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Abstract
In this paper, we study a periodic model of hematopoiesis with a time-varying delay.
Some new criteria are established to ensure that there are at least two positive
periodic solutions by applying Krasnoselskii’s fixed point theorem, which are
essentially new and complement some existing ones. Moreover, numerical
simulations are performed to substantiate the effectiveness of the theoretical analysis.
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1 Introduction
In order to describe some physiological control systems in the classic study of pop-
ulation dynamics, Mackey and Glass in [1] initially proposed the following model of
hematopoiesis (cell production):

x′(t) = –ax(t) +
bxm(t – τ )

1 + xn(t – τ )
, (1.1)

where x(t) denotes the density of mature cells in blood circulation, a is the rate at which
cells are lost from the circulation, the flux g(x(t – τ )) = bxm(t–τ )

1+xn(t–τ ) of the cells into the circu-
lation from the stem cell compartment depends on x(t – τ ) at time t – τ , and τ is the time
delay between the production of immature cells in the bone marrow and their maturation
for release in circulating bloodstreams.

In recent years, the model of hematopoiesis has been extensively and intensively stud-
ied due to its theoretical and practical significance. A very basic and important dynamics
problem is the existence and uniqueness of positive (almost) periodic solutions associated
with the study of the following non-autonomous model (1.1) in (almost) periodic environ-
ments:

x′(t) = –a(t)x(t) +
b(t)xm(t – τ (t))
1 + xn(t – τ (t))

. (1.2)

To name a few, when m = 0, Liu et al. studied the existence and global attractivity of pe-
riodic solution for Eq. (1.2) by using a fixed point theorem in cone and the oscillatory
theory. Alzabut et al. in [2] were concerned with the existence and global exponential

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-1949-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-1949-z&domain=pdf
mailto:lianduan0906@163.com


Duan et al. Advances in Difference Equations         (2019) 2019:14 Page 2 of 9

stability of almost periodic solutions by applying Banach’s contraction mapping principle
and Gronwall–Bellman’s inequality. When m = 1, Zhou et al. and Wang et al. respectively
studied the existence and uniqueness of periodic solution for Eq. (1.2), the methods used
therein were mainly based on the exponential dichotomy theory, Mawhin coincidence
degree, together with the Lyapunov functional method, see [3, 4]. Wang and Zhang in [5]
investigated the existence and uniqueness of almost periodic solution for Eq. (1.2) by es-
tablishing a new fixed point theorem in cones free of compactness conditions. For other
interesting theoretical results for this model, we refer to [6–12] and the references therein.

However, it is noteworthy that when 0 < m < n, the flux function in model (1.2) has
stronger nonlinearity than the cases of m = 0 or m = 1, and thus it may show more com-
plex and rich dynamic behaviors. On the other hand, the aforementioned periodic solution
(can be regarded as a special case of almost periodic solution) is unique, as mentioned by
May in [13] that a large number of empirical observations shows that many natural com-
munities have a multiplicity of stable states. The multiplicity of periodic solutions is an
interesting problem in the qualitative study of delay differential equations, and such an
issue of Eq. (1.2) has been seldom considered up to now. Motivated by the above discus-
sions, in this paper we aim to establish some sufficient conditions ensuring that Eq. (1.2)
has at least two positive T-periodic solutions. Our approach is based on Krasnoselskii’s
fixed point theorem.

The structure of the remaining part of this paper is as follows. In Sect. 2, we present
some necessary lemmas. In Sect. 3, some sufficient conditions are established to guarantee
that Eq. (1.2) has at least two positive periodic solutions. In Sect. 4, we demonstrate the
validity of these theoretical results with numerical simulations. Finally, some conclusions
are made and future directions are pointed out in Sect. 5.

2 Preliminaries
In this section, we first introduce some notations and recall well-known Krasnoselskii’s
fixed point theorem.

Let h ∈ C(R,R) be a T-periodic function, we denote

h+ = max
t∈[0,T]

h(t), h– = min
t∈[0,T]

h(t), h =
1
T

∫ T

0
h(t) ds.

