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Abstract
In this study, we elucidated the exponential synchronization of a complex network
system with time-varying delay. Then the exponential synchronization control of
several types of complex network systems with time-varying delay under no
requirements of delay derivable were explored. The dynamic behavior of a system
node shows time-varying delays. Thus, to derive suitable conditions for the
exponential synchronization of different complex network systems, we designed a
linear feedback controller for linear coupling functions, using the Lyapunov stability
theory, Razumikhin theorem, and Newton–Leibniz formula. The exponential damping
rates for the exponential synchronization of different complex network systems were
then estimated. Finally, we validated our conclusions through a numerical simulation.
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1 Introduction
Many problems in nature can be descrobed by complex network models, such as the World
Wide Web (WWW), food chains, traffic networks, and social networks. Thus, complex
networks have attracted widespread interest.

Synchronization is an important dynamic characteristic of a complex network. Many
phenomena in nature are realized by the synchronization of complex networks. For exam-
ple, Strogatz discovered the synchronized contractions of cardiac muscle cells [1]. Stein-
metz et al. discovered that the attention selection modes of human beings and primates are
closely related with the synchronous rates of their neurons [2]. Furthermore, synchroniza-
tion technologies have been widely applied in practical life. Millerioux et al. achieved chaos
secure transmission from the master–slave system [3]. Kunbert et al. suggested solving
problems encountered in image processing through the use of synchronously generated
autowaves [4]. Synchronization control has received considerable attention in the con-
trol field, and many control technologies have been introduced into the synchronization
of networks. Adaptive, pulse, intermittent, and pinning controls have been used for the
synchronous control of complex networks and thereby contributed to many outstanding
works [5–8].
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Information transition in a network is often accompanied by time delay, which is a major
cause of system instability. Therefore, studying the stability of a time-delay system has
become a critical topic in control theory. Given that the time-delay system is an infinite-
dimensional system, studying it is difficult, and no general research method for its study is
currently available. Moreover, different problems require different control technologies.
This condition often results in inconsistent research conclusions [9, 10]. Nevertheless,
research on methods for the synchronous control of complex networks with time delay
has achieved considerable progress [11–16].

Given that time delay always changes, most studies mainly focus on the synchroniza-
tion of complex network model with time-varying delay. For research on time-varying
delay there are two requirements. First, time-varying delay should have boundaries [17–
19]. Second, the derivative of a time-varying delay should satisfy only one condition. It
generally requires the derivative of a time-varying delay. This derivative should be smaller
than 1 [20–24] or should be localized in one boundary [25–27]. Meanwhile, the derivation
of a rapidly changing time-varying delay may fail, and thus these methods are ineffective.
Inspired by Ref. [9], we propose a novel method to address the problems encountered in
the synchronous control of a complex network with time-varying delay. In this method,
a derivable time-varying delay is unnecessary, and stability conditions for the exponen-
tial synchronization of systems are concluded by the Razumikhin theorem. This study has
some innovation points:

(1) The time-varying delay function is removed as a derivable in the study of
synchronous control of common time-delay complex systems. The synchronous
control problem in complex systems with time-varying delay is studied by using the
Razumikhin theorem and the Newton–Leibniz formula.

(2) Several types of complex network systems with time-varying delay are nonlinear
functions and contain time-varying delays, and the conditions for exponential
synchronization are obtained on the basis of the hypothesis that the nonlinear
function satisfies the Lipschitz function, whether or not the coupling function
between the network nodes is linear. These conditions satisfy a linear matrix
inequality and are easy to determine. The upper boundary of time-varying delay can
easily be calculated with the MATLAB tool box.

Notations All the notations used in this paper are standard. For x ∈ R
n, let ‖x‖ denote

the Euclidean vector norm, i.e., ‖x‖ =
√

(xT x). For A ∈ R
N×N , let ‖P‖ indicate the norm of

P induced by the Euclidean vector norm, i.e., ‖P‖ =
√

ηmax(PT P), where ηmax(PT P) is the
maximum eigenvalue of PT P, I denotes the identity matrix with appropriate dimensions,
R

m×n denotes the set of all m × n real matrices, and R
n is the n-dimensional Euclidean

space. For symmetric matrices A and B, the notation A > B (A ≥ B) means that the matrix
A – B is positive definite (nonnegative); diag{. . .} is used to denote the block diagonal ma-
trix; the superscript “T” represents the transpose; let A ⊗ B be the Kronecker product of
two matrices A and B.
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2 Preliminaries
We consider a general time-varying delay complex dynamic network consisting of N dy-
namic nodes with linear couplings, which is described by

ẋi = f
(
xi(t), xi

(
t – τ (t)

))
+ c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

bijΓ2xj
(
t – τ (t)

)
,

xi(t) = φ(t), t ∈ [–τ , 0].

