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1 Introduction
In the last decades, fractional calculus has attracted considerable attention. It has been
widely applied in many areas such as fluid dynamics, thermodynamics, and viscoelastic
theory [1, 2]. The nonlocal property of fractional derivative makes fractional calculus be-
ing used in such areas and better results have been obtained. That is, the next state of a
system depends not only on its current state but also on all of its historical states. Note
that the theory of fractional differential equations (FDEs) is one of the important branches
of fractional calculus. In recent years, FDEs in infinite dimensional spaces have been stud-
ied extensively since they are abstract formulations for many problems arising from eco-
nomics, mechanics, and physics. Many researchers focused on the existence of mild so-
lutions of FDEs. In [3], Zhou et al. studied the existence of mild solutions for FDEs with
Caputo fractional derivative. By applying the Laplace transform and probability density
function, they gave a suitable definition of mild solution. Using the same method, Zhou
et al. [4] gave a definition of mild solution for FDEs with Riemann–Liouville fractional
derivative. On the other hand, Hilfer [5] proposed a generalized Riemann–Liouville frac-
tional derivative, Hilfer fractional derivative, which includes Riemann–Liouville fractional
derivative and Caputo fractional derivative. Hilfer fractional derivative is performed, for
example, in the theoretical simulation of dielectric relaxation in glass forming materials.
Inspired by [3, 4], Gu et al. [6] gave a suitable definition of mild solution for FDEs with
Hilfer fractional derivative. Many authors subsequently studied the Hilfer FDEs in infi-
nite dimensional spaces. For more details on the existence of mild solutions for FDEs, see
[7–14] and the references therein.
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The optimal control is one of the important concepts in control theory and plays a vital
role in control systems. For an optimal control problem, the minimization of a criterion
function of the states and control inputs of the system over a set of admissible control
functions are necessary. The system is subject to constrained dynamics and control vari-
ables, among which additional constraints such as final time constraints can be considered.
The optimal control theory has been successfully applied in biology, engineering, econ-
omy, physics, etc. (see [15]). In recent years, many efforts have been made to investigated
the existence of optimal controls for various types of nonlinear FDEs in infinite dimen-
sional spaces. Wang and Zhou [16] considered the existence of mild solutions for a class
of FDEs and optimal controls in the α-norm. Guo [17] obtained a second order necessary
optimality condition for a class of fractional optimal control problems. Kumar [18] estab-
lished sufficient conditions for fractional optimal control of system with fixed delay. Zhu
[19] studied optimal controls for Riemann–Liouville FDEs without Lipschitz assumption.

On the other hand, the deterministic models often fluctuate due to noise or stochas-
tic perturbation, so it is reasonable and practical to import the stochastic effects into the
investigation of FDEs. Meanwhile, the existence of mild solutions and optimal controls
for fractional stochastic differential equations (FSDEs) have received great interest of re-
searchers. More precisely, Wang [20] investigated the mild solutions of a class of FSDEs. By
constructing Picard type approximate sequences, Li [21] studied the existence and unique-
ness of mild solutions for a class of FSDEs with delay driven by fractional Brownian mo-
tion. Ahmed et al. [22] established the existence of mild solutions of Hilfer FSDEs with
nonlocal conditions. Yan [23] studied optimal control problems for a class of FSDEs of
order α ∈ (1, 2]. Balasubramaniam [24] dealt with the solvability and optimal controls for
impulsive FSDEs via resolvent operators. Rihan et al. [25] studied the existence of solu-
tions and optimal control of FSDEs with Hilfer fractional derivative and Poisson jumps.
For more details, see [26–31] and the references therein.

Motivated by the above discussion, in this paper we study the Hilfer FSDEs with nonlocal
conditions in the following form:
⎧
⎨

⎩

Dν,μ
0+ x(t) = Ax(t) + f (t, x(t)) + σ (t) dW (t)

dt , t ∈ J ′ := (0, b],

I(1–ν)(1–μ)
0+ x(t)|t=0 – g(x) = x0,

(1)

where Dν,μ
0+ denotes the Hilfer fractional derivative, ν ∈ [0, 1], μ ∈ ( 1

2 , 1). Let J = [0, b]. A is
the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0 in a real separa-
ble Hilbert space X. Let (�,F , P) be a complete probability space equipped with a fil-
tration {Ft}t∈[0,b] that satisfies the usual hypotheses. The state x(·) takes values in X. Let
K be another separable Hilbert space. W : J × � → K is a standard Q-Wiener process.
f : J × X → X, σ : J → L0

2, and g : C → X are appropriate functions that satisfy some as-
sumptions. L0

2 and C are given spaces to be defined later. x0 is an F0-measurable random
variable with finite second moment.

The aim of this paper is to study the existence of mild solutions and optimal controls
for system (1). Byszewski et al. [32] verified that the nonlocal condition can be applied in
physics with a better effect than the classical initial condition. For example, g(x) may be
given by

g(x) =
m∑

i=1

cix(ti),
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where ci (i = 1, . . . , m) are given constants and 0 < t1 < · · · < tm ≤ b. The study of equations
with nonlocal conditions is therefore meaningful.

