.1 If x is a continuous function in the domain of Iα , then we have

dα(Iα(x)(t))
dtα

= x(t).

The following definition gives us the adapted Laplace transform to the conformable
derivative [1].

Definition 2.2 The fractional Laplace transform of order α starting from 0 of x is defined
by

Lα

(
x(t)

)
(λ) :=

∫ +∞

0
tα–1e–λ tα

α x(t)dt.

The action of the fractional Laplace transform on the conformable derivative is given by
the following proposition.

Proposition 2.1 If x(t) is differentiable, then we have

Iα
(
dαx
dtα

)

(t) = x(t) – x(0),

Lα

(
dαx(t)
dtα

)

(λ) = λLα

(
x(t)

)
(λ) – x(0).

Now, we recall some results concerning the cosine family theory [21].

Definition 2.3 A one-parameter family (C(t))t∈R of bounded linear operators on X is
called a strongly continuous cosine family if and only if:

1. C(0) = I ;
2. C(s + t) + C(s – t) = 2C(s)C(t) for all t, s ∈ R;
3. t �−→ C(t)x is continuous for each fixed x ∈ X .

We define also the sine family by

S(t)x :=
∫ t

0
C(s)xds.

The infinitesimal generator A of a strongly continuous cosine family ((C(t))t∈R, (S(t))t∈R)
on X is defined by

D(A) =
{
x ∈ X, t �−→ C(t)x is a twice continuously differentiable function

}
,

Ax =
d2C(0)x

dt2 .

We end this section with the following results.
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Proposition 2.2 The following assertions are true.
1. There exist constants K ≥ 1 and ω ≥ 0 such that

∣
∣S(t) – S(s)

∣
∣ ≤ K

∣
∣
∣
∣

∫ t

s
exp

(
ω|r|)

∣
∣
∣
∣dr for all t, s ∈ R.

2. If x ∈ X and t, s ∈ R, then
∫ t
s S(r)xdr ∈ D(A) and

A
∫ t

s
S(r)xdr = C(t)x – C(s)x.

3. If t �−→ C(t)x is differentiable, then S(t)x ∈ D(A) and dC(t)
dt x = AS(t)x.

4. For λ such that Re(λ) > ω, we have

λ2 ∈ ρ(A),
(
ρ(A) : is the resolvent set of A

)
,

λ
(
λ2I – A

)–1x =
∫ +∞

0
e–λtC(t)xdt, x ∈ X,

(
λ2I – A

)–1x =
∫ +∞

0
e–λtS(t)xdt, x ∈ X.

3 Main results
Before presenting our main results, we introduce the following assumptions:

(H1) The function f (t, ·) : X −→ X is continuous, and for all r > 0, there exists a function
μr ∈ L∞([0, τ ],R+) such that sup

‖x‖≤r
‖f (t,x)‖ ≤ μr(t) for all t ∈ [0, τ ];

(H2) The function f (·,x) : [0, τ ] −→ X is continuous for all x ∈ X ;
(H3) There exists a constant l1 > 0 such that ‖g(y) – g(x)‖ ≤ l1|y – x| for all x, y ∈ C ;
(H4) There exists a constant l2 > 0 such that ‖h(y) – h(x)‖ ≤ l2|y – x| for all x, y ∈ C .

3.1 Existence and uniqueness of the mild solution
Using the fractional Laplace transform in equation (1.1), we get

Lα

(
x(t)

)
(λ) = λ

(
λ2 – A

)–1[x0 + g(x)
]

+
(
λ2 – A

)–1[x1 + h(x)
]

+
(
λ2 – A

)–1Lα

(
f
(
t,x(t)

))
(λ).

According to the inverse fractional Laplace transform, we find Duhamel’s formula

x(t) = C
(
tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds.

Taking α = 1, we will have the standard one [11, 21]. Thus, we can introduce the following
definition.

Definition 3.1 We say that x ∈ C is a mild solution of equation (1.1) if the following as-
sertion is true:

x(t) = C
(
tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds,

t ∈ [0, τ ].
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Theorem 3.1 If (S(t))t>0 is compact and (H1)–(H4) are satisfied, then the Cauchy problem
(1.1) has at least one mild solution provided that

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ + l2 sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣ < 1.

