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Abstract
The present paper is aimed at studying the entropy of dynamical systems in product
MV-algebras. First, by using the concept of logical entropy of a partition in a product
MV-algebra introduced and studied by Markechová et al. (Entropy 20:129, 2018), we
define the logical entropy of a dynamical system in the studied algebraic structure. In
addition, we introduce a general type of entropy of a product MV-algebra dynamical
system that includes the logical entropy and the Kolmogorov–Sinai entropy as special
cases. It is proved that the proposed entropy measure is invariant under isomorphism
of product MV-algebra dynamical systems.
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1 Introduction
The Shannon entropy [2] is the basic notion of information theory (cf. [3]). If an experi-
ment has n results with probabilities p1, p2, . . . , pn, then its entropy is the sum

∑n
i=1 s(pi),

where s : [0, 1] → [0,∞) is Shannon’s entropy function defined by equation

s(x) = –x log x (1.1)

for every x ∈ [0, 1] (0 log 0 is defined to be 0). Many years later, the Shannon entropy
was used surprisingly in a quite different area of theory as well as in practice, i.e., in
dynamical systems. Recall that a classical dynamical system is a quaternion (Ω , S, P, T),
where (Ω , S, P) is a probability space and T : Ω → Ω is a measure preserving map, i.e.,
P(T–1(B)) = P(B), B ∈ S. If B = {B1, B2, . . . , Bn} is a measurable partition of Ω with prob-
abilities p1, p2, . . . , pn of the corresponding elements, then its entropy is again H(B) =
∑n

i=1 s(pi) = –
∑n

i=1 pi · log pi. If B = {B1, B2, . . . , Bn} and C = {C1, C2, . . . , Cm} are measurable
partitions of Ω , then the measurable partition B∨C = {Bi ∩Cj; i = 1, 2, . . . , n, j = 1, 2, . . . , m}
represents an experiment consisting of a realization of experiments B and C . Further, by
T–1(B) the measurable partition {T–1(B1), T–1(B2), . . . , T–1(Bn)} is denoted. The entropy
of a dynamical system (Ω , S, P, T ) has been defined by Kolmogorov and Sinai [4, 5] as the
number H(T) = sup H(B, T); B is a finite measurable partition of {Ω}, where H(B, T) =
limn→∞ 1

n H(
∨n–1

i=0 T–i(B)). It is used to measure dynamical complexity of the considered
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dynamical system. The number H(T) is also a useful instrument for distinguishing dy-
namical systems. Namely, if two dynamical systems are isomorphic, then they have the
same entropy. By this way Kolmogorov and Sinai showed that there are non-isomorphic
Bernoulli shifts. Recall that the opposite implication holds, but only for Bernoulli shifts: if
two Bernoulli shifts have the same entropy, they are isomorphic [6, 7].

The successful using of the Kolmogorov and Sinai entropy of dynamical systems has
led to an intensive study of various aspects of alternative entropy measures of dynamical
systems. We note that in the recently published paper [8], the notion of logical entropy
Hl(T) of a dynamical system (Ω , S, P, T ) was proposed and studied. It has been shown
that by replacing the Shannon entropy function by the logical entropy function l : [0, 1] →
[0,∞) defined by

l(x) = x(1 – x) (1.2)

for every x ∈ [0, 1], we get the results that are analogous to the case of classical
Kolmogorov–Sinai entropy theory. It has been proven that the logical entropy Hl(T) dis-
tinguishes non-isomorphic dynamical systems; so it can be used as an alternative instru-
ment for distinguishing them. Note that some other recently published results regarding
the logical entropy measure can be found, for example, in [9–17].

Actually, all of the above-mentioned studies are possible in the Kolmogorov probability
theory based on the modern integration theory. It gives a possibility to describe and study
some problems of uncertainty. Of course, in 1965, Zadeh presented another approach to
uncertainty in his article [18]. While the Kolmogorov probability applications are based
on objective measurements, the Zadeh fuzzy theory is based on subjective improvements.
Of course, one of the first Zadeh articles on the fuzzy set theory was devoted to proba-
bility on fuzzy sets (cf. [19]). Therefore, the entropy of fuzzy dynamical systems has also
been studied (cf. [20–23]). Recall that the fuzzy set is a mapping f : Ω → [0, 1] (f (ω) is
interpreted as the degree of the element ω ∈ Ω to the considered fuzzy set f ), hence the
fuzzy partition of Ω is a family of fuzzy sets A = {f1, f2, . . . , fn} such that

∑n
i=1 fi = 1. And

again we can meet the Shannon formula: H(A) = –
∑n

i=1 pi log pi, where pi =
∫
Ω

fi dP (cf.
[23]). An overview of publications devoted to the entropy of fuzzy dynamical systems can
be found in [24].

In [25], Atanassov presented a remarkable generalization of fuzzy sets, i.e., intuitionistic
fuzzy sets. An intuitionistic fuzzy set is a pair A = (fA, gA) of fuzzy sets such that fA + gA ≤
1. Here fA is a membership function, gA a non-membership function. If f is a fuzzy set,
then the pair (f , 1 – f ) is an intuitionistic fuzzy set. Also, the probability on families of
intuitionistic fuzzy sets has been studied (cf. [26]).

Anyway, the most useful instrument for describing multivalued processes is an MV-
algebra [27], especially after its Mundici’s characterization as an interval in a lattice or-
dered group (cf. [28]). This algebraic structure is currently being studied by many re-
searchers and it is natural that there are many results also regarding entropy in this struc-
ture; we refer, for instance, to [29, 30]. A probability theory was studied on MV-algebras
as well; for a review, see [31]. Of course, in some problems of probability it is necessary
to introduce a product on an MV-algebra, an operation outside the corresponding group
addition. The operation of a product on an MV-algebra was introduced independently by
Riečan [32] from the point of view of probability and by Montagna [33] from the point of
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view of mathematical logic. Also, the approach from the point of view of a general algebra
proposed by Jakubík in [34] seems to be interesting; see also [35]. We note that the notion
of product MV-algebra generalizes some families of fuzzy sets; an example of product
MV-algebra is a full tribe of fuzzy sets (see, e.g., [24]).