An outline of this paper is given as follows. Section 2 introduces some notations and
preliminary facts. In Sect. 3, the existence and uniqueness of mild solutions for system
(1) are established. Optimal control results are proved in Sect. 4. Section 5 presents an
example. Finally, a conclusion is given in Sect. 6.

2 Preliminaries
Some preliminary facts are presented in this section, which is necessary for this paper. For
more details of this section, see [1, 2, 5, 6].

By C(J , X) and C(J ′, X) we denote the spaces of all continuous functions from J to X and
J ′ to X, respectively. We denote

C
(
J , L2(�, X)

)
=
{

x : J → L2(�, X)
∣
∣ x is an Ft-adapted stochastic process, which

is a continuous mapping such that sup
t∈J

E
∥
∥x(t)
∥
∥2 < ∞

}
.

It is a Banach space with the norm ‖x‖C(J ,L2(�,X)) = (supt∈J E‖x(t)‖2) 1
2 .

Let α = ν + μ – νμ, then 1 – α = (1 – ν)(1 – μ) ≥ 0, define

C1–α

(
J , L2(�, X)

)
=
{

x ∈ C
(
J ′, L2(�, X)

) | t1–αx(t) ∈ C
(
J , L2(�, X)

)}
.

For brevity, let us take C = C1–α(J , L2(�, X)). The space C equipped with the norm
‖x‖C = (supt∈J E‖t1–αx(t)‖2) 1

2 is a Banach space.
Let W : J ×� → K be a standard Q-Wiener process on (�,F , P) with the linear bounded

covariance operator Q such that Tr Q < ∞, which is adapted to normal filtration {Ft}t∈[0,b].
Assume that there exist a complete orthonormal system {en}n≥1 in K , a bounded sequence
of nonnegative real numbers {λn}n∈N such that

Qen = λnen, λn ≥ 0, n = 1, 2, . . . ,

and a sequence of independent real-valued Brownian motions {βn}n≥1 such that

〈
W (t), e

〉
=

∞∑

n=1

√
λn〈en, e〉βn(t), e ∈ K , t ∈ [0, b].

Introduce the Hilbert space

L0
2 =
{

f | f is a Hilbert–Schmidt operator from Q
1
2 (K) to X

}
,

whose inner product is defined by

〈ψ ,φ〉L0
2

= tr
[
ψQφ∗], ψ ,φ ∈ L0

2.
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Definition 1 ([1]) The fractional integral of order q with the lower limit 0 for a function
f : [0,∞) → R can be written as

Iq
0+ f (t) =

1

(q)

∫ t

0

f (s)
(t – s)1–q ds, t > 0, q > 0,

where 
(·) is the gamma function.

Definition 2 ([1]) Riemann–Liouville’s derivative of order q with the lower limit 0 for a
function f : [0,∞) → R can be written as

LDq
0+ f (t) =

1

(n – q)

dn

dtn

∫ t

0

f (s)
(t – s)q+1–n ds, t > 0, n = [q] + 1.

Definition 3 ([1]) Caputo’s derivative of order q with the lower limit 0 for a function
f : [0,∞) → R can be written as

CDq
0+ f (t) = Dq

t

[

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n = [q] + 1.

Furthermore, if f (n) ∈ C[0,∞), then

CDq
0+ f (t) =

1

(n – q)

∫ t

0
(t – s)n–q–1f (n)(s) ds, t > 0, n = [q] + 1.

Definition 4 ([5]) The Hilfer fractional derivative of order ν ∈ [0, 1] and μ ∈ (0, 1) with
the lower limit 0 is defined as

Dν,μ
0+ f (t) = Iν(1–μ)

0+
d
dt

I(1–ν)(1–μ)
0+ f (t)

for functions such that the expression on the right-hand side exists.

Remark 1 ([5])
(i) For ν = 0, μ ∈ (0, 1), the Hilfer fractional derivative corresponds to the classical

Riemann–Liouville fractional derivative: D0,μ
0+ f (t) = d

dt I1–μ

0+ f (t) = LDμ

0+ f (t).
(ii) For ν = 1, μ ∈ (0, 1), the Hilfer fractional derivative corresponds to the classical

Caputo fractional derivative: D1,μ
0+ f (t) = I1–μ

0+
d
dt f (t) = CDμ

0+ f (t).

We introduce the Wright function Mμ, which is defined by

Mμ(θ ) =
∞∑

n=1

(–θ )n–1

(n – 1)
(1 – nμ)
, μ ∈ (0, 1), θ ∈C,

and satisfies
∫ ∞

0
θqMμ(θ ) dθ =


(1 + q)

(1 + μq)

, θ ≥ 0.