On the other hand, let g(x) = xm

1+xn , if 0 < m < n, we can easily verify that g(x) in-
creases strictly on [0, n

√
m

n–m ] and decreases on [ n
√

m
n–m ,∞). Thus, there exists a unique

c0 ∈ ( n
√

m
n–m ,∞) such that g(c0) = g(ρ n

√
m

n–m ), where 0 < ρ < 1.

Definition 2.1 Let X be a Banach space, and let P be a closed, nonempty subset of X. P is
a cone if

(i) αx + βy ∈ P for all x, y ∈ P and all α,β ≥ 0;
(ii) x, –x ∈ P imply x = 0.

Lemma 2.1 (see [14, 15]) Let X be a Banach space, and let P ⊂ X be a cone in X. Assume
that Ω1, Ω2 are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

Φ : P ∩ (Ω2 \ Ω1) → P
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be a completely continuous operator such that either
(i) ‖Φx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Φx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2;

or
(ii) ‖Φx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then Φ has a fixed point in P ∩ (Ω2 \ Ω1).

Let

X =
{

x(t) ∈ C(R,R), x(t) = x(t + T)
}

,

and

‖x‖ = max
t∈[0,T]

∣∣x(t)
∣∣.

Then X is a Banach space equipped with the above norm ‖ · ‖. If x(t) ∈ X is a solution of
Eq. (1.2), then

[
x(t) exp

(∫ t

0
a(s) ds

)]′
= exp

(∫ t

0
a(s) ds

)
b(t)xm(t – τ (t))
1 + xn(t – τ (t))

. (2.1)

Integrating both sides of (2.1) over [t, t + T], we have

x(t) =
∫ t+T

t
G(t, s)

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds,

where

G(t, s) =
exp(

∫ s
t a(s) ds)

exp(
∫ T

0 a(s) ds) – 1
.

It is easy to see that, for any t ≤ s ≤ t + T ,

N :=
1

eāT – 1
≤ G(t, s) ≤ eāT

eāT – 1
:= M, and 0 < ρ =

N
M

< 1. (2.2)

Now, choose the cone defined by

P =
{

x(t) ∈ X : x(t) ≥ ρ‖x‖}

and define an operator Φ : X → X by

(Φx)(t) =
∫ t+T

t
G(t, s)

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds. (2.3)

Obviously, to show that Eq. (1.2) has a T-periodic solution, it suffices to prove that Φ has a
fixed point on X. To establish the main results, we also make the following assumptions:

(H1) a, b, τ ∈ C(R, (0,∞)) are all T-periodic functions;
(H2) Nb–Tg(c0) > c0.
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Lemma 2.2 The mapping Φ maps P into P, that is, ΦP ⊂ P.

Proof For any x ∈ P, we have from (2.2) and (2.3) that

‖Φx‖ ≤ M
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds (2.4)

and

(Φx)(t) ≥ N
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds. (2.5)

Combining (2.4) with (2.5) gives

(Φx)(t) ≥ N
M

‖Φx‖.

Hence, ΦP ⊂ P. The proof is completed. �

Lemma 2.3 Φ : P → P is completely continuous.

Proof Denote

g(xt) =
xm(t – τ (t))

1 + xn(t – τ (t))
.

First, we show that Φ is continuous. For any L > 0 and ε > 0, there exists δ > 0 such that,
for ϕ,ψ ∈ X, ‖ϕ‖ ≤ L, ‖ψ‖ ≤ L, and ‖ϕ – ψ‖ < δ imply

max
s∈[0,T]

∣∣g(ϕs) – g(ψs)
∣∣ ≤ ε

b+MT
. (2.6)

If x, y ∈ X with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x – y‖ < δ, then we have from (2.2), (2.3), and (2.6)
that

‖Φx – Φy‖ ≤
∫ t+T

t

∣∣G(t, s)
∣∣b+∣∣g(xs) – g(ys)

∣∣ds

≤ Mb+
∫ T

0

∣∣g(xs) – g(ys)
∣∣ds

≤ ε.