A suitable entropy theory of Shannon and Kolmogorov–Sinai type for the product MV-
algebras has been provided by Petrovičová in [36, 37]. We remark that in our article [38],
based on the results of Petrovičová, we introduced the notions of Kullback–Leibler diver-
gence and mutual information of partitions in a product MV-algebra. The logical entropy,
the logical divergence, and the logical mutual information of partitions in a product MV-
algebra were studied in [1]. In the present paper, we extend the study of logical entropy of
partitions in product MV-algebras to the case of product MV-algebra dynamical systems.
Moreover, we introduce a general type of entropy of a dynamical system in a product MV-
algebra. The proposed definition is based on the concept of the sub-additive generator ϕ

introduced by the authors in [39].
The rest of the article is organized as follows. Section 2 contains basic definitions, nota-

tions, and some known facts that will be used in the paper. Our results are presented in the
succeeding two sections. In Sect. 3, we define and study the logical entropy of a dynamical
system in a product MV-algebra and examine its properties. In Sect. 4, a general type of
entropy of a dynamical system in a product MV-algebra is introduced. It is proved that
the proposed entropy measure is invariant under isomorphism of product MV-algebra
dynamical systems. It is shown that the logical entropy and the Kolmogorov–Sinai en-
tropy of a dynamical system in a product MV-algebra can be obtained as special cases of
the proposed general scheme. It follows that the isomorphic product MV-algebra dynam-
ical systems have the same logical entropy and the same Kolmogorov–Sinai entropy. We
illustrate the results with examples. Finally, the last section provides brief closing remarks.

2 Basic definitions and related works
We start by reminding the definitions of basic terms and some of the known results that
will be used in the article. We mention some works related to the subject of this article, of
course, without claiming completeness.

Several different (but equivalent) axiom systems have been used to define the term of
MV-algebra (cf., e.g., [32, 40, 41]). In our article, we apply the definition of MV-algebra
in accordance with the definition given by Riečan in [42], which is based on the Mundici
representation theorem. Based on Mundici’s theorem [28] (see also [43]), MV-algebras can
be viewed as intervals of an abelian lattice-ordered group (shortly l-group). We remind
that by an l-group (cf. [44]) we understand a triplet (G, +,≤), where (G, +) is an abelian
group, (G,≤) is a partially ordered set being a lattice, and x ≤ y �⇒ x + z ≤ y + z.

Definition 2.1 ([42]) An MV-algebra is an algebraic structure A = (A,⊕,∗, 0, u) satisfying
the following conditions:

(i) There exists an l-group (G, +,≤) such that A = [0, u] = {x ∈ G; 0 ≤ x ≤ u}, where 0 is
the neutral element of (G, +) and u is a strong unit of G (i.e., u ∈ G such that u > 0
and to every x ∈ G there exists a positive integer n with the property x ≤ nu);

(ii) ⊕,∗ are binary operations on A satisfying the following identities:
x ⊕ y = (x + y) ∧ u, x ∗ y = (x + y – u) ∨ 0.
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Definition 2.2 ([31]) A state on an MV-algebra A = (A,⊕,∗, 0, u) is a mapping μ : A →
[0, 1] with the following two properties:

(i) μ(u) = 1;
(ii) If x, y ∈ A such that x + y ≤ u, then μ(x + y) = μ(x) + μ(y).

Definition 2.3 ([42]) A product MV-algebra is an algebraic structure (A,⊕,∗, ·, 0, u),
where (A,⊕,∗, 0, u) is an MV-algebra and · is an associative and abelian binary operation
on A with the following properties:

(i) For every x ∈ A, u · x = x;
(ii) If x, y, z ∈ A such that x + y ≤ u, then z · x + z · y ≤ u, and z · (x + y) = z · x + z · y.

For brevity, we will write (A, ·) instead of (A,⊕,∗, ·, 0, u). A relevant probability theory
for the product MV-algebras was developed by Riečan in [45], see also [46, 47]; the en-
tropy theory of Shannon and Kolmogorov–Sinai type for the product MV-algebras was
proposed in [36, 37]. The logical entropy of a partition in a product MV-algebra (A, ·) was
defined and studied in [1]. We present the main idea and some results of these theories
that will be used in the following text.

By a partition in a product MV-algebra (A, ·), we understand any n-tuple X = (x1, x2, . . . ,
xn) of elements of A with the property x1 + x2 + · · · + xn = u. In the system of all partitions
in a given product MV-algebra (A, ·), we define the refinement partial order 
 in a stan-
dard way (cf. [1]). If X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·),
then we write Y 
 X (and we say that Y is a refinement of X), if there exists a partition
{I(1), I(2), . . . , I(n)} of the set {1, 2, . . . , m} such that xi =

∑
j∈I(i) yj, for i = 1, 2, . . . , n. Fur-

ther, we put X ∨ Y = (xi · yj; i = 1, 2, . . . , n, j = 1, 2, . . . , m). Since
∑n

i=1
∑m

j=1 xi · yj = (
∑n

i=1 xi) ·
(
∑m

j=1 yj) = u · u = u, the system X ∨ Y is a partition in (A, ·); it represents an experiment
consisting of a realization of X and Y .

Later we shall need the following assertions:

Proposition 2.1 Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·) and
μ : A → [0, 1] be a state. Then, for any element y ∈ A, it holds μ(y) =

∑n
i=1 μ(xi · y).

Proof The proof can be found in [1]. �

Proposition 2.2 If X, Y , Z are partitions in a product MV-algebra (A, ·), then it holds X ∨
Y 
 X, and Y 
 X implies Y ∨ Z 
 X ∨ Z.