(1)

xi = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n is the state vector of the ith leader, f : Rn × R

n →
R

n is a continuously differential nonlinear vector function, c1 > 0 and c2 > 0 are the
non-delay and time-varying delay coupling strengths, Γ1 = diag(γ 1

1 ,γ 2
1 , . . . ,γ n

1 ) and Γ2 =
diag(γ 1

2 ,γ 2
2 , . . . ,γ n

2 ) are positive definite diagonal matrices, which represent the inner con-
nection matrices between each pair of nodes; Meanwhile, A = (aij) ∈ R

N×N , B = (bij) ∈
R

N×N are the non-delay and time-varying delay weight matrices. The entries are defined
as follows: if is a link is present from the node i to the node j (i �= j), then aij �= 0, bij �= 0;
otherwise aij = 0, bij = 0, and the diagonal elements of matrices A and B are defined
as aii = –

∑N
j=1,j �=i aij, bii = –

∑N
j=1,j �=i bij. Given that the networks in this paper are direct,

aij �= aji and bij �= bji (i, j = 1, 2, . . . , N ). The coupling time-varying delay τ (t) is a bound
function and a positive constant τ satisfying 0 ≤ τ (t) ≤ τ , ∀t > 0, ui ∈R

N×N is the control
input of node i. In this paper, we aim to design a suitable controller

ui(t) = ki
(
xi(t) – s(t)

)
, (2)

where ki is the gain of the ith node.
Let f̃ (x(t), x(t – τ (t))) = f (x(t), x(t – τ (t))) – f (s(t), s(t – τ (t))), and K = diag(k1, k2, . . . , kn).
We use the Newton–Leibniz formula

x
(
t – τ (t)

)
= x(t) –

∫ t

t–τ (t)
ẋ(s) ds. (3)

Equation (1) is converted to

ẋ(t) = f
(
x(t), x

(
t – τ (t)

))
+ c1A ⊗ Γ1x(t) + c2B ⊗ Γ2x(t)

– c2B ⊗ Γ2
t∫

t–τ (t)

[
f
(
x(v), x

(
v – τ (v)

))
+ c1A ⊗ Γ1x(t)

]
dv

– c2B ⊗ Γ2

∫ t

t–τ (t)
c2B ⊗ Γ2x

(
v – τ (v)

)
dv,

x(t) = ψ(t), t ∈ [–2τ , 0].

(4)

The set s = {xT
1 (t), xT

2 (t), . . . , xT
n (t) ∈ R

n|xi(t) = s(t), i ∈ N} is defined as synchronization
manifold, where s(t) ∈ R

n satisfies

ṡ(t) = f
(
s(t), s

(
t – τ (t)

))
. (5)

The synchronization error vector is defined as

ei(t) = (xi(t) – s(t), ei
(
t – τ (t)

)
= xi

(
t – τ (t)

)
– s

(
t – τ (t)

)
(i = 1, . . . , N).
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Through Eqs. (4) and (5), we can obtain the following error system:

ė(t) = f̃
(
x(t), x

(
t – τ (t)

))
+ c1A ⊗ Γ1e(t) + c2B ⊗ Γ2e(t)

– c2B ⊗ Γ2

∫ t

t–τ (t)
f̃
(
x(v), x

(
v – τ (v)

))
+ c1A ⊗ Γ1e(t) dv

– c2B ⊗ Γ2

∫ t

t–τ (t)
c2B ⊗ Γ2e

(
v – τ (v)

)
dv.

To achieve the synchronization of system (1), we add controller (2) to the error system
and we have

ė(t) = f̃
(
x(t), x

(
t – τ (t)

))
+ c1A ⊗ Γ1e(t) + c2B ⊗ Γ2e(t)

– c2B ⊗ Γ2

∫ t

t–τ (t)
f̃
(
x(v), x

(
v – τ (v)

))
+ c1A ⊗ Γ1e(t) dv

– c2B ⊗ Γ2

∫ t

t–τ (t)
c2B ⊗ Γ2e

(
v – τ (v)

)
dv + Ke(t). (6)

Therefore, if the error system (6) is exponentially stable, then the complex network (1)
is exponentially synchronized.