Motivated by [6, 22], one can define the mild solution for system (1).
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Definition 5 ([6, 22]) A stochastic process x ∈ C is a mild solution of system (1) if
I(1–ν)(1–μ)

0+ x(t)|t=0 – g(x) = x0, and it satisfies the following stochastic integral equation:

x(t) = Sν,μ(t)
[
x0 + g(x)

]
+
∫ t

0
Tμ(t – s)f

(
s, x(s)

)
ds

+
∫ t

0
Tμ(t – s)σ (s) dW (s), t ∈ J ′, (2)

where

Sν,μ(t) = Iν(1–μ)
0+ Tμ(t), Tμ(t) = tμ–1Pμ(t), Pμ(t) =

∫ ∞

0
μθMμ(θ )S

(
tμθ
)

dθ .

For the sake of convenience, we write (2) as

x(t) = Sν,μ(t)
[
x0 + g(x)

]
+
∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J ′.

Let us recall the generalized Gronwall inequality.

Lemma 1 ([33]) Assume that β > 0, a(t) is a nonnegative function locally integrable on J
and b(t) is a nonnegative, nondecreasing continuous function defined on J , b(t) ≤ C (C is a
constant) and suppose that y(t) is nonnegative locally integrable on J with

y(t) ≤ a(t) + b(t)
∫ t

0
(t – s)β–1y(s) ds, t ∈ J .

Then

y(t) ≤ a(t) +
∫ t

0

[ ∞∑

n=1

[b(t)
(β)]n


(nβ)
(t – s)nβ–1a(s)

]

ds, t ∈ J .

Furthermore, if a(t) is a nondecreasing function on J , then

y(t) ≤ a(t)Eβ

(
b(t)
(β)tβ

)
,

where Eβ is the Mittag-Leffler function defined by

Eβ (z) =
∞∑

k=0

zk


(kβ + 1)
.

Lemma 2 ([34, 35]) For arbitrary L0
2-valued predictable process �(t), t ∈ [τ1, τ2], which

satisfies

E
(∫ τ2

τ1

∥
∥�(s)

∥
∥2

L0
2

ds
)

< ∞, 0 ≤ τ1 < τ2 ≤ b,
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we have

E
∥
∥
∥
∥

∫ τ2

τ1

�(s) dW (s)
∥
∥
∥
∥

2

≤ E
(∫ τ2

τ1

∥
∥�(s)

∥
∥2

L0
2

ds
)

.

We introduce the following assumption.
(H0) S(t) is continuous in the uniform operator topology for t > 0 and {S(t)}t≥0 is uni-

formly bounded, i.e., there exists M > 1 such that supt∈[0,∞) |S(t)| < M.

Lemma 3 ([6]) Assume that (H0) is satisfied, we have the following properties.
(i) Pμ(t), Tμ(t), and Sν,μ(t) are linear and bounded operators, that is, for ∀t ≥ 0, x ∈ X ,

∥
∥Pμ(t)x

∥
∥≤ M‖x‖


(μ)
,

∥
∥Tμ(t)x

∥
∥≤ Mtμ–1‖x‖


(μ)
and

∥
∥Sν,μ(t)x

∥
∥≤ Mtα–1‖x‖


(α)
, α = ν + μ – νμ.

(ii) Operators Pμ(t), Tμ(t), and Sν,μ(t) are strongly continuous.

3 Existence of mild solutions
The existence and uniqueness of mild solutions for system (1) are investigated in this sec-
tion. Let us introduce the following hypotheses.

(H1): There exist a function ψ ∈ L2(J , R+) and a constant c1 > 0 such that, for ∀t ∈ J ,
∀x ∈ X ,

∥
∥f (t, x)

∥
∥≤ ψ(t) + c1t1–α‖x‖.

(H2): There exists a constant l1 > 0 such that, for ∀t ∈ J , ∀x1, x2 ∈ X ,

∥
∥f (t, x1) – f (t, x2)

∥
∥≤ l1t1–α‖x1 – x2‖.

(H3): There exists a constant p > 1
2μ–1 such that the function σ : J → L0

2 satisfies

∫ b

0

∥
∥σ (s)

∥
∥2p

L0
2

ds < ∞.

(H4): There exists a constant c2 > 0 such that, for ∀x ∈ C ,

∥
∥g(x)

∥
∥≤ c2

(
1 + ‖x‖C

)
.

(H5): There exists a constant l2 > 0 such that, for ∀x1, x2 ∈ C ,

∥
∥g(x1) – g(x2)

∥
∥≤ l2‖yx1 – x2‖C .

Theorem 1 Assume that hypotheses (H0)–(H5) hold. Then system (1) has a unique mild
solution on C provided that

2M2l2
2


2(α)
+

2M2l2
1b2–2α+2μ


2(α)(2μ – 1)
< 1. (3)
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Proof Define the operator T on C by

(Tx)(t) = Sν,μ(t)
[
x0 + g(x)

]
+
∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J ′.

We will prove that T has a fixed point on C . The proof will be divided into two steps.
Step 1: T maps C into C .
For any y ∈ C(J , L2(�, X)), let x(t) = tα–1y(t) ∈ C . Define the operator F : C(J , L2(�, X)) →

C(J , L2(�, X)) as follows:

(Fy)(t) = t1–α(Tx)(t)

= t1–αSν,μ(t)
[
x0 + g(x)

]
+ t1–α

∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds

+ t1–α

∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J .