Proof The proof can be found in [1]. �

Proposition 2.3 Let X, Y , V , Z be partitions in a product MV-algebra (A, ·) such that Y 

X and Z 
 V . Then Y ∨ Z 
 X ∨ V .

Proof Assume that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym), V = (v1, v2, . . . , vp), Z = (z1, z2, . . . ,
zq), Y 
 X, Z 
 V . Then there exists a partition {I(1), I(2), . . . , I(n)} of the set {1, 2, . . . , m}
such that xi =

∑
j∈I(i) yj for i = 1, 2, . . . , n, and there exists a partition {J(1), J(2), . . . , J(p)} of

the set {1, 2, . . . , q} such that vr =
∑

k∈J(r) zk for r = 1, 2, . . . , p. Put I(i, r) = {(j, k); j ∈ I(i), k ∈
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J(r)} for i = 1, 2, . . . , n, r = 1, 2, . . . , p. We get

xi · vr =
(∑

j∈I(i)

yj

)

·
( ∑

k∈J(r)

zk

)

=
∑

(j,k)∈I(i,r)

yj · zk

for i = 1, 2, . . . , n, r = 1, 2, . . . , p, which means that Y ∨ Z 
 X ∨ V . �

Definition 2.4 Let μ be a state on a product MV-algebra (A, ·). We say that partitions X, Y
in (A, ·) are statistically independent with respect to μ if μ(x ·y) = μ(x) ·μ(y) for every x ∈ X
and y ∈ Y .

The following definition of entropy of Shannon type was introduced in [36].

Definition 2.5 Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·), and
μ : A → [0, 1] be a state. Then the entropy of X with respect to μ is defined by Shannon’s
formula:

Hμ
s (X) =

n∑

i=1

s
(
μ(xi)

)
, (2.1)

where s : [0, 1] → [0,∞) is the Shannon entropy function defined by Eq. (1.1). If X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then the conditional en-
tropy of X given Y is defined by

Hμ
s (X/Y ) = –

n∑

i=1

m∑

j=1

μ(xi · yj) · log
μ(xi · yj)

μ(yj)
. (2.2)

In Eq. (2.2), it is assumed that 0 · log 0
x = 0 if x ≥ 0. The entropy and the conditional

entropy of partitions in a product MV-algebra satisfy all properties corresponding to the
properties of Shannon’s entropy of measurable partitions in the classical case; for more
details, see [36]. In particular, it holds Hμ

s (X ∨Y ) ≤ Hμ
s (X)+Hμ

s (Y ) for every partition X, Y
in (A, ·). The equality holds if and only if X, Y are statistically independent partitions with
respect to μ. This means that Shannon’s entropy of partitions in a product MV-algebra
has the property of additivity and also the property of sub-additivity.

The definition of logical entropy of a partition in a product MV-algebra was introduced
in [1] as follows.

Definition 2.6 Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·), and
μ : A → [0, 1] be a state. Then the logical entropy of X with respect to μ is defined by

Hμ

l (X) =
n∑

i=1

l
(
μ(xi)

)
, (2.3)

where l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2). If X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) are two partitions in (A, ·), then the conditional logi-
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cal entropy of X given Y is defined by

Hμ

l (X/Y ) =
n∑

i=1

m∑

j=1

μ(xi · yj)
(
μ(yj) – μ(xi · yj)

)
. (2.4)

The basic properties of the logical entropy of partitions in a product MV-algebra were
derived in [1]. Specifically, this entropy measure has been shown to have the property
of sub-additivity, but it does not have the property of additivity. It satisfies the following
property: if X, Y are statistically independent partitions in a product MV-algebra (A, ·),
then:

1 – Hμ

l (X ∨ Y ) =
(
1 – Hμ

l (X)
) · (1 – Hμ

l (Y )
)
.

Moreover, the proposed logical entropy measure has the following properties: (L1) for
every partition X, Y in (A, ·), it holds Hμ

l (X ∨ Y ) = Hμ

l (X) + Hμ

l (Y /X); (L2) for every parti-
tion X, Y in (A, ·) such that Y 
 X, it holds Hμ

l (Y ) ≥ Hμ

l (X).

3 The logical entropy of dynamical systems in product MV-algebras
In this section, we extend the definition of logical entropy of a partition in a product MV-
algebra to the case of dynamical systems and prove basic properties of this measure of
information. The known Kolmogorov–Sinai theorem on generators is a useful instrument
to compute the entropy of a dynamical system. In the final part of this section we provide
a logical version of this theorem for the studied case of product MV-algebra.

Definition 3.1 ([37]) By a dynamical system in a product MV-algebra (A, ·), we under-
stand a system (A,μ, U), where μ : A → [0, 1] is a state, and U : A → A is a map such that
U(u) = u,and, for every x, y ∈ A, the following conditions are satisfied:

(i) if x + y ≤ u, then U(x) + U(y) ≤ u and U(x + y) = U(x) + U(y);
(ii) U(x · y) = U(x) · U(y);

(iii) μ(U(x)) = μ(x).

Remark 3.1 For the sake of brevity, we say also a product MV-algebra dynamical system
instead of a dynamical system in a product MV-algebra.

Example 3.1 Let (Ω , S, P, T ) be a classical dynamical system. Put A = {χB; B ∈ S}, where
χB : Ω → {0, 1} is the characteristic function of the set B ∈ S. The family A is closed under
the product of characteristic functions, and it is a special case of product MV-algebras.
If we define the mapping μ : A → [0, 1] by μ(χB) = P(B), B ∈ S, then μ is a state on the
product MV-algebra (A, ·). In addition, let us define the mapping U : A → A by the equality
U(χB) = χB ◦ T = χT–1(B),χB ∈ A. Then the system (A,μ, U) is a dynamical system in the
considered product MV-algebra (A, ·). A measurable partition B = {B1, B2, . . . , Bn} of Ω

can be considered as a partition in the product MV-algebra (A, ·); it suffices to consider
χBi instead of Bi.