Proof Choosing

r ≥
(

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖x0‖ +
∥
∥g(0)

∥
∥
]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[
τα

α
|μr|L∞([0,τ ],R+) + ‖x1‖ +

∥
∥h(0)

∥
∥

])

/(

1 – l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ – l2 sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

,

and let Br = {x ∈ C, |x| ≤ r}. Next, for x ∈ Br define the operators Γ1 and Γ2 by

Γ1(x)(t) = C
(
tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
, t ∈ [0, τ ],

Γ2(x)(t) =
∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds, t ∈ [0, τ ].

By using assumptions (H1)–(H4), we show that Γ1(x)+Γ2(y) ∈ Br whenever x, y ∈ Br . More-
over, the operator Γ1 is a contraction on Br .

Now, we will show that Γ2 is continuous and compact.
Continuity of Γ2. Let (xn) ⊂ Br such that xn −→ x in Br . Then, by using assumption (H1),

we obtain ‖sα–1[f (s,xn(s)) – f (s,x(s))]‖ ≤ 2μr(s)sα–1 and f (s,xn(s)) −→ f (s,x(s)) as n −→
+∞.

Also, we have

Γ2(xn)(t) – Γ2(x)(t) =
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s,xn(s)

)
– f

(
s,x(s)

)]
ds, t ∈ [0, τ ].

Accordingly, we obtain

∣
∣Γ2(xn) – Γ2(x)

∣
∣ ≤ sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∫ τ

0
sα–1∥∥f

(
s,xn(s)

)
– f

(
s,x(s)

)∥
∥ds.

By using the Lebesgue dominated convergence theorem, we get

lim
n−→+∞

∣
∣Γ2(xn) – Γ2(x)

∣
∣ = 0.

Compactness of Γ2. Claim 1: We prove that {Γ2(x)(t),x ∈ Br} is relatively compact in X.
For some fixed t ∈ ]0, τ [ let ε ∈ ]0, t[, x ∈ Br and define the operator Γ ε

2 by

Γ ε
2 (x)(t) =

∫ (tα–εα )
1
α

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds.
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The relative compactness of {Γ ε
2 (x)(t),x ∈ Br} in X is guaranteed by the compactness of

(S(t))t>0. Using assumption (H1), we have

∥
∥Γ ε

2 (x)(t) – Γ2(x)(t)
∥
∥ ≤ |μr|L∞([0,τ ],R+) sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣
εα

α
.

Therefore, we conclude that {Γ2(x)(t),x ∈ Br} is relatively compact in X. It is clear that the
set {Γ2(x)(0),x ∈ Br} is compact. Finally, {Γ2(x)(t),x ∈ Br} is relatively compact in X for all
t ∈ [0, τ ].
Claim 2: We show that Γ2(Br) is equicontinuous.
Let t1, t2 ∈ ]0, τ ] such that t1 < t2. We have

Γ2(x)(t2) – Γ2(x)(t1) =
∫ t1

0
sα–1

[

S
(
tα2 – sα

α

)

– S
(
tα1 – sα

α

)]

f
(
s,x(s)

)
ds

+
∫ t2

t1
sα–1S

(
tα2 – sα

α

)

f
(
s,x(s)

)
ds.

Therefore, we obtain

∥
∥Γ2(x)(t2) – Γ2(x)(t1)

∥
∥ ≤ |μr|L∞([0,τ ],R+)

[
K
ω2

(

exp

(
ωtα2
α

)

– exp

(
ωtα1
α

))

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

(
tα2 – tα1

α

)]

.

When ω = 0, we obtain

∥
∥Γ2(x)(t2) – Γ2(x)(t1)

∥
∥ ≤ |μr|L∞([0,τ ],R+)

(
Ktα1
α

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)[
tα2 – tα1

α

]

.

We conclude that the functions Γ2(x) (x ∈ Br) are equicontinuous at t ∈ [0, τ ]. By using
Arzela–Ascoli theorem, we prove that Γ2 is compact. Finally, the Krasnoselskii fixed point
theorem completes the proof. �

To obtain the uniqueness of the mild solution, we will need the following assumption:
(H5) There exists a constant l3 > 0 such that ‖f (t, y) – f (t,x)‖ ≤ l3‖y – x‖ for all x, y ∈ X

and t ∈ [0, τ ].

Theorem 3.2 Assume that (H2)–(H5) hold. Then the Cauchy problem (1.1) has a unique
mild solution provided that

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ +

(

l2 + l3
τα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣ < 1.