By Lemma 2, Lemma 3, (H1) and (H3), we have

E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

→ 0 as t → 0+, (4)

E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s)

∥
∥
∥
∥

2

→ 0 as t → 0+, (5)

and

lim
t→0+

(Fy)(t) = lim
t→0+

t1–αSν,μ(t)
[
x0 + g(x)

]
=

[x0 + g(x)]

(α)

. (6)

Hence, we can define (Fy)(0) = [x0+g(x)]

(α) . In order to prove T maps C into C , we will prove

that F maps C(J , L2(�, X)) into C(J , L2(�, X)). We divide the proof into two claims.

Claim 1 For any y(t) = t1–αx(t), supt∈J E‖(Fy)(t)‖2 < ∞.

For any y(t) = t1–αx(t) ∈ C(J , L2(�, X)), by Lemma 3, Hölder’s inequality, (H1) and (H3),
we have

E
∥
∥(Fy)(t)

∥
∥2

≤ 3E
∥
∥t1–αSν,μ(t)

[
x0 + g(x)

]∥
∥2 + 3E

∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s)

∥
∥
∥
∥

2

≤ 3M2E‖x0 + g(x)‖2


2(α)
+

3b2–2αM2


2(μ)
E
(∫ t

0
(t – s)μ–1(ψ(s) + c1s1–α

∥
∥x(s)
∥
∥
)

ds
)2

+
3b2–2αM2


2(μ)
E
(∫ t

0
(t – s)2μ–2∥∥σ (s)

∥
∥2

L0
2

ds
)
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≤ 6M2[E‖x0‖2 + 2c2
2(1 + ‖x‖2

C )]

2(α)

+
6b1–2α+2μM2‖ψ‖2

L2(J ,R+)

(2μ – 1)
2(μ)

+
6b2–2α+2μM2c2

1‖x‖2
C


2(μ)(2μ – 1)
+

3b2–2αM2


2(μ)

(
p – 1

2pμ – p – 1
b

2pμ–p–1
p–1

) p–1
p

×
(∫ b

0

∥
∥σ (s)

∥
∥2p

L0
2

ds
) 1

p
.

Hence, supt∈J E‖(Fy)(t)‖2 < ∞.

Claim 2 For any y(t) = t1–αx(t), t → (Fy)(t) is continuous on J in L2(�, X)-sense.

For t1 = 0, 0 < t2 ≤ b, by (4), (5), and (6), we can easily get

E
∥
∥(Fy)(t2) – (Fy)(0)

∥
∥2 → 0 as t2 → t1.

For 0 < t1 < t2 ≤ b, we have

E
∥
∥(Fy)(t2) – (Fy)(t1)

∥
∥2

≤ 3E
∥
∥t1–α

2 Sν,μ(t2)
(
x0 + g(x)

)
– t1–α

1 Sν,μ(t1)
(
x0 + g(x)

)∥
∥2

+ 3E
∥
∥
∥
∥t

1–α
2

∫ t2

0
(t2 – s)μ–1Pμ(t2 – s)f

(
s, x(s)

)
ds

– t1–α
1

∫ t1

0
(t1 – s)μ–1Pμ(t1 – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥t

1–α
2

∫ t2

0
(t2 – s)μ–1Pμ(t2 – s)σ (s) dW (s)

– t1–α
1

∫ t1

0
(t1 – s)μ–1Pμ(t1 – s)σ (s) dW (s)

∥
∥
∥
∥

2

:= I1 + I2 + I3.

For I1, we have

I1 ≤ 6E
∥
∥t1–α

2 Sν,μ(t2)
(
x0 + g(x)

)
– t1–α

2 Sν,μ(t1)
(
x0 + g(x)

)∥
∥2

+ 6E
∥
∥t1–α

2 Sν,μ(t1)
(
x0 + g(x)

)
– t1–α

1 Sν,μ(t1)
(
x0 + g(x)

)∥
∥2

≤ 6t2–2α
2 E

∥
∥Sν,μ(t2)

(
x0 + g(x)

)
– Sν,μ(t1)

(
x0 + g(x)

)∥
∥2

+
12(t1–α

2 – t1–α
1 )2M2t2α–2

1 [E‖x0‖2 + 2c2
2(1 + ‖x‖2

C )]

2(α)

.

By Lemma 3, we obtain limt2→t1 I1 = 0.
For I2, we have

I2 ≤ 9E
∥
∥
∥
∥

∫ t2

t1

t1–α
2 (t2 – s)μ–1Pμ(t2 – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ t1

0
t1–α
2 (t2 – s)μ–1Pμ(t2 – s)f

(
s, x(s)

)
ds
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–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)f

(
s, x(s)

)
ds

–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t1 – s)f

(
s, x(s)

)
ds
∥
∥
∥
∥

2

:= I21 + I22 + I23.