The following assumptions and lemmas are needed for the derivation of our main re-
sults.

Definition 1 (see [9]) The complex network system is exponentially synchronized when
positive numbers ξ , α are present, so every error vector e(t,φ) of the system satisfies

∥∥e(t,φ)
∥∥ ≤ ξ‖φ‖e–α(t–t0), ∀t ≥ t0 ≥ 0.

Lemma 1 (Cauchy inequality [9]) For any vector x, y ∈ R
n and positive definite matrix

W ∈ R
N×N , the following matrix inequality holds:

±2xT y ≤ xT Wx + yT W –1y.

Lemma 2 (Razumikhin stability theorem [28]) Assume that υ, u,ω : R+ → R
+ are non-

decreasing, and u(v), υ(v) are positive for v ≥ 0, υ(0) = u(0) = 0, and q > 1. If a function
V (t, e) : R+ ×R

+ →R
+ exists, so

(i) u(‖e‖) ≤ V (t, e) ≤ υ(‖e‖), t ∈R
+, e ∈R

n,
(ii) V̇ (t, e(t)) ≤ –ω(‖e‖), if V (t + v, e(t + v)) ≤ qV (t, e(t)), ∀v ∈ [–τ , 0], t ≥ 0,

then the error system is asymptotically stable.

Lemma 3 (Schur complement [29]) The matrix
[ S11 S12

S21 S22

]
< 0, where S11 = ST

11, S12 = ST
21 is

equivalent to any one of the following conditions:
(1) S22 < 0, S11 – S12S–1

22 ST
12 < 0;

(2) S11 < 0, S22 – ST
12S–1

11 S12 < 0.
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Assumption 1 (see [30]) For the vector function f (x(t), x(t – τ (t))), suppose that the uni-
form Lipschitz condition holds and L1 and L2 are positive numbers such that

∥∥f
(
xi(t), xi

(
t – τ (t)

))
– f

(
s(t), s

(
t – τ (t)

))∥∥

≤ L1
∥∥xi(t) – s(t)

∥∥ + L2
∥∥xi

(
t – τ (t)

)
– s

(
t – τ (t)

)∥∥.

In particular, we have

∥∥f
(
xi(t)

)
– f

(
s(t)

)∥∥ ≤ L1
∥∥xi(t) – s(t)

∥∥,

where i = 1, 2, . . . , N .

Remark 1 In some studies on complex network synchronization problems, the effects of
time delay were not considered. For example Jin-Liang Wang discussed the output syn-
chronization and H∞ output synchronization of multi-weighted complex network in [31]
but did not consider the network model with time delay. Moreover, many studies on com-
plex network often require derivable or bounded time delay [20–27]. In the proposed
model, the requirements for time delay (τ (t)) are reduced, and the time delay does not
need to be differentiated.

Remark 2 At present, there are many research results on the synchronous control of lin-
early coupled complex network models [31–33], but their research methods are different
from ours.

3 Main result
3.1 Synchronization control of a general complex dynamical network with

dynamic behavior including time-varying delays and linear time-varying
coupling delay consisting of N identical nodes with linear couplings

Theorem 1 The complex network system (1) is exponentially synchronized if positive num-
bers β , δ, λ, L1, L2 and a positive matrix P are present and the following inequality equation
holds:

λ–1(P + βI) ≥ (c1A ⊗ Γ1)T (c1A ⊗ Γ1),

λ–1(P + βI) ≥ (c2B ⊗ Γ2)T (c2B ⊗ Γ2), ∀δ > 0,

λ–1(P + βI) ≥
(

L2
1 +

1
2

L1L2

)
, λ–1(P + βI) ≥

(
L2

2 +
1
2

L1L2

)
,

⎡

⎢
⎣

γ1 (P + βI)T (c2B ⊗ Γ2)T (P + βI)
(P + βI) –3I 0

(c2B ⊗ Γ2)T (P + βI) 0 –3τ I

⎤

⎥
⎦ ≤ 0,

(7)

where γ1 = [4λ–1 + 4λ–1τ + 2K](P + βI) + δI .
Moreover, the error vector e(t,φ) satisfies the condition

∥∥e(t,φ)
∥∥ ≤

√
p + β

β
e– δ

2(p+β) t , t ≥ 0.