Proof Let t ∈ [0, τ ] and define the operator Γ : C −→ C by

Γ (x)(t) = C
(
tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds.
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Next, let be x, y ∈ C , then we have

Γ (y)(t) – Γ (x)(t) = C
(
tα

α

)
[
g(y) – g(x)

]
+ S

(
tα

α

)
[
h(y) – h(x)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s, y(s)

)
– f

(
s,x(s)

)]
ds.

Accordingly, we obtain

∥
∥Γ (y)(t) – Γ (x)(t)

∥
∥ ≤

[

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ +

(

l2 + l3
τα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

]

|y – x|.

Then we get

∣
∣Γ (y) – Γ (x)

∣
∣ ≤

[

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ +

(

l2 + l3
τα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

]

|y – x|.

Therefore, Γ has a unique fixed point in C . �

3.2 Continuous dependence of the mild solution
Now, we will give some results concerning the continuous dependence of the mild solu-
tion.

Theorem 3.3 Assume that the conditions of Theorem 3.2 are satisfied. Let x0, y0,x1, y1 ∈ X
and denote by x, y the solutions associated with (x0,x1) and (y0, y1), respectively. Then we
have

|y – x| ≤ α

α – l3τα – αl1 – αl2

[

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣‖y0 – x0‖ + sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣‖y1 – x1‖

]

.

Proof We have

y(t) – x(t) = C
(
tα

α

)
[
y0 – x0 + g(y) – g(x)

]
+ S

(
tα

α

)
[
y1 – x1 + h(y) – h(x)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s, y(s)

)
– f

(
s,x(s)

)]
ds.

Since we obtain

∥
∥y(t) – x(t)

∥
∥ ≤ sup

t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖y0 – x0‖ + l1|y – x|]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[

‖y1 – x1‖ +
(

l2 +
l3τα

α

)

|y – x|
]

.

Accordingly, we show that

|y – x| ≤ sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖y0 – x0‖ + l1|y – x|]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[

‖y1 – x1‖ +
(

l2 +
l3τα

α

)

|y – x|
]

.
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Finally, we get the following estimation:

|y – x| ≤ α

α – l3τα – αl1 – αl2

[

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣‖y0 – x0‖ + sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣‖y1 – x1‖

]

. �

Theorem 3.4 Assume that the conditions of Theorem 3.2 are satisfied. Let x0, y0,x1, y1 ∈ X
and denote by x, y the solutions associated with (x0,x1) and (y0, y1), respectively. Then we
have

|y – x| ≤
[ sup

t∈[0,τ ]
|C( tα

α
)|‖y0 – x0‖ + sup

t∈[0,τ ]
|S( tα

α
)|‖y1 – x1‖

1 – [l1 sup
t∈[0,τ ]

|C( tα
α

)| + l2 sup
t∈[0,τ ]

|S( tα
α

)|] exp( l3τα

α
sup
t∈[0,τ ]

|S( tα
α

)|)
]

× exp

(
l3τα

α
sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

provided that

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ + l2 sup

t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣] exp

(
l3τα

α
sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

< 1.

Proof For t ∈ [0, τ ], we have

y(t) – x(t) = C
(
tα

α

)
[
y0 – x0 + g(y) – g(x)

]
+ S

(
tα

α

)
[
y1 – x1 + h(y) – h(x)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s, y(s)

)
– f

(
s,x(s)

)]
ds.

Then we get

∥
∥y(t) – x(t)

∥
∥ ≤ sup

t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖y0 – x0‖ + l1|y – x|]

+ sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[‖y1 – x1‖ + l2|y – x|]

+ l3 sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∫ t

0
sα–1∥∥y(s) – x(s)

∥
∥ds.

Therefore, we show that

|y – x| ≤
[

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

[‖y0 – x0‖ + l1|y – x|] + sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

[‖y1 – x1‖ + l2|y – x|]
]

× exp

(
l3τα

α
sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

.