By Lemma 3 and Hölder’s inequality, we have

I21 ≤ 18t2–2α
2 M2

(2μ – 1)
2(μ)
[
(t2 – t1)2μ–1‖ψ‖L2(J ,R+) + c2

1(t2 – t1)2μ‖x‖2
C

]→ 0 as t2 → t1,

I22 ≤
18M2[‖ψ‖2

L2(J ,R+) + c2
1t1‖x‖2

C ]

2(μ)

(∫ t1

0

∣
∣t1–α

2 (t2 – s)μ–1 – t1–α
1 (t1 – s)μ–1∣∣2 ds

)

→ 0 as t2 → t1.

For ε > 0 small enough, we have

I23 ≤ 18E
∥
∥
∥
∥

∫ t1–ε

0
t1–α
1 (t1 – s)μ–1[Pμ(t2 – s) – Pμ(t1 – s)

]
f
(
s, x(s)

)
ds
∥
∥
∥
∥

2

+ 18E
∥
∥
∥
∥

∫ t1

t1–ε

t1–α
1 (t1 – s)μ–1[Pμ(t2 – s) – Pμ(t1 – s)

]
f
(
s, x(s)

)
ds
∥
∥
∥
∥

2

≤
36t2–2α

1 (t2μ–1
1 – ε2μ–1)[‖ψ‖2

L2(J ,R+) + c2
1(t1 – ε)‖x‖2

C ]
(2μ – 1)

×
(

sup
s∈[0,t1–ε]

∥
∥Pμ(t2 – s) – Pμ(t1 – s)

∥
∥
)2

+
144M2t2–2α

1

2(μ)

[
ε2μ–1‖ψ‖2

L2(J ,R+)

2μ – 1
+

c2
1ε

2μ‖x‖2
C

2μ – 1

]

→ 0 as t2 → t1, ε → 0.

Thus, we obtain limt2→t1 I2 = 0.
For I3, we have

I3 ≤ 9E
∥
∥
∥
∥

∫ t2

t1

t1–α
2 (t2 – s)μ–1Pμ(t2 – s)σ (s) dW (s)

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ t1

0
t1–α
2 (t2 – s)μ–1Pμ(t2 – s)σ (s) dW (s)

–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)σ (s) dW (s)

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)σ (s) dW (s)

–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t1 – s)σ (s) dW (s)

∥
∥
∥
∥

2

:= I31 + I32 + I33.
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By Lemma 2, Lemma 3, and Hölder’s inequality, we have

I31 ≤ 9M2t2–2α
2


2(μ)

(∫ t2

t1

(t2 – s)2μ–2∥∥σ (s)
∥
∥2

L0
2

ds
)

≤ 9M2t2–2α
2


2(μ)

(
p – 1

2pμ – p – 1
(t2 – t1)

2pμ–p–1
p–1

) p–1
p
(∫ t2

t1

∥
∥σ (s)

∥
∥2p

L0
2

ds
) 1

p
,

I32 ≤ 9M2


2(μ)

(∫ t1

0

[
t1–α
2 (t2 – s)μ–1 – t1–α

1 (t1 – s)μ–1]
2p

p–1 ds
) p–1

p
(∫ t1

0

∥
∥σ (s)

∥
∥2p

L0
2

ds
) 1

p
,

I33 ≤ 18t2–2α
1 sup

s∈[0,t1–ε]

∥
∥Pμ(t2 – s) – Pμ(t1 – s)

∥
∥2
(∫ t1–ε

0

∥
∥σ (s)

∥
∥2p

L0
2

ds
) 1

p

×
(

p – 1
2μp – p – 1

t
2μp–p–1

p–1
1 –

p – 1
2μp – p – 1

ε
2μp–p–1

p–1

) p–1
p

+
72t2–2α

1 M2


2(μ)

(
p – 1

2pμ – p – 1
ε

2pμ–p–1
p–1

) p–1
p
(∫ t1

t1–ε

∥
∥σ (s)

∥
∥2p

L0
2

ds
) 1

p
.

By using the analogous argument performed in I2, we can conclude that limt2→t1 I3 = 0.
Thus, t → (Fy)(t) is continuous on J in L2(�, X)-sense. By Claims 1–2, we know that F
maps C(J , L2(�, X)) into C(J , L2(�, X)), which means that T maps C into C .

Step 2. T is a contraction.
For ∀x1, x2 ∈ C , we have

E
(
t1–α
∥
∥(Tx1)(t) – (Tx2)(t)

∥
∥
)2

≤ 2E
(
t1–α
∥
∥Sν,μ(t)

(
g(x1) – g(x2)

)∥
∥
)2

+ 2E
(

t1–α

∥
∥
∥
∥

∫ t

0
(t – s)μ–1Pμ(t – s)

(
f
(
s, x1(s)

)
– f
(
s, x2(s)

))
ds
∥
∥
∥
∥

)2

≤ 2M2l2
2‖x1 – x2‖2

C


2(α)
+

2M2l2
1b2–2α


2(μ)
E
(∫ t

0
(t – s)μ–1s1–α

∥
∥x1(s) – x2(s)

∥
∥ds
)2

≤
[

2M2l2
2


2(α)
+

2M2l2
1b2–2α+2μ


2(α)(2μ – 1)

]

‖x1 – x2‖2
C .