Here p = ‖P‖.
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Proof Consider the following Lyapunov function:

V = eT Pe + βeT e = eT (P + βI)e,

where P is a positive symmetric matrix. It is easy to see that

β‖e‖2 ≤ V (t, e) ≤ (p + β)‖e‖2, ∀t ∈R
+, e ∈R

n. (8)

For the chosen number λ > 0, we have

λeT (c1A ⊗ Γ1)T (c1A ⊗ Γ1)e ≤ eT (P + βI)e,

λeT (c2B ⊗ Γ2)T (c2B ⊗ Γ2)e ≤ eT (P + βI)e,

λeT
(

L2
1 +

1
2

L1L2

)
e ≤ eT (P + βI)e, λeT

(
L2

2 +
1
2

L1L2

)
e ≤ eT (P + βI)e.

We get the following inequality:

V̇
(
t, e(t)

)
= 2eT (P + βI)ė

= 2eT (P + βI)
(
f̃
(
x(t), x

(
t – τ (t)

))
+ Ke(t) + c1A ⊗ Γ1e(t) + c2B ⊗ Γ2e(t)

)

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
f̃
(
x(v), x

(
v – τ (v)

))
dv

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)

(
c1A ⊗ Γ1e(v) + c2B ⊗ Γ2e

(
v – τ (v)

))
dv. (9)

Therefore, the following estimates hold by applying Lemma 2 with W = I , and by taking
q → 1+:

2eT (P + βI)(f̃
(
x(t), x

(
t – τ (t)

))

≤ eT (P + βI)2e +
∥∥f̃

(
x(t), x

(
t – τ (t)

))∥∥2

≤ eT (P + βI)2e +
(
L1‖e‖ + L2

∥∥e
(
t – τ (t)

)∥∥)2

≤ eT (P + βI)2e +
(

L2
1 +

1
2

L1L2

)
eT e +

(
L2

2 +
1
2

L1L2

)
eT(

t – τ (t)
)
e
(
t – τ (t)

)
, (10)

2eT (P + βI)c2B ⊗ Γ2e(t)

≤ eT (P + βI)(P + βI)e + λ–1V (t)), (11)

2eT (P + βI)c1A ⊗ Γ1e(t)

≤ eT (P + βI)(P + βI)e + λ–1V (t), (12)

–2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
f̃
(
x(v), x

(
v – τ (v)

))
dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e +
∫ t

t–τ (t)

∥∥f̃
(
x, x

(
v – τ (v)

))∥∥2 dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e
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+
∫ t

t–τ (t)

(
L2

1 +
1
2

L1L2

)
eT e +

(
L2

2 +
1
2

L1L2

)
eT(

t – τ (t)
)
e
(
t – τ (t)

)
dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + 2λ–1τV (t), (13)

2eT (P + βI)Ke = KV (t), (14)

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
c1A ⊗ Γ1e(v) dv

= –
∫ t

t–τ (t)
2eT (P + βI)c2B ⊗ Γ2c1A ⊗ Γ1e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e

+
∫ t

t–τ (t)
eT (v)(c1A ⊗ Γ1)T c1A ⊗ Γ1e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1
∫ t

t–τ (t)
eT (v)(P + βI)e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1
∫ 0

–τ (t)
eT (t + v)(P + βI)e(t + v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1τV (t). (15)

In a similar way

–2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
c2B ⊗ Γ2e

(
v – τ (v)

)
dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1τV (t). (16)

According to the above proof, we get

V̇ ≤ eT[
4(P + βI)2 +

(
4λ–1 + 4λ–1τ

)
(P + βI)

]
e + 2e(P + βI)Ke

+ eT[
3τ (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)

]
e. (17)

Assume V̇ ≤ –δeT e, where ∀δ > 0, it means V̇ < 0, therefore

3(P + βI)2 +
(
4λ–1 + 4λ–1τ

)
(P + βI) + 2e(P + βI)Ke

+ 3τ (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI) + δI ≤ 0.

According to Lemma 3, it is equivalent to the following matrix inequalities:

⎡

⎢
⎣

γ1 (P + βI)T (c2B ⊗ Γ2)T (P + βI)
(P + βI) –3I 0

(c2B ⊗ Γ2)T (P + βI) 0 –3τ I

⎤

⎥
⎦ ≤ 0.