Example 3.2 Let (Ω , S, P, T ) be a classical dynamical system. Let A be a family of all S-
measurable functions f : Ω → [0, 1],the so-called full tribe of fuzzy sets (cf. [24]). The
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family A is closed also with respect to the natural product of fuzzy sets, and it is an im-
portant case of product MV-algebras. If we define the state μ : A → [0, 1] by the equal-
ity μ(f ) =

∫
Ω

f dP for any element f of A, and the mapping U : A → A by the equality
U(f ) = f ◦ T , f ∈ A, then it is easy to verify that the system (A,μ, U) is a dynamical sys-
tem in the considered product MV-algebra (A, ·). The notion of a partition in the product
MV-algebra (A, ·) coincides with the notion of a fuzzy partition.

Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X = (x1, x2, . . . , xn)
be a partition in (A, ·). Put U(X) = (U(x1), U(x2), . . . , U(xn)). Since x1 + x2 + · · · + xn = u, ac-
cording to Definition 3.1, we have U(x1) + U(x2) + · · · + U(xn) = U(x1 + x2 + · · · + xn) =
U(u) = u, which means that U(X) is also a partition in (A, ·).

Proposition 3.1 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and
X, Y be partitions in (A, ·). Then

(i) U(X ∨ Y ) = U(X) ∨ U(Y );
(ii) Y 
 X implies U(Y ) 
 U(X).

Proof (i) Suppose that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym). By condition (ii) from Defi-
nition 3.1, we have

U(X) ∨ U(Y ) =
(
U(x1), U(x2), . . . , U(xn)

) ∨ (
U(y1), U(y2), . . . , U(ym)

)

=
(
U(xi) · U(yj); i = 1, 2, . . . , n, j = 1, 2, . . . , m

)

=
(
U(xi · yj); i = 1, 2, . . . , n, j = 1, 2, . . . , m

)
= U(X ∨ Y ).

(ii) Suppose that X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym), Y 
 X. Then there exists a par-
tition {I(1), I(2), . . . , I(n)} of the set {1, 2, . . . , m} such that xi =

∑
j∈I(i) yj for i = 1, 2, . . . , n.

Therefore, by condition (i) from Definition 3.1, we have

U(xi) = U
(∑

j∈I(i)

yj

)

=
∑

j∈I(i)

U(yj) for i = 1, 2, . . . , n.

However, this means that U(Y ) 
 U(X). �

Define U2 = U ◦ U , and put Uk = U ◦ Uk–1 for k = 1, 2, . . . , where U0 is the identical
mapping. It is obvious that the map Uk : A → A satisfies the conditions from Definition 3.1.
Hence, for any non-negative integer k, the system (A,μ, Uk) is a dynamical system in a
product MV-algebra (A, ·).

Theorem 3.1 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X, Y
be partitions in (A, ·). Then, for any non-negative integer k, the following equalities hold:

(i) Hμ

l (Uk(X)) = Hμ

l (X);
(ii) Hμ

l (Uk(X)/Uk(Y )) = Hμ

l (X/Y ).

Proof Suppose that X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym).
(i) Since for any non-negative integer k and i = 1, 2, . . . , n, it holds μ(Uk(xi)) = μ(xi), we

obtain

Hμ

l
(
Uk(X)

)
=

n∑

i=1

l
(
μ

(
Uk(xi)

))
=

n∑

i=1

l
(
μ(xi)

)
= Hμ

l (X).
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(ii) Based on the same argument, we get

Hμ

l
(
Uk(X)/Uk(Y )

)
=

n∑

i=1

m∑

j=1

μ
(
Uk(xi · yj)

) · (μ(
Uk(yj)

)
– μ

(
Uk(xi · yj)

))

=
n∑

i=1

m∑

j=1

μ(xi · yj)
(
μ(yj) – μ(xi · yj)

)
= Hμ

l (X/Y ).
�

Theorem 3.2 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X
be a partition in (A, ·). Then, for n = 2, 3, . . . , the following equality holds:

Hμ

l

(n–1∨

k=0

Uk(X)

)

= Hμ

l (X) +
n–1∑

i=1

Hμ

l

(

X
/ i∨

k=1

Uk(X)

)

.

Proof We use proof by mathematical induction on n, starting with n = 2. For n = 2, the
statement holds by property (L1). We suppose that the statement holds for a given integer
n > 1, and we will prove that it is true for n + 1. By property (i) from the previous theorem,
we get

Hμ

l

( n∨

k=1

Uk(X)

)

= Hμ

l

(

U

(n–1∨

k=0

Uk(X)

))

= Hμ

l

(n–1∨

k=0

Uk(X)

)

.

Therefore, using (L1) and our inductive hypothesis, we get

Hμ

l

( n∨

k=0

Uk(X)

)

= Hμ

l

(( n∨

k=1

Uk(X)

)

∨ X

)

= Hμ

l

( n∨

k=1

Uk(X)

)

+ Hμ

l

(

X
/ n∨

k=1

Uk(X)

)

= Hμ

l

(n–1∨

k=0

Uk(X)

)

+ Hμ

l

(

X
/ n∨

k=1

Uk(X)

)

= Hμ

l (X) +
n–1∑

i=1

Hμ

l

(

X
/ i∨

k=1

Uk(X)

)

+ Hμ

l

(

X
/ n∨

k=1

Uk(X)

)

= Hμ

l (X) +
n∑

i=1

Hμ

l

(

X
/ i∨

k=1

Uk(X)

)

.

In conclusion, the statement holds by the principle of mathematical induction. �

In the following, we will define the logical entropy of a dynamical system (A,μ, U). First,
we define the logical entropy of U relative to a partition X in (A, ·). Then we remove the
dependence on X to get the logical entropy of a dynamical system (A,μ, U). We will need
the following proposition.