Thus, T is a contradiction operator on C . According to the contraction principle, the op-
erator T has a unique fixed point x, which is a mild solution of system (1). This completes
the proof. �

4 Existence of optimal controls
In this section, the existence of optimal controls is investigated.

We suppose that U is a separable Hilbert space. Define

L2
F (J , U) =

{

u : J × � → U
∣
∣
∣ u is Ft-adapted stochastic process and

E
∫ t

0

∥
∥u(t)

∥
∥2 dt < ∞

}

.
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Let V be a nonempty bounded closed and convex subset of U . Define the admissible
control set

Uad =
{

u(·) ∈ L2
F (J , U) | u(t) ∈ V a.e. t ∈ J

}
.

Consider the following controlled system:

⎧
⎨

⎩

Dν,μ
0+ x(t) = Ax(t) + f (t, x(t)) + B(t)u(t) + σ (t) dW (t)

dt , t ∈ J ′,

I(1–ν)(1–μ)
0+ x(t)|t=0 – g(x) = x0,

(7)

where B ∈ L∞(J , L(U , X)), the control function u ∈ Uad. L∞(J , L(U , X)) denotes the space
of operator-valued functions which are measurable in the strong operator topology and
uniformly bounded on the interval J . We denote the norm of operator B by ‖B‖∞.

Consider the Lagrange problem (P): Find (x0, u0) ∈ C × Uad such that

J
(
x0, u0)≤ J

(
xu, u
)
, ∀u ∈ Uad,

where

J
(
xu, u
)

= E
{∫ b

0
L
(
t, xu(t), u(t)

)
dt
}

and xu denotes the mild solution of system (7) corresponding to the control u ∈ Uad. In-
troduce the following assumption.

(H6): (i) The function L : J × X × U → R ∪ {∞} is Borel measurable,
(ii) L (t, ·, ·) is sequentially lower semicontinuous on X × U for almost all t ∈ J ,

(iii) L (t, x, ·) is convex on U for ∀x ∈ X and almost all t ∈ J ,
(iv) there exist constants d ≥ 0, e > 0, and φ ∈ L1(J , R+) such that

L (t, x, u) ≥ φ(t) + d‖x‖ + e‖u‖2.

Theorem 2 Assume that conditions (H0)–(H5) and (3) are satisfied. For ∀u ∈ Uad, system
(7) has a unique mild solution on C .

Proof Define the operator T̃ on C by

(T̃x)(t) = Sν,μ(t)
[
x0 + g(x)

]
+
∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x(s)

)
ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)B(s)u(s) ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J ′.

Compared with Theorem 1, we only need to check the term

∫ t

0
(t – s)μ–1Pμ(t – s)B(s)u(s) ds.
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By Lemma 3 and Hölder’s inequality, we have

E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)B(s)u(s) ds

∥
∥
∥
∥

2

≤ b2–2αM2‖B‖2∞

2(u)

E
(∫ t

0
(t – s)μ–1∥∥u(s)

∥
∥ds
)2

≤ b2–2αM2‖B‖2∞

2(u)

(∫ t

0
(t – s)2μ–2 ds

)

E
(∫ t

0

∥
∥u(s)

∥
∥2 ds
)

≤ b1+2μ–2αM2‖B‖2∞
(2μ – 1)
2(μ)

E
(∫ t

0

∥
∥u(s)

∥
∥2 ds
)

< ∞.

On the other hand, for 0 < t1 < t2 ≤ b and ε > 0 small enough, we have

E
∥
∥
∥
∥t

1–α
2

∫ t2

0
(t2 – s)μ–1Pμ(t2 – s)B(s)u(s) ds – t1–α

1

∫ t1

0
(t1 – s)μ–1Pμ(t1 – s)B(s)u(s) ds

∥
∥
∥
∥

2

≤ 3E
∥
∥
∥
∥

∫ t2

t1

t1–α
2 (t2 – s)μ–1Pμ(t2 – s)B(s)u(s) ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ t1

0
t1–α
2 (t2 – s)μ–1Pμ(t2 – s)B(s)u(s) ds

–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)B(s)u(s) ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t2 – s)B(s)u(s) ds

–
∫ t1

0
t1–α
1 (t1 – s)μ–1Pμ(t1 – s)B(s)u(s) ds

∥
∥
∥
∥

2

≤ 3t2–2α
2 (t2 – t1)2μ–1M2‖B‖2∞

(2μ – 1)
2(μ)
E
(∫ t2

t1

∥
∥u(s)

∥
∥2 ds
)

+
3M2‖B‖2∞


2(μ)

(∫ t1

0

∣
∣t1–α

2 (t2 – s)μ–1 – t1–α
1 (t1 – s)μ–1∣∣2 ds

)

E
(∫ t1

0

∥
∥u(s)

∥
∥2 ds
)

+
6t2–2α

1 ‖B‖2∞(t2μ–1
1 – ε2μ–1)

(2μ – 1)
E
(∫ t1–ε

0

∥
∥u(s)

∥
∥2 ds
)

×
(

sup
s∈[0,t1–ε]

∥
∥Pμ(t2 – s) – Pμ(t1 – s)

∥
∥
)2

+
24M2‖B‖2∞t2–2α

1 ε2μ–1

(2μ – 1)
2(μ)
E
(∫ t1

t1–ε

∥
∥u(s)

∥
∥2 ds
)

→ 0 as t2 → t1, ε → 0.