Thus, Φ is continuous.
Next, we show that Φ is compact. Let B > 0 be any constant, and let T = {x ∈ X : ‖x‖ ≤

B} be a bounded set . For any x ∈ T , it follows from (2.2) and (2.3) that

‖Φx‖ ≤ M
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds

≤ MTb+g
(

n

√
m

n – m

)
.
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Again, from (2.3), we have

∣∣[(Φx)(t)
]′∣∣ ≤ a(t)

∣∣(Φx)(t)
∣∣ + b(t)

∣∣∣∣ xm(t – τ (t))
1 + xn(t – τ (t))

∣∣∣∣

≤ (
a+MT + 1

)
b+g

(
n

√
m

n – m

)
,

which implies that ΦT ⊂ T is a family of uniformly bounded and equi-continuous func-
tions. According to the well-known Ascoli–Arzela theorem, the operator Φ is compact,
and so it is completely continuous. The proof is completed. �

3 Main results
We are now in a position to state and prove our main results of this paper.

Theorem 3.1 Let 0 < m < n and (H1)–(H2) hold. Then Eq. (1.2) has at least two positive
T-periodic solutions.

Proof By virtue of limx→0
b(t)xm

1+xn = limx→∞ b(t)xm

1+xn = 0, for any t ∈ [0, T], for any sufficiently
small ε > 0 such that MTε < 1, there exist two constants c1, c2 (c1 < n

√
m

n–m < c0 < c2) such
that

b(t)xm

1 + xn ≤ εc1, (t, x) ∈ [0, T] × [0, c1], (3.1)

and

b(t)xm

1 + xn ≤ εx, (t, x) ∈ [0, T] × [c2,∞]. (3.2)

Define

Ω1 =
{

x|x ∈ X,‖x‖ < c1
}

, Ω2 =
{

x
∣∣∣x ∈ X,‖x‖ < n

√
m

n – m

}
,

Ω3 =
{

x|x ∈ X,‖x‖ < c0
}

, Ω4 =
{

x|x ∈ X,‖x‖ < c3
}

,

where

c3 = max

{
c2 + n

√
m

n – m
,

MGT
1 – MTε

}
, G = max

t∈[0,T],x∈[0,c2]

{
b(t)xm

1 + xn

}
.

If x = x(t) ∈ P ∩ ∂Ω1, then ‖x‖ = c1, and x(t) ≥ ρc1. From (2.2), (2.3), and (3.1), we have

(Φx)(t) ≤ M
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds ≤ MTεc1 < c1,

which means that ‖Φx‖ < ‖x‖ for x ∈ P ∩ ∂Ω1.
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If x = x(t) ∈ P ∩ ∂Ω2, then ‖x‖ = n
√

m
n–m and x(t) ≥ ρ n

√
m

n–m . In view of (2.2)–(2.3), (H2)
and the fact that minx∈[ρ n√ m

n–m , n√ m
n–m ] g(x) = g(ρ n

√
m

n–m ) = g(c0), we have

(Φx)(t) ≥ N
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds

≥ Nb–
∫ t+T

t
g(xs) ds

≥ Nb–
∫ t+T

t
g
(

ρ n

√
m

n – m

)
ds

= Nb–Tg(c0)

> c0 > n

√
m

n – m
,

which implies that ‖Φx‖ > ‖x‖ for x ∈ P ∩ ∂Ω2.
If x = x(t) ∈ P ∩ ∂Ω3, then ‖x‖ = c0, and x(t) ≥ ρc0 > ρ n

√
m

n–m . Combining (2.2)–(2.3),
(H2), and the fact that minx∈[ρc0,c0] g(x) = g(c0) produces

(Φx)(t) ≥ N
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds

≥ Nb–
∫ t+T

t
g(xs) ds

≥ Nb–
∫ t+T

t
g(c0) ds

= Nb–Tg(c0)

> c0,

and hence ‖Φx‖ > ‖x‖ for x ∈ P ∩ ∂Ω3.
If x = x(t) ∈ P ∩ ∂Ω4, then ‖x‖ = c3, and x(t) ≥ ρc3. Due to (2.2) and (2.3), we obtain

(Φx)(t) ≤ M
∫ t+T

t

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds

≤ M
∫

Λ1

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds + M
∫

Λ2

b(s)xm(s – τ (s))
1 + xn(s – τ (s))

ds

≤ MGT + MTεc3 < c3,

and so ‖Φx‖ < ‖x‖ for x ∈ P ∩ ∂Ω4, where Λ1 = {s|s ∈ [t, t + T], 0 ≤ x(s – τ (s)) ≤ c2} and
Λ2 = {s|s ∈ [t, t + T], c2 < x(s – τ (s)) ≤ c3}.