Here γ1 = [4λ–1 + 4λ–1τ + 2K](P + βI) + δI and

V̇ ≤ –δeT e = –δ‖e‖2. (18)
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This, by the Razumikhin stability theorem and Lemma 2, implies the asymptotic stability
of the error system (6). To find the exponential factor of the solution, integrating both sides
of the inequality, due to (16), V̇ (t, e(t)) ≤ 0 and using the condition (8), we have

β‖e‖2 ≤ V (t, e) ≤ (p + β)‖e‖2

such that

β
∥∥e(t,φ)

∥∥2 ≤ V
(
t, e(t)

) ≤ V
(
0, e(0)

)– δ
2(p+β) , t ≥ 0.

Hence

∥∥e(t,φ)
∥∥ ≤

√
p + β

β
e– δ

2(p+β) t , t ≥ 0.

Here p = ‖P‖, this completes the proof of Theorem 1. �

Remark 3 Although many studies on the synchronous control of complex network sys-
tems with time-varying delay have generated many and variable conclusions, the studies,
especially those regarding the synchronization stability of systems, all used the same two
requirements on time-varying delay. First, a time-varying delay should have boundaries;
that is, 0 ≤ τ (t) ≤ τ , ∀t > 0. Second, the time-varying delay should be derivable and smaller
than 1; that is, 0 ≤ τ̇ (t) ≤ 1, ∀t > 0. For example [22, 25], the time-varying delay may not be
derivable. In fact, the time-varying delay is not derivable when it changes quickly in a time
period. In this study, only the first requirement of time-varying delay is needed. The sec-
ond requirement can be solved by the Newton–Leibniz formula. The stability conditions
of the exponential synchronization of the system are obtained through the Razumikhin
theorem. Therefore, this theorem relieves the requirements to the system in contrast to
the theorems used in other studies [20–27].

Remark 4 In [34, 35], the synchronization (or stability) of similar models, which all require
a derivable time-varying delay, is investigated. Similarly, this requirement is unnecessary
in Corollary 2.

As a special case, for the system (17), we consider the following Lyapunov function:

V = eT Pe.

According to the proof of Theorem 1, it is easy to get the following conclusion. We have
the following corollary.

Corollary 1 The complex network system (1) is exponentially synchronized if positive
numbers β , δ, λ, L1, L2, and a positive matrix P exist such that the following inequality
equation holds:

λ–1P ≥ (c1A ⊗ Γ1)T (c1A ⊗ Γ1), λ–1P ≥ (c2B ⊗ Γ2)T (c2B ⊗ Γ2), ∀δ > 0,

λ–1P ≥
(

L2
1 +

1
2

L1L2

)
, λ–1P ≥

(
L2

2 +
1
2

L1L2

)
, (19)
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⎡

⎢
⎣

γ2 PT (c2B ⊗ Γ2)T P
P –4I 0

(c2B ⊗ Γ2)T P 0 –3τ I

⎤

⎥
⎦ ≤ 0,

where γ2 = [4λ–1 + 4λ–1τ + 2K]P + δI .
Moreover, the error vector e(t,φ) satisfies the condition

∥∥e(t,φ)
∥∥ ≤

√
p
β

e– δ
2p t , t ≥ 0.

Here p = ‖P‖.

Remark 5 In Corollary 1, βeT e is removed from the Lyapunov function by proving The-
orem 1, which simplifies the judgment on synchronization stability and requires fewer
parameters. However, this approach increases the difficulty of selecting the parameter λ.

3.2 The synchronization control of complex dynamical network with
time-varying coupling delay consisting of N identical nodes with linear
couplings

In this section, we consider a general complex dynamical network consisting of dynamical
nodes with linear couplings, which is described by

ẋi = f
(
xi(t)

)
+ c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

bijΓ2xj
(
t – τ (t)

)
,

xi(t) = φ(t), t ∈ [–τ , 0], i = 1, 2, . . . , N ,

(20)

xi = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n is the state vector of the ith leader, f : Rn × R

n →
R

n is a continuously differential nonlinear vector function, c1 > 0 and c2 > 0 are the
non-delay and time-varying delay coupling strengths, Γ1 = diag(γ 1

1 ,γ 2
1 , . . . ,γ n

1 ) and Γ2 =
diag(γ 1

2 ,γ 2
2 , . . . ,γ n

2 ) are positive definite diagonal matrices, which represent the inner con-
nection matrices between each pair of nodes; A = (aij) ∈ R

N×N , B = (bij) ∈ R
N×N are the

non-delay and time-varying delay weight matrices. The entries are defined as follows: if is
a link is present from the node i to the node j (i �= j), then aij �= 0, bij �= 0; otherwise aij = 0,
bij = 0, and the diagonal elements of matrices A and B are defined as aii = –