Proposition 3.2 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·). Then,
for any partition Xin(A, ·), there exists the following limit:

lim
n→∞

1
n

Hμ

l

(n–1∨

k=0

Uk(X)

)

.
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Proof Put cn = Hμ

l (
∨n–1

k=0 Uk(X)) for n = 1, 2, . . . . Then the sequence {cn}∞n=1 is a sequence of
non-negative real numbers satisfying the condition cr+s ≤ cr + cs for every r, s ∈N. Indeed,
by means of sub-additivity of logical entropy and property (i) from Theorem 3.1, we can
write

cr+s = Hμ

l

(r+s–1∨

k=0

Uk(X)

)

≤ Hμ

l

( r–1∨

k=0

Uk(X)

)

+ Hμ

l

(r+s–1∨

k=r

Uk(X)

)

= cr + Hμ

l

(

Ur

( s–1∨

k=0

Uk(X)

))

= cr + Hμ

l

( s–1∨

k=0

Uk(X)

)

= cr + cs.

This property guarantees (in view of Theorem 4.9, [48]) the existence of limn→∞ 1
n cn. �

Definition 3.2 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X
be a partition in (A, ·). Then we define the logical entropy of Urelative to X by

Hμ

l (U , X) = lim
n→∞

1
n

Hμ

l

(n–1∨

k=0

Uk(X)

)

.

Remark 3.2 Consider any dynamical system (A,μ, U) in a product MV-algebra (A, ·). If we
put E = (u), then E is a partition in (A, ·) such that X 
 E for any partition X in (A, ·), and
with the logical entropy Hμ

l (E) = 0. Evidently,
∨n–1

k=0 Uk(E) = E, hence Hμ

l (U , E) = 0.

Theorem 3.3 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X
be a partition in (A, ·). Then, for any non-negative integer r, the following equality holds:

Hμ

l (U , X) = Hμ

l

(

U ,
r∨

i=0

Ui(X)

)

.

Proof Using Definition 3.2, we can write

Hμ

l

(

U ,
r∨

i=0

Ui(X)

)

= lim
n→∞

1
n

Hμ

l

(n–1∨

k=0

Uk

( r∨

i=0

Ui(X)

))

= lim
n→∞

r + n
n

· 1
r + n

Hμ

l

(r+n–1∨

k=0

Uk(X)

)

= lim
n→∞

1
r + n

Hμ

l

(r+n–1∨

k=0

Uk(X)

)

= Hμ

l (U , X). �

Theorem 3.4 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and X, Y
be partitions in (A, ·) such that Y 
 X. Then Hμ

l (U , X) ≤ Hμ

l (U , Y ).

Proof Let Y 
 X. By Propositions 2.3 and 3.1, we have
∨n–1

k=0 Uk(Y ) 
 ∨n–1
k=0 Uk(X) for n =

1, 2, . . . . Therefore, by property (L2), we get

Hμ

l

(n–1∨

k=0

Uk(X)

)

≤ Hμ

l

(n–1∨

k=0

Uk(Y )

)

.

Consequently, dividing by n and letting n → ∞, we get Hμ

l (U , X) ≤ Hμ

l (U , Y ). �
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Definition 3.3 The logical entropy of a dynamical system (A,μ, U) in a product MV-
algebra (A, ·) is defined by

Hμ

l (U) = sup
{

Hμ

l (U , X); X is a partition in (A, ·)}.

Theorem 3.5 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·). Then,
for every natural number k, it holds Hμ

l (Uk) = k · Hμ

l (U).

Proof Let X be a partition in (A, ·). Then, for every natural number k, we have

Hμ

l

(

Uk ,
k–1∨

j=0

Uj(X)

)

= lim
n→∞

1
n

Hμ

l (
n–1∨

i=0

(
Uk)i

(k–1∨

j=0

Uj(X)

)

= lim
n→∞

1
n

Hμ

l

(n–1∨

i=0

k–1∨

j=0

Uki+j(X)

)

= lim
n→∞

1
n

Hμ

l

(nk–1∨

j=0

Uj(X)

)

= lim
n→∞

nk
n

1
nk

Hμ

l

(nk–1∨

j=0

Uj(X)

)

= k · Hμ

l (U , X).

Hence we obtain

k · Hμ

l (U) = k · sup
{

Hμ

l (U , X); X is a partition in (A, ·)}

= sup

{

Hμ

l

(

Uk ,
k–1∨

j=0

Uj(X)

)

; X is a partition in (A, ·)
}

≤ sup
{

Hμ

l
(
Uk , Y

)
; Y is a partition in (A, ·)} = Hμ

l
(
Uk).

On the other hand, by Proposition 2.2, we have
∨k–1

j=0 Uj(X) 
 X, and therefore, by Theo-
rem 3.4, we get

Hμ

l
(
Uk , X

) ≤ Hμ

l

(

Uk ,
k–1∨

j=0

Uj(X)

)

= k · Hμ

l (U , X).

It follows from this that

Hμ

l
(
Uk) = sup

{
Hμ

l
(
Uk , X

)
; X is a partition in (A, ·)}

≤ k · sup
{

Hμ

l (U , X); X is a partition in (A, ·)} = k · Hμ

l (U). �

In the rest of this section, we formulate a version of the Kolmogorov–Sinai theorem on
generators for the case of the logical entropy of a dynamical system (A,μ, U).

Definition 3.4 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·). A par-
tition Z in (A, ·) is said to be a generator of a dynamical system (A,μ, U) if to any partition
X in (A, ·) there exists an integer k > 0 such that

∨k
i=0 Ui(Z) 
 X.