Obviously, Ωi (i = 1, 2, 3, 4) are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 ⊂
Ω2 ⊂ Ω3 ⊂ Ω3 ⊂ Ω4. Since Φ(P) ⊂ P and Φ is a completely continuous operator on X,
we conclude from Lemma 2.1 that Φ has one fixed point x1 ∈ P ∩ (Ω2 \ Ω1) and another
fixed point x2 ∈ P ∩ (Ω4 \ Ω3), that is, xi(t) = (Φxi)(t), i = 1, 2, and x1(t) ≥ ρc1 > 0 and
x2(t) ≥ ρc0 > 0, i.e., x1(t) and x2(t) are two positive T-periodic solutions of Eq. (1.2). The
proof is completed. �
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Remark 3.1 The method in this paper can be used to study the model of hematopoiesis
with periodic coefficients and infinite distributed delay as follows:

x′(t) = –a(t)x(t) + b(t)
∫ ∞

0
p(s)

xm(t – s)
1 + xn(t – s)

ds, (3.3)

where the delay kernel p : (0,∞) → (0,∞) is assumed to be integrable and normalized
such that

∫ ∞
0 p(s) ds = 1. Then the following statements can be obtained immediately.

Theorem 3.2 Let 0 < m < n and (H2) hold. Then Eq. (3.3) has at least two positive T-
periodic solutions.

4 A numerical example
In this section, we give a numerical example with simulations to illustrate the feasibility
of our main results.

Example 4.1 Consider the following 2π-periodic model of hematopoiesis with a time-
varying delay:

x′(t) = –(0.4 + 0.2 cos t)x(t) + (280 + sin t)
x(t – cos t)

1 + x2(t – cos t)
. (4.1)

Here, a(t) = 0.4 + 0.2 cos t, b(t) = 280 + sin t, τ (t) = cos t, m = 1, n = 2. It is easy to see that
N = 1

e0.8π –1 , M = e0.8π

e0.8π –1 , and so ρ = N
M = e–0.8π ≈ 0.081, c0 ≈ 12.345. A straightforward

calculation shows that

Nb–Tg(c0) ≈ 12.434 > 12.345.

Thus we have verified all the assumptions of Theorem 3.1 and hence Eq. (4.1) has at least
two positive 2π-periodic solutions, see Fig. 1.

Figure 1 Equation (4.1) has two 2π -periodic solutions
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Remark 4.1 In recent years, by using the continuation theorem, the existence of multi-
ple periodic solutions of delayed population models has widely been studied (see [16, 17]
and the references therein), and the multiplicity is heavily dependent on the harvesting
term. It is readily seen that our methods are quite different from the previous works and
the considered model is without the harvesting term. On the other hand, to the best of
authors’ knowledge, there is no research work concerning the multiplicity of periodic so-
lutions of Eq. (1.2). Therefore, the results established in this paper are essentially new and
complement some existing ones.

5 Conclusion
In this paper, we have studied the multiplicity of periodic solutions for a delayed model of
hematopoiesis, a new set of criteria ensuring the existence of at least two periodic solutions
have been derived. The effectiveness of the theoretical results has been demonstrated by
a numerical example.

It is known that almost periodic problem is a hot research topic in science [18, 19] and
engineering [20, 21]. However, it would be more difficult to find the sufficient condition
for the multiplicity of almost periodic solutions than the periodic case since the compact
condition fails the almost periodic function family, and then Krasnoselskii’s fixed point
theorem controlled by compact conditions cannot be used to solve the existence of al-
most periodic solutions. Therefore, interesting problems of the existence and stability of
multiple almost periodic solutions for the kinds of models described by delay differential
equations are still open, and we leave them as our future research work.
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