∑N
j=1,j �=i aij,

bii = –
∑N

j=1,j �=i bij. Given that the networks in this paper are direct, aij �= aji and bij �= bji

(i, j = 1, 2, . . . , N ). The coupling time-varying delay τ (t) is a bound function and a positive
constant τ satisfying 0 ≤ τ (t) ≤ τ , ∀t > 0, ui ∈ R

N×N is the control input of node i. In this
paper, we aim to design a suitable controller,

ui(t) = ki
(
xi(t) – s(t)

)
, (21)

where ki is the gain of the ith node.
We use the Newton–Leibniz formula

x
(
t – τ (t)

)
= x(t) –

∫ t

t–τ (t)
ẋ(s) ds.
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We convert Eq. (21) to

ẋi = f
(
x(t)

)
+ c1A ⊗ Γ1x + c2B ⊗ Γ2

[
x(t) –

∫ t

t–τ (t)
ẋ(s) ds

]
,

x(t) = ψ(t), t ∈ [–2τ , 0].
(22)

The set s = {xT
1 (t), xT

2 (t), . . . , xT
n (t) ∈ R

n|xi(t) = s(t), i ∈ N} is defined as a synchronization
manifold, where s(t) ∈ R

n satisfies

ṡ(t) = f
(
s(t)

)
. (23)

Let f̃ (x) = f (x) – f (s(t)), K = diag(k1, k2, . . . , kN ).
Define the synchronization error vector as

ei(t) = (xi(t) – s(t), ei
(
t – τ (t)

)
= xi

(
t – τ (t)

)
– s

(
t – τ (t)

)
(i = 1, . . . , N).

Through (22) and (23), in order to achieve the synchronization of system (20), we add
controller (21) to the error system, we can get the following equation:

ė(t) = f̃ (x) + c1A ⊗ Γ1e + c2B ⊗ Γ2

[
e(t) –

∫ t

t–τ (t)
ė(v) dv

]
+ Ke(t)

= f̃ (x) + (c1A ⊗ Γ1 + c2B ⊗ Γ2)e(t)

– c2B ⊗ Γ2
t∫

t–τ (t)

[
f̃ (v) + c1A ⊗ Γ1 + c2B ⊗ Γ2e

(
v – τ (v)

)]
dv + Ke(t), (24)

where ei(t) = (ei1(t), ei2(t), . . . , ein(t))T ∈ R
n, e(t) = (e1(t), e2(t), . . . , en(t))T ∈R

n.
Therefore, if the error system (24) is exponentially stable, the complex network system

(20) is exponentially synchronized.

Theorem 2 The complex network system (18) is exponentially synchronized if positive
numbers β , δ, λ, L1, and a positive matrix P exist such that the following inequality equa-
tion holds:

λ–1(P + βI) ≥ (c1A ⊗ Γ1)(c1A ⊗ Γ1)T ,

λ–1(P + βI) ≥ (c2B ⊗ Γ2)(c2B ⊗ Γ2)T , ∀δ > 0,
⎡

⎢
⎣

γ3 (P + βI)T (c2B ⊗ Γ2)T (P + βI)
(P + βI) –3I 0

(c2B ⊗ Γ2)T (P + βI) 0 –3τ I

⎤

⎥
⎦ ≤ 0,

(25)

where γ3 = L2
1I + (1 + 4τ )λ–1(P + βI) + δI + 2K(P + βI).

Moreover, the error vector e(t,φ) satisfies the condition

∥∥e(t,φ)
∥∥ ≤

√
p + β

β
e– δ

2(p+β) t , t ≥ 0.

Here p = ‖P‖.
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Proof We consider the following Lyapunov function:

V = eT Pe + βeT e = eT (P + βI)e.

Here P is a positive symmetric matrix. It is easy to see that

β‖e‖2 ≤ V (t, e) ≤ (p + β)‖e‖2, ∀t ∈ R+, e ∈ R
n. (26)

The time derivative of V (t, x) along the trajectory of the system (22) is given by

V̇
(
t, e(t)

)
= 2eT Pė + 2βeT ė

= 2eT (P + βI)ė

= 2eT (P + βI)
(
f̃
(
x(t)

)
+ Ke(t) + (c1A ⊗ Γ1 + c2B ⊗ Γ2)e(t)

)

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
f̃
(
x(v)

)
dv

– 2eT (P + βI)

× c2B ⊗ Γ2

∫ t

t–τ (t)

(
c1A ⊗ Γ1e(v) + c2B ⊗ Γ2e

(
v – τ (v)

))
dv. (27)

For the chosen number λ > 0, we have

λeT (c1A ⊗ Γ1)T (c1A ⊗ Γ1)e ≤ eT (P + βI)e,

λeT (c2B ⊗ Γ2)T (c2B ⊗ Γ2)e ≤ eT (P + βI)e.