Hence, T̃ maps C into C . Using the same method as in Theorem 1, one can deduce that
T̃ has a unique fixed point on C , and hence we omit the detailed proof here. �

Now we can give the following results on the existence of optimal controls for the La-
grange problem (P).
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Theorem 3 Suppose that conditions (H0)–(H6) and (3) are fulfilled and

3M2l2
2


2(α)
+

3M2l2
1b2–2α+2μ


2(α)(2μ – 1)
< 1, (8)

then the Lagrange problem (P) admits at least one optimal pair, that is, there exists an
admissible control u0 ∈ Uad such that

J
(
x0, u0)≤ J (x, u), ∀u ∈ Uad.

Proof If inf{J (xu, u) | u ∈ Uad} = +∞, there is nothing to prove. Without loss of gener-
ality, we assume that inf{J (xu, u) | u ∈ Uad} = l < +∞. By (H6), we obtain l > –∞. By the
definition of infimum, there exists a minimizing sequence feasible pair {(xm, um)} such that

J
(
xm, um)→ l as m → +∞,

where xm is a mild solution of system (7) corresponding to the control um ∈ Uad. Since
{um} ⊆ Uad is a bounded subset of the reflexive Banach space L2

F (J , U), there exists a sub-
sequence, we still denote it by {um}, which weakly converges to u0 ∈ L2

F (J , U). Since Uad

is closed and convex, then by Marzur lemma u0 ∈ Uad.
Let

xm(t) = Sν,μ(t)
[
x0 + g

(
xm)] +

∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, xm(s)

)
ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)B(s)um(s) ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J ′,

x0(t) = Sν,μ(t)
[
x0 + g

(
x0)] +

∫ t

0
(t – s)μ–1Pμ(t – s)f

(
s, x0(s)

)
ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)B(s)u0(s) ds

+
∫ t

0
(t – s)μ–1Pμ(t – s)σ (s) dW (s), t ∈ J ′.

By Theorem 1 and Theorem 2, one can easily get that there exists a constant ρ > 0 such
that ‖xm‖C ≤ ρ , ‖x0‖C ≤ ρ .

For ∀t ∈ J , we have

E
∥
∥t1–αxm(t) – t1–αx0(t)

∥
∥2

≤ 3E
∥
∥t1–αSν,μ(t)g

(
xm) – t1–αSν,μ(t)g

(
x0)∥∥2

+ 3E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)

[
f
(
s, xm(s)

)
– f
(
s, x0(s)

)]
ds
∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥t

1–α

∫ t

0
(t – s)μ–1Pμ(t – s)B(s)

[
um(s) – u0(s)

]
ds
∥
∥
∥
∥

2
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≤ 3b3–2αM2


2(μ)
E
(∫ t

0
(t – s)2μ–2∥∥f

(
s, xm(s)

)
– f
(
s, x0(s)

)∥
∥2 ds
)

+
3b2–2αM2‖B‖2∞


2(μ)

(∫ t

0
(t – s)2μ–2 ds

)

E
(∫ t

0

∥
∥um(s) – u0(s)

∥
∥2 ds
)

≤ 3M2l2
2‖xm – x0‖2

C


2(α)
+

3b3–2αM2l2
1


2(μ)

∫ t

0
(t – s)2μ–2E

(
s1–α
∥
∥xm(s) – x0(s)

∥
∥
)2 ds

+
3b1+2μ–2αM2‖B‖2∞

(2μ – 1)
2(μ)
E
(∫ b

0

∥
∥um(s) – u0(s)

∥
∥2 ds
)

≤
[

3M2l2
2


2(α)
+

3b2–2α+2μM2l2
1


2(μ)(2μ – 1)

]
∥
∥xm – x0∥∥2

C

+
3b1+2μ–2αM2‖B‖2∞

(2μ – 1)
2(μ)
E
(∫ b

0

∥
∥um(s) – u0(s)

∥
∥2 ds
)

.

Therefore

0 ≤
[

1 –
3M2l2

2

2(α)

–
3b2–2α+2μM2l2

1

2(μ)(2μ – 1)

]
∥
∥xm – x0∥∥2

C

≤ 3b1+2μ–2αM2‖B‖2∞
(2μ – 1)
2(μ)

E
(∫ b

0

∥
∥um(s) – u0(s)

∥
∥2 ds
)

.

Furthermore,

3b1+2μ–2αM2‖B‖2∞
(2μ – 1)
2(μ)

E
(∫ b

0

∥
∥um(s) – u0(s)

∥
∥2 ds
)

→ 0 as m → ∞.