Finally, we conclude that

|y – x| ≤
[ sup

t∈[0,τ ]
|C( tα

α
)|‖y0 – x0‖ + sup

t∈[0,τ ]
|S( tα

α
)|‖y1 – x1‖

1 – [l1 sup
t∈[0,τ ]

|C( tα
α

)| + l2 sup
t∈[0,τ ]

|S( tα
α

)|] exp( l3τα

α
sup
t∈[0,τ ]

|S( tα
α

)|)
]

× exp

(
l3τα

α
sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

)

.
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�

Remark 3.1 If we take

C1 =
exp( l3τα

α
sup
t∈[0,τ ]

|S( tα
α

)|)

1 – [l1 sup
t∈[0,τ ]

|C( tα
α

)| + l2 sup
t∈[0,τ ]

|S( tα
α

)|] exp( l3τα

α
sup
t∈[0,τ ]

|S( tα
α

)|) ,

C2 =
α

α – l3τα sup
t∈[0,τ ]

|S( tα
α

)| – αl1 sup
t∈[0,τ ]

|C( tα
α

)| – αl2 sup
t∈[0,τ ]

|S( tα
α

)| .

We have C1 < C2. Then Theorem 3.4 is better than Theorem 3.3.

3.3 Special case of nonlocal conditions
Here, we study a special case of nonlocal conditions, this means that the functions g and
h are given by

g(x) =
n∑

i=1

cix(ti) and h(x) =
n∑

i=1

dix(ti),

where ci, di, i = 1, 2, . . . ,n, are given constants and 0 < t1 < t2 < · · · < tn < τ .

Proposition 3.1 Assume that (H2) and (H5) hold. Then the Cauchy problem (1.1) has a
unique mild solution provided that there exists ε0 ∈ ]0, 1[ such that

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

n∑

i=1

|ci| + sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

n∑

i=1

|di| < ε0.

Proof Define the operator Γ : C −→ C by

Γ (x)(t) = C
(
tα

α

)
[
x0 + g(x)

]
+ S

(
tα

α

)
[
x1 + h(x)

]
+

∫ t

0
sα–1S

(
tα – sα

α

)

f
(
s,x(s)

)
ds,

t ∈ [0, τ ].

Now, we define a new norm | · |α in C by

|x|α =
∣
∣
∣
∣exp

(
–ε(·)α

α

)

x
∣
∣
∣
∣,

where

ε =
l3 sup
t∈[0,τ ]

|S( tα
α

)|
ε0 – sup

t∈[0,τ ]
|C( tα

α
)|∑n

i=1 |ci| – sup
t∈[0,τ ]

|S( tα
α

)|∑n
i=1 |di|

.

For x, y ∈ C and t ∈ [0, τ ], we have

Γ (y)(t) – Γ (x)(t) = C
(
tα

α

)
[
g(y) – g(x)

]
+ S

(
tα

α

)
[
h(y) – h(x)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
[
f
(
s, y(s)

)
– f

(
s,x(s)

)]
ds.
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Therefore, we obtain

∥
∥Γ (y)(t) – Γ (x)(t)

∥
∥ ≤

[

exp

(
εtα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

n∑

i=1

|ci|

+ exp

(
εtα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

n∑

i=1

|di|

+ l3 sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

∫ t

0
sα–1 exp

(

ε
sα

α

)

ds

]

|y – x|α .

Accordingly, we show that

∣
∣Γ (y) – Γ (x)

∣
∣
α

≤
[

sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣

n∑

i=1

|ci| + sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣

( n∑

i=1

|di| +
l3
ε

)]

|y – x|α .

Hence, we conclude that

∣
∣Γ (y) – Γ (x)

∣
∣
α

≤ ε0|y – x|α .

Finally, thanks to the contraction principle, we get the result. �

3.4 Regularity of the mild solution
Here, we need the assumptions:

(H6) The function f is (α)-differentiable of the first variable and differentiable of the sec-
ond variable.

(H7) (x0 + g(x)) ∈ D(A) and t �−→ C(t)[x0 + g(x)] is (α)-differentiable for all x ∈ C .

Theorem 3.5 Assume that (H3)–(H7) hold. Then the mild solution of the Cauchy problem
(1.1) is (α)-differentiable at t ∈ (0, τ ) provided that

l1 sup
t∈[0,τ ]

∣
∣
∣
∣C

(
tα

α

)∣
∣
∣
∣ +

(

l2 + l3
τα

α

)

sup
t∈[0,τ ]

∣
∣
∣
∣S

(
tα

α

)∣
∣
∣
∣ < 1.

Proof The conditions of Theorem 3.2 hold. Then we denote by x the unique mild solution
of the Cauchy problem (1.1). Next, let y be the continuous solution of the following integral
equation:

y(t) = S
(
tα

α

)
[
A

(
x0 + g(x)

)]
+ C

(
tα

α

)
[
x0 + g(x) + f (0,x(0)

]

+
∫ t

0
sα–1S

(
tα – sα

α

)
∂α f
∂sα

(
s,x(s)

)
ds

+
∫ t

0
sα–1S

(
tα – sα

α

)
∂f
∂x

(
s,x(s)

)
y(s)ds, t ∈ [0, τ ].