Therefore, the following estimates hold by applying Lemma 1 with W = I :

2eT (P + βI)
(
f (x) – f

(
s(t)

)) ≤ eT (P + βI)(P + βI)e +
∥∥f (x) – f

(
s(t)

)∥∥2

≤ eT (P + βI)(P + βI)e + L2
1eT e. (28)

In the light of the Razumikhin theorem, we assume that for any real number q > 1

V
(
t + s, e(s + t)

) ≤ qV
(
t, e(t)

)
, ∀s ∈ [–2τ , 0],∀t ≥ 0, (29)

and taking q → 1+ leads to

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
f̃ (x(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e +
∫ t

t–τ (t)

∥∥f̃
(
x(v)

)∥∥2 dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e +
∫ t

t–τ (t)
L2

1eT e dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1τV (t), (30)
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– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
c1A ⊗ Γ1e(v) dv

= –
∫ t

t–τ (t)
2eT (P + βI)c2B ⊗ Γ2c1A ⊗ Γ1e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e

+
∫ t

t–τ (t)
eT (v)(c1A ⊗ Γ1)T c1A ⊗ Γ1e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1
∫ t

t–τ (t)
eT (v)(P + βI)e(v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1
∫ 0

–τ (t)
eT (t + v)(P + βI)e(t + v) dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1τV (t). (31)

In a similar way

– 2eT (P + βI)c2B ⊗ Γ2

∫ t

t–τ (t)
c2B ⊗ Γ2e

(
v – τ (v)

)
dv

≤ τeT (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)e + λ–1τV (t), (32)

2eT (P + βI)(c1A ⊗ Γ1 + c2B ⊗ Γ2)e

≤ 2eT (P + βI)(P + βI)e + 2λ–1eT (P + βI)e. (33)

Therefore

V̇ ≤ eT[
L2

1I + 3τ (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)
]
e + 2KeT (P + βI)e

+ eT[
λ–1(1 + 4τ )(P + βI)

]
e + eT[

3(P + βI)(P + βI)
]
e. (34)

Assume V̇ ≤ –δeT e, where ∀δ > 0, which means V̇ < 0, therefore

3(P + βI)(P + βI) + L2
1I + 3τ (P + βI)c2B ⊗ Γ2(c2B ⊗ Γ2)T (P + βI)

+ λ–1(1 + 4τ )(P + βI) + 2K(P + βI) + δI ≤ 0. (35)

According to Lemma 3, we could have transformed (36) into (37), it is equivalent to the
following matrix inequalities:

⎡

⎢
⎣

γ3 (P + βI)T (c2B ⊗ Γ2)T (P + βI)
(P + βI) –3I 0

(c2B ⊗ Γ2)T (P + βI) 0 –3τ I

⎤

⎥
⎦ ≤ 0, (36)

where γ3 = L2
1I + λ–1(1 + 4τ )(P + βI) + δI + 2K(P + βI).

Also

V̇ ≤ –δeT e = –δ‖e‖2. (37)
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This, by the Razumikhin stability theorem and Lemma 2, implies the asymptotic stability
of the error system (24). To find the exponential factor of the solution, integrating both
sides of the inequality, due to (39), V̇ (t, e(t)) ≤ 0 and using the condition (26), we have

β‖e‖2 ≤ V (t, e) ≤ V
(
0, e(0)

)
e– δ

2(p+β) t (38)

and hence

∥∥e(t,φ)
∥∥ ≤

√
p + β

β
e– δ

2(p+β) t , t ≥ 0. (39)

Here p = ‖P‖, this completes the proof of Theorem 2. �

Remark 6 Many researchers who studied the synchronous control of complex network
with time-varying delay hypothesized that dynamic behaviors include nonlinear function.
Some of them did not consider time delay in nonlinear dynamic behaviors [36] and some
did [37]. Notably, the time-varying delay of systems (time delay in dynamic behavior and
node coupling) was considered derivable in previous studies. This condition is eliminated
in our Theorem 2, which relieves the requirements on time delay and thereby reduces the
conservation of conclusions.