By (8), we have xm → x0 in C as m → ∞. Note that (H6) implies that the assumptions of
Balder [36] are satisfied. By Balder’s theorem, we have

l = lim
m→∞ E

{∫ b

0
L
(
t, xm(t), um(t)

)
dt
}

≥ lim
m→∞ E

{∫ b

0
L
(
t, x0(t), u0(t)

)
dt
}

= J
(
x0, u0)≥ l.

This means that J attains its minimum at (x0, u0). This completes the proof. �

5 An example
Consider the following fractional control system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dν, 3
4

0+ x(t, ξ ) = ∂2

∂ξ2 x(t, ξ ) + f (t, x(t, ξ )) + 2u(t, ξ )

+ σ (t, ξ ) dβ(t)
dt , t ∈ (0, 1], ξ ∈ [0,π ],

x(t, 0) = x(t,π ) = 0, t ∈ (0, 1],

I
1
4 (1–ν)

0+ x(t, ξ )|t=0 –
∑m

i=0
∫ π

0 γ (ξ , τ )x(ti, τ ) dτ = x0(ξ ), ξ ∈ [0,π ],

(9)

with the cost function

J
(
xu, u
)

= E
{∫ 1

0

∫ π

0

∣
∣xu(t, ξ )

∣
∣2 dξ dt +

∫ 1

0

∫ π

0

∣
∣u(t, ξ )

∣
∣2 dξ dt

}

,
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where Dν, 3
4

0+ denotes the Hilfer fractional derivative, ν ∈ [0, 1], c > 0 is a constant. 0 < t0 <
t1 < · · · < tm ≤ 1, γ (ξ , τ ) ∈ L2([0,π ] × [0,π ], R+). β(t) is a one-dimensional standard Brow-
nian motion defined on the filtered probability space (�,F , P).

Let X = U = L2([0,π ], R), J ′ = (0, 1], J = [0, 1], α = 1
4ν + 3

4 . Define the operator A : D(A) ⊂
X → X by Aς = ∂2ς

∂ξ2 , where

D(A) =
{

ς ∈ X : ς ,
∂ς

∂ξ
are absolutely continuous,

∂2ς

∂ξ 2 ∈ X,ς (0) = ς (π ) = 0
}

.

It is easy to check that A generates a strongly continuous semigroup {S(t)}t≥0 which is
compact, analytic, and self-adjoint [4]. Hence, (H0) is fulfilled.

Clearly, we can rewrite system (9) into the abstract form:

⎧
⎨

⎩

Dν, 3
4

0+ x(t) = Ax(t) + f (t, x(t)) + B(t)u(t) + σ (t) dW (t)
dt , t ∈ J ′ := (0, 1],

I
1
4 (1–ν)

0+ x(t)|t=0 – g(x) = x0,
(10)

where

x(t)(ξ ) = x(t, ξ ), f
(
t, x(t)

)
(ξ ) = f

(
t, x(t, ξ )

)
, B(t)u(t)(ξ ) = 2u(t, ξ ),

σ (t)(ξ ) = σ (t, ξ ), g(x)(ξ ) =
m∑

i=0

Gx(ti)(ξ ),

Gh(ξ ) =
∫ π

0
γ (ξ , τ )h(τ ) dτ , for h ∈ X, ξ ∈ [0,π ],

and

J
(
xu, u
)

= E
∫ 1

0

(∥
∥xu(t)

∥
∥2 +
∥
∥u(t)

∥
∥2)dt.

Obviously, (H6) is satisfied. We can choose c2 = l2 = (m+1)(
∫ π

0
∫ π

0 γ 2(ξ , τ ) dτ dξ ) 1
2 . Then

(H4) and (H5) are satisfied.
Define f (t, y(t, ξ )) = t1–αe–t |y(t,ξ )|

(1+et )(1+|y(t,ξ )|) . Note that ‖f (t, y(t, ξ ))‖ ≤ e–t . Moreover,

∥
∥f
(
t, y1(t)

)
(ξ ) – f

(
t, y2(t)

)
(ξ )
∥
∥ =

t1–αe–t||y1(t, ξ )| – |y2(t, ξ )||
(1 + et)(1 + |y1(t, ξ )|)(1 + |y2(t, ξ )|)

≤ t1–αe–t

1 + et

∣
∣y1(t, ξ ) – y2(t, ξ )

∣
∣

≤ 1
2

t1–α
∣
∣y1(t, ξ ) – y2(t, ξ )

∣
∣.

Hence, (H1) and (H2) are satisfied.
If conditions (3), (8), and (H3) are satisfied, then by Theorem 3, system (10) is approxi-

mately controllable.

6 Conclusion
In this paper, we study a class of Hilfer fractional stochastic differential equations. By
means of stochastic analysis theory, fractional calculations, and operator semigroup the-
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ory, we obtain the existence and uniqueness of mild solutions for these equations. More-
over, the existence of optimal pairs for the corresponding Lagrange control systems is in-
vestigated. Our future work will be focused on investigating the optimal control problem
of Hilfer fractional stochastic differential equations with Lévy noise.
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