We have x(t+εt1–α )–x(t)
ε

−→ y(t) as ε −→ 0 for t ∈ (0, τ ). Accordingly, we conclude that x is
(α)-differentiable. �
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4 Application
Consider the nonlocal fractional partial differential equation of the form

∂
1
2

∂t
1
2

∂
1
2 u(t,x)
∂t

1
2

=
∂2u(t,x)

∂x2 +
|u(t,x)|

1 + |u(t,x)|

+
∫ t

0

|u(s,x)|
1 + |u(s,x)| ds, (t,x) ∈ ]0, 1] × ]0,π [, (4.1)

with the following nonlocal conditions:

u(t, 0) = u(t,π ) = 0 and u(0,x) =
∂

1
2 u(0,x)
∂t

1
2

=
n∑

i=1

ciu(ti,x), x ∈ [0,π ], (4.2)

where 0 < t1 < · · · < tn < 1 and c1, . . . , cn are given real constants such that

n∑

i=1

|ci| <
4

10
.

Let X = L2([0,π ]) and define the operator A : X −→ X by

A =
∂2(·)
∂x2 and D(A) =

{
ω ∈ H2(0,π ),ω(0) = ω(π ) = 0

}
.

The operator A generates a cosine family ((C(t))t∈R, (S(t))t∈R). Moreover, we have
|C(t)| ≤ 1 and |S(t)| ≤ 1 for all t ∈ [0, 1]. Next, we consider the following transformations:

z(t)(x) = u(t,x), f
(
t, z(t)

)
=

|z(t)|
1 + |z(t)| +

∫ t

0

|z(s)|
1 + |z(s)| ds,

g(x) = h(x) =
n∑

i=1

ciz(ti).

Then (4.1) and (4.2) become as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
1
2

dt
1
2

d
1
2 z(t)

dt
1
2

= Az(t) + f (t, z(t)), t ∈ ]0, 1],

z(0) = g(x),
d

1
2 z(0)

dt
1
2

= h(x).

(4.3)

Finally, we can verify all the hypotheses of Proposition 3.1. Then, the above Cauchy prob-
lem has a unique mild solution.

5 Comment
By noticing the relation C(t) = C((t 1

α )α) for a cosine family (C(t))t∈R, it comes to us to con-
sider the family of functions t �−→ Cα(t) := C(tα) and to propose as in the case of semigroup
[4] the following definition for α-cosine family.

For a Banach space X, a family ϕα : R −→ X, t �−→ ϕα(t) will be said to be α-cosine family
if it satisfies the following functional relation:

ϕα

(
(t + s)

1
α
)

+ ϕα

(
(t – s)

1
α
)

= 2ϕα

(
t

1
α
)
ϕα

(
s

1
α
)
. (5.1)
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But here, this definition is not as in the case of α-semigroup [4]. It poses a serious problem.
Indeed, the quantity ϕα(t 1

α ) must be defined for all t in R. Then, given a good sense for t 1
α

in the case t is negative, we must consider the complex logarithm function (Ln(z), z ∈ C)
[19] to define t 1

α by e
Ln(t)

α for t < 0. This forces us to take X as a complex Banach space and
to suppose that our α-cosine family (ϕα(t))t∈R can be extended to complex plane C. This
is not surprising if we admit that the α-conformable derivative is well adapted to physical
problems. For example, the symmetry principle in quantum mechanics requires that the
states of a quantum system must be vectors of a complex Hilbert space (a particular Ba-
nach space) [20]. However, if we solve non-sequential evolution conformable differential
equations of second order with nonlocal condition and define their associated α-cosine
family, this can be considered as a valuable addition to the literature.

6 Conclusion
We have obtained Duhamel’s formula for sequential evolution conformable differential
equations of second order with nonlocal condition. Under some suitable conditions, we
have also obtained an existence result for the mild solution. In the case where the contrac-
tion condition type is satisfied, we have proved the uniqueness of the mild solution as well
as its continuous dependence with respect to the initial data.

In the light of the above comment and as the anonymous referee has proposed, it would
be interesting to consider non-sequential conformable second order differential equations
with nonlocal condition in a coming paper.
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