Theorem 3.6 Let Z be a generator of a dynamical system (A,μ, U). Then Hμ

l (U) =
Hμ

l (U , Z).
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Proof Let Z be a generator of a dynamical system (A,μ, U), and X be any partition in (A, ·).
Then there exists an integer k > 0 such that

∨k
i=0 Ui(Z) 
 X. Therefore, by Theorems 3.4

and 3.3, we have

Hμ

l (U , X) ≤ Hμ

l

(

U ,
k∨

i=0

Ui(Z)

)

= Hμ

l (U , Z),

and consequently

Hμ

l (U) = sup
{

Hμ

l (U , X); X is a partition in (A, ·)} = Hμ

l (U , Z). �

4 General type of entropy of dynamical systems in product MV-algebras
In this section, we introduce, based on the function ϕ : [0, 1] →R, a general type of entropy
of a partition in a product MV-algebra (A, ·) that contains the Shannon entropy and the
logical entropy of a partition in a product MV-algebra (A, ·) as special cases. Subsequently,
using the concept of ϕ-entropy of a partition in (A, ·), where ϕ is a so-called sub-additive
generator [39], we define a general type of entropy of a dynamical system (A,μ, U), so-
called ϕ-entropy of a dynamical system (A,μ, U). We construct for the proposed entropy
measure an isomorphism theory of the Kolmogorov–Sinai type.

Definition 4.1 Let X = (x1, x2, . . . , xn) be a partition in a product MV-algebra (A, ·), and
μ : A → [0, 1] be a state. If ϕ : [0, 1] → R is a function, then we define the ϕ–entropy of X
with respect to μ as the number

Hμ
ϕ (X) =

n∑

i=1

ϕ
(
μ(xi)

)
. (4.1)

Example 4.1 If we put ϕ = s, where s : [0, 1] → [0,∞) is the Shannon entropy function
defined by Eq. (1.1), then we obtain the Shannon entropy of X, and putting ϕ = l, where
l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2), the logical entropy
of X is obtained.

Definition 4.2 ([39]) A function ϕ : [0, 1] → [0,∞) is said to be a sub-additive generator if
the following condition is satisfied: if cij ∈ [0, 1], i = 1, 2, . . . , n, j = 1, 2, . . . , m,

∑m
j=1 cij = ai, i =

1, 2, . . . , n,
∑n

i=1 cij = bj, j = 1, 2, . . . , m, and
∑n

i=1 ai = 1,
∑m

j=1 bj = 1, then

n∑

i=1

m∑

j=1

ϕ(cij) ≤
n∑

i=1

ϕ(ai) +
m∑

j=1

ϕ(bj).

Remark 4.1 In [39] we have shown that the Shannon entropy as well as the logical en-
tropy functions are sub-additive generators. Moreover, a sub-additive generator different
from these entropy functions was found; it was proven that the function k : [0, 1] → [0,∞)
defined by

k(x) = x
(
1 – x2), (4.2)

for every x ∈ [0, 1], is a sub-additive generator. The function k will be called the quadratic
logical entropy function.
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Remark 4.2 Consider any product MV-algebra (A, ·) and the partition E = (u) in (A, ·). If
ϕ : [0, 1] →R is a function with the property that ϕ(1) = 0 (it is evident that all of the above
three entropy functions satisfy this condition), then Hμ

ϕ (E) = 0.

Theorem 4.1 Let μ be a state on a product MV-algebra (A, ·), and ϕ be a sub-additive gen-
erator. Then, for any partitions X, Y in a product MV-algebra (A, ·), the following inequality
holds:

Hμ
ϕ (X ∨ Y ) ≤ Hμ

ϕ (X) + Hμ
ϕ (Y ).

Proof Suppose that X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym). Put cij = μ(xi · yj), ai =
μ(xi), bj = μ(yj) for i = 1, 2, . . . , n, j = 1, 2, . . . , m. By Proposition 2.1, we get

ai = μ(xi) =
m∑

j=1

μ(xi · yj) =
m∑

j=1

cij and bj = μ(yj) =
n∑

i=1

μ(xi · yj) =
n∑

i=1

cij

for i = 1, 2, . . . , n, j = 1, 2, . . . , m. Further, according to Definition 2.2 and the definition of a
partition in a product MV-algebra, we have

n∑

i=1

ai =
n∑

i=1

μ(xi) = μ

( n∑

i=1

xi

)

= μ(u) = 1,

analogously, we get that
∑m

j=1 bj = 1. Hence

Hμ
ϕ (X ∨ Y ) =

n∑

i=1

m∑

j=1

ϕ
(
μ(xi · yj)

)
=

n∑

i=1

m∑

j=1

ϕ(cij)

≤
n∑

i=1

ϕ(ai) +
m∑

j=1

ϕ(bj) =
n∑

i=1

ϕ
(
μ(xi)

)
+

m∑

j=1

ϕ
(
μ(yj)

)

= Hμ
ϕ (X) + Hμ

ϕ (Y ). �

To illustrate the result of the previous theorem, we provide the following example.

Example 4.2 Consider the measurable space ([0, 1], B), where B is the σ -algebra of all
Borel subsets of the unit interval [0, 1]. Let A be a family of all Borel measurable func-
tions f : [0, 1] → [0, 1]. If we define in the family A the operation· as the natural product of
fuzzy sets, then the system (A, ·) is a product MV-algebra. We define a state μ : A → [0, 1]
by the equality μ(f ) =

∫ 1
0 f (x) dx for any element f of A. It is easy to see that the pairs

X = (f1, f2), Y = (g1, g2), where f1(x) = x, f2(x) = 1 – x, g1(x) = x2, g2(x) = 1 – x2, x ∈ [0, 1], are
two partitions in (A, ·) with the state values 1

2 , 1
2 and 1

3 , 2
3 of the corresponding elements,

respectively. The join of partitions X and Y is the system X ∨ Y = (f1 · g1, f1 · g2, f2 · g1, f2 · g2)
with the state values 1

4 , 1
4 , 1

12 , 5
12 of the corresponding elements. By simple calculations we

get the Shannon entropies Hμ
s (X) = 1, Hμ

s (Y ) =̇ 0.9183, Hμ
s (X ∨ Y ) =̇ 1.8250; the logical

entropies Hμ

l (X) = 0.5, Hμ

l (Y ) =̇ 0.4444, Hμ

l (X ∨ Y ) =̇ 0.6944; and the quadratic logical en-
tropies Hμ

k (X) = 0.75, Hμ

k (Y ) =̇ 0.6666, Hμ

k (X ∨Y ) =̇ 0.6615. It is easy to see that for the sub-
additive generators ϕ = s,ϕ = l, and ϕ = k, it holds Hμ

ϕ (X ∨ Y ) ≤ Hμ
ϕ (X) + Hμ

ϕ (Y ), which is
consistent with the claim of the previous theorem.
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Theorem 4.2 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and
ϕ : [0, 1] → R be a function. Then, for any partition X in (A, ·) and for any non-negative
integer k, it holds

Hμ
ϕ

(
Uk(X)

)
= Hμ

ϕ (X).