We turn to system (18). We consider the following Lyapunov function:

V = eT Pe.

According to Theorem 2, it is easy to get the following conclusion. We have the following
corollary.

Corollary 2 The complex network system (18) is exponentially synchronized when positive
numbers δ, λ, L1 and a positive matrix P are present and the following inequality equation
holds:

λ–1P ≥ (c1A ⊗ Γ1)T (c1A ⊗ Γ1), λ–1P ≥ (c2B ⊗ Γ2)T (c2B ⊗ Γ2), ∀δ > 0,
⎡

⎢
⎣

γ4 PT (c2B ⊗ Γ2)T P
P –3I 0

(c2B ⊗ Γ2)T P 0 –3τ I

⎤

⎥
⎦ ≤ 0,

(40)

where γ4 = L2
1I + λ–1(1 + 4τ )P + δI + 2KP.

Moreover, the error vector e(t,φ) satisfies the condition

∥∥e(t,φ)
∥∥ ≤

√
p
β

e
(
t – τ (t)

)– δ
2p t , t ≥ 0.

Here p = ‖P‖.
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Figure 1 The state of the node e1 without controller

Figure 2 The state of the node e2 without controller

3.3 Numerical simulation
In this section, the exponential synchronization conditions obtained in this paper are il-
lustrated with an example.

Consider a general complex dynamical network consisting of dynamical nodes with lin-
ear couplings system in Theorem 2. We have

ẋ(t) = f
(
x(t)

)
+ c1A ⊗ Γ1x(t) + c2B ⊗ Γ2x

(
t – τ (t)

)
+ u(t) (41)

and consider a complex network system with 10 nodes, each of which is a three-
dimensional linear system. Here

c1 = 0.4; c2 = 0.4; β = 1; δ = 1;

λ = 0.001; τ = 0.002; L1 = 0.1;
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Figure 3 The state of the node e3 without controller

Figure 4 The state of the node e1 with controller

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–7 1 1 0 1 1 1 0 1 1
1 –8 1 1 1 1 0 1 1 1
1 1 –7 1 0 1 1 0 1 1
0 1 1 –8 1 1 1 1 1 1
1 1 0 1 –7 1 0 1 1 1
1 1 1 1 1 –7 0 1 1 0
1 1 1 1 0 0 –7 1 1 1
0 0 0 1 1 1 1 –5 1 0
1 1 1 1 1 1 1 1 –9 1
1 1 1 1 1 0 1 1 0 –7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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Figure 5 The state of the node e2 with controller

Figure 6 The state of the node e3 with controller

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–7 1 1 0 1 1 1 0 1 1
1 –8 1 1 1 1 0 1 1 1
1 1 –7 1 0 1 1 0 1 1
0 1 1 –8 1 1 1 1 1 1
1 1 0 1 –7 1 0 1 1 1
1 1 1 1 1 –7 0 1 1 0
1 1 1 1 0 0 –7 1 1 1
0 0 0 1 1 1 1 –5 1 0
1 1 1 1 1 1 1 1 –9 1
1 1 1 1 1 0 1 1 0 –7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Γ1 = diag{2, 2, 1}; Γ2 = diag{2, 2, 1}.
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According to the LMI toolbox in Matlab, the parameters K and P can be obtained,
and the initial conditions of the system are given, t0 = 0, and the initial state x(0) =
[2.62342, –5.74317, . . . , 2.62342, –2.74317, 1.89187]T is given at random. Figures 1, 2, and 3
are for the node 1, 2, 3 status curves without controller and Figs. 4, 5, and 6 are for the node
1, 2, 3 status curves with controller.

As can be seen from the figure, after a period of time, the system state is synchronous,
and the feasibility and effectiveness of the control method are demonstrated.

4 Conclusions and discussions
This work focuses on the problem of exponential synchronization in complex network sys-
tems with time-varying delay. In the light of the Razumikhin stability theorem combined
with the Newton–Leibniz formula, we deduced an exponential synchronization condi-
tion, without considering the differentiability of the time-delay function. Finally, a numer-
ical simulation is given to show its effectiveness. The following will be considered in our
future work: how to achieve synchronization through a network that is less strict and suf-
ficient, and how to extend existing methods to the problem of finite-time synchronization
or fixed-time synchronization. This is the goal we will consider and study in the future.
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