Proof The statement follows immediately from condition (iii) of Definition 3.1. �

Proposition 4.1 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and
ϕ be a sub-additive generator. Then, for any partition X in (A, ·), there exists the following
limit:

lim
n→∞

1
n

Hμ
ϕ

(n–1∨

k=0

Uk(X)

)

.

Proof In view of sub-additivity of ϕ-entropy (Theorem 4.1) and the previous theorem, the
proof can be made similarly as the proof of Proposition 3.2. �

Definition 4.3 Let (A,μ, U) be a dynamical system in a product MV-algebra (A, ·), and ϕ

be a sub-additive generator. Then we define the ϕ-entropy of (A,μ, U) by the formula

Hμ
ϕ (U) = sup

{
Hμ

ϕ (U , X); X is a partition in (A, ·)},

where

Hμ
ϕ (U , X) = lim

n→∞
1
n

Hμ
ϕ

(n–1∨

k=0

Uk(X)

)

.

Example 4.3 It is clear that putting ϕ = l, where l : [0, 1] → [0,∞) is the logical entropy
function defined by Eq. (1.2), we obtain the logical entropy of a dynamical system (A,μ, U).
If we put ϕ = s, where s : [0, 1] → [0,∞) is the Shannon entropy function defined by
Eq. (1.1), we obtain the Kolmogorov–Sinai entropy of a dynamical system (A,μ, U) de-
fined and studied by Petrovičová in [37].

Definition 4.4 Two product MV-algebra dynamical systems (A1,μ1, U1), (A2,μ2, U2) are
said to be isomorphic if there exists some one-to-one and onto map ψ : A1 → A2 such that
ψ(u1) = u2, and, for every x, y ∈ A1, the following conditions are satisfied:

(i) ψ(x · y) = ψ(x) · ψ(y);
(ii) if x + y ≤ u1, then ψ(x + y) = ψ(x) + ψ(y);

(iii) μ2(ψ(x)) = μ1(x);
(iv) ψ(U1(x)) = U2(ψ(x)).
In this case, ψ is called an isomorphism, and we write U1 ∼= U2.

Proposition 4.2 Let (A1,μ1, U1),(A2,μ2, U2) be isomorphic product MV-algebra dynami-
cal systems, and ψ : A1 → A2 be an isomorphism between (A1,μ1, U1), (A2,μ2, U2). Then,
for the inverse ψ–1 : A2 → A1, the following properties are satisfied:

(i) ψ–1(x · y) = ψ–1(x) · ψ–1(y) for every x, y ∈ A2;
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(ii) if x, y ∈ A2 such that x + y ≤ u2, then ψ–1(x + y) = ψ–1(x) + ψ–1(y);
(iii) μ1(ψ–1(x)) = μ2(x) for every x ∈ A2;
(iv) ψ–1(U2(x)) = U1(ψ–1(x)) for every x ∈ A2.

Proof Since ψ : A1 → A2 is bijective, for every x, y ∈ A2, there exist x′, y′ ∈ A1 such
thatψ–1(x) = x′ and ψ–1(y) = y′.

(i) Let x, y ∈ A2. Then we have

ψ–1(x · y) = ψ–1(ψ
(
x′) · ψ(

y′)) = ψ–1(ψ
(
x′ · y′)) = x′ · y′ = ψ–1(x) · ψ–1(y).

(ii) Let x, y ∈ A2 such that x + y ≤ u2. Then x′ + y′ ≤ u1, and

ψ–1(x + y) = ψ–1(ψ
(
x′) + ψ

(
y′)) = ψ–1(ψ

(
x′ + y′)) = x′ + y′ = ψ–1(x) + ψ–1(y).

(iii) Let x ∈ A2. Then μ2(x) = μ2(ψ(x′)) = μ1(x′) = μ1(ψ–1(x)).
(iv) Let x ∈ A2. Then

ψ–1(U2(x)
)

= ψ–1(U2
(
ψ

(
x′))) = ψ–1(ψ

(
U1

(
x′))) = U1

(
x′) = U1

(
ψ–1(x)

)
.

�

Theorem 4.3 Let ϕ be a sub-additive generator, and (A1,μ1, U1),(A2,μ2, U2) be product
MV-algebra dynamical systems. If U1 ∼= U2, then

Hμ1
ϕ (U1) = Hμ2

ϕ (U2).

Proof Let ψ : A1 → A2 be an isomorphism between dynamical systems (A1,μ1, U1), (A2,
μ2, U2). Consider a partition X = (x1, x2, . . . , xn) in a product MV-algebra (A1, ·). Then x1 +
x2 + · · · + xn = u1, and therefore, by condition (i) of Definition 4.4, it holds ψ(x1) + ψ(x2) +
· · · + ψ(xn) = ψ(x1 + x2 + · · · + xn) = ψ(u1) = u2. This means that the collection ψ(X) =
(ψ(x1),ψ(x2), . . . ,ψ(xn)) is a partition in a product MV-algebra (A2, ·). Moreover, according
to condition (iii) of Definition 4.4, we have

Hμ2
ϕ

(
ψ(X)

)
=

n∑

i=1

ϕ
(
μ2

(
ψ(xi)

))
=

n∑

i=1

ϕ
(
μ1(xi)

)
= Hμ1

ϕ (X).

Hence, using conditions (iv) and (i) of Definition 4.4, we get

Hμ2
ϕ

(n–1∨

k=0

Uk
2
(
ψ(X)

)
)

= Hμ2
ϕ

(n–1∨

k=0

ψ
(
Uk

1 (X)
)
)

= Hμ2
ϕ

(

ψ

(n–1∨

k=0

Uk
1 (X)

))

= Hμ1
ϕ

(n–1∨

k=0

Uk
1 (X)

)

.

Therefore, dividing by n and letting n → ∞, we obtain

Hμ2
ϕ

(
U2,ψ(X)

)
= lim

n→∞
1
n

Hμ2
ϕ

(n–1∨

k=0

Uk
2
(
ψ(X)

)
)
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= lim
n→∞

1
n

Hμ1
ϕ

(n–1∨

k=0

Uk
1 (X)

)

= Hμ1
ϕ (U1, X).

This implies that

{
Hμ1

ϕ (U1, X); X is a partition in (A1, ·)} ⊂ {
Hμ2

ϕ (U2, Y ); Y is a partition in (A2, ·)},

and consequently

Hμ1
ϕ (U1) = sup

{
Hμ1

ϕ (U1, X); X is a partition in (A1, ·)}

≤ sup
{

Hμ2
ϕ (U2, Y ); Y is a partition in (A2, ·)} = Hμ2

ϕ (U2).

The converse Hμ2
ϕ (U2) ≤ Hμ1

ϕ (U1) is obtained in a similar way; according to Proposi-
tion 4.2, it suffices to consider the inverse ψ–1 : A2 → A1. �

By combining the previous results, we obtain the following statement.

Corollary 4.1 If U1 ∼= U2, then
(i) Hμ1

s (U1) = Hμ2
s (U2);

(ii) Hμ1
l (U1) = Hμ2

l (U2);
(iii) Hμ1

k (U1) = Hμ2
k (U2).

Remark 4.3 It trivially follows from the above theorem that if Hμ1
ϕ (U1) �= Hμ2

ϕ (U2), then
the corresponding dynamical systems (A1,μ1, U1),(A2,μ2, U2) are not isomorphic. This
means that the proposed ϕ-entropy distinguishes non-isomorphic product MV-algebra
dynamical systems.

5 Conclusions
In the paper we have extended the results concerning the logical entropy of partitions in
product MV-algebras provided in [1] to the case of dynamical systems. By using the con-
cept of logical entropy of a partition in a product MV-algebra, we introduced the notion of
logical entropy of a product MV-algebra dynamical system and derived the basic proper-
ties of this measure of information. In particular, a logical version of the Kolmogorov–Sinai
theorem on generators was provided.

In addition, using the concept of the sub-additive generator ϕ introduced by the authors
in [39], we have defined a general type of entropy of a product MV-algebra dynamical sys-
tem (A,μ, U), the so-called ϕ-entropy of a dynamical system (A,μ, U). The proposed ϕ-
entropy includes the logical entropy and the Kolmogorov–Sinai entropy as special cases:
if we put ϕ = l, where l : [0, 1] → [0,∞) is the logical entropy function defined by Eq. (1.2),
we obtain the logical entropy of a dynamical system (A,μ, U), and putting ϕ = s, where
s : [0, 1] → [0,∞) is the Shannon entropy function defined by Eq. (1.1), we obtain the
Kolmogorov–Sinai entropy of a dynamical system (A,μ, U) defined and studied by Petro-
vičová in [37]. For the proposed ϕ-entropy Hμ

ϕ (U), we have created an isomorphism theory
of the Kolmogorov–Sinai type. It was shown that the ϕ-entropy Hμ

ϕ (U) distinguishes non-
isomorphic product MV-algebra dynamical systems. In this way, we have acquired several
instruments to distinguish non-isomorphic product MV-algebra dynamical systems: the



Markechová and Riečan Advances in Difference Equations          (2019) 2019:9 Page 16 of 17

logical, the Kolmogorov–Sinai, and the quadratic logical entropy of a dynamical system
(A,μ, U).

As mentioned above (see Example 3.2), the full tribe of fuzzy sets represents a special
case of product MV-algebras; the obtained results can therefore be immediately applied to
this significant family of fuzzy sets. From the point of view of applications, it is interesting
that to a given family F of intuitionistic fuzzy sets can be constructed an MV-algebra A
such that F can be embedded to A. Also, product on F can be introduced by such a way
that the corresponding MV-algebra is an MV-algebra with product. Hence all results of
our paper can be applied also to the case of intuitionistic fuzzy sets.
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10. Markechová, D., Riečan, B.: Logical entropy of fuzzy dynamical systems. Entropy 18, Article ID 157 (2016).

https://doi.org/10.3390/e18040157
11. Mohammadi, U.: The concept of logical entropy on D-posets. J. Algebraic Struct. Appl. 1, 53–61 (2016)
12. Ebrahimzadeh, A.: Logical entropy of quantum dynamical systems. Open Phys. 14, 1–5 (2016)
13. Ebrahimzadeh, A.: Quantum conditional logical entropy of dynamical systems. Ital. J. Pure Appl. Math. 36, 879–886

(2016)
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45. Riečan, B.: On the probability theory on product MV-algebras. Soft Comput. 4, 49–57 (2000)
46. Kroupa, T.: Conditional probability on MV-algebras. Fuzzy Sets Syst. 149, 369–381 (2005)
47. Vrábelová, M.: A note on the conditional probability on product MV algebras. Soft Comput. 4, 58–61 (2000)
48. Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982)

https://doi.org/10.3390/e18010019
https://doi.org/10.3390/e19060267

	Logical entropy of dynamical systems in product MV-algebras and general scheme
	Abstract
	MSC
	Keywords

	Introduction
	Basic deﬁnitions and related works
	The logical entropy of dynamical systems in product MV-algebras
	General type of entropy of dynamical systems in product MV-algebras
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


