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Abstract
We study almost periodic solutions for a class of nonlinear second-order differential
equations involving reflection of the argument. We establish existence results of
almost periodic solutions as critical points by a variational approach. We also prove
structure results on the set of strong almost periodic solutions, existence results of
weak almost periodic solutions, and a density result on the almost periodic forcing
term for which the equation possesses usual almost periodic solutions.
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1 Introduction
The study of existence, uniqueness, and stability of periodic and almost periodic solu-
tions has become one of the most attractive topics in the qualitative theory of ordinary
and functional differential equations for its significance in the physical sciences, mathe-
matical biology, control theory, and other fields; see, for instance, [3, 8, 11, 19, 20, 28] and
the references cited therein. Indeed, the almost periodic functions are closely connected
with harmonic analysis, differential equations, and dynamical systems; cf. Corduneanu
[12] and Fink [14]. These functions are basically generalizations of continuous periodic
and quasi-periodic functions. Almost periodic functions are further generalized by many
mathematicians in various ways; see Šarkovskii [26].

On the other hand, differential equations involving reflection of the argument have nu-
merous applications in the study of stability of differential-difference equations. Such
equations show very interesting properties by themselves, and so many authors have
worked on this category of equations. Wiener and Aftabizadeh [29] initiated the analysis
of boundary value problems involving reflection of the argument. Later on, Gupta [15–
17] considered boundary value problems for this class of equations. Aftabizadeh et al. [1]
studied the existence of a unique bounded solution of the equation

x′(t) = f
(
t, x(t), x(–t)

)
, t ∈R.
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They proved that t �→ x(t) is almost periodic by assuming the existence of bounded solu-
tions. Further results were extended and improved by several authors; see, for instance,
the papers by Hai [18], O’Regan [22], Piao [23, 24], Piao and Sun [25], and Zima [30].
In particular, Piao [23, 24] investigated the existence and uniqueness of periodic, almost
periodic, and pseudo almost periodic solutions of the equations

x′(t) + ax(t) + bx(–t) = g(t), b �= 0, t ∈R,

and

x′(t) + ax(t) + bx(–t) = f
(
t, x(t), x(–t)

)
, b �= 0, t ∈R,

whereas Piao and Sun [25] studied the existence and uniqueness of Besicovitch almost
periodic solutions for a class of second-order differential equations involving reflection of
the argument.

In the sequel, the linear space R
n is endowed with its standard inner product x · y :=

∑n
k=1 xkyk and | · | denotes the associated Euclidean norm. For a function f : Rn ×R

n →R,
(X, Y ) �→ f (X, Y ), we consider the second-order differential equation with reflection of the
argument

u′′(t) = D1f
(
u(t), u(–t)

)
+ D2f

(
u(–t), u(t)

)
+ e(t), t ∈R, (1.1)

where D1 and D2 denote the (partial) differential with respect to X and Y , respectively, e :
R → R

n is an almost periodic forcing term. Equation (1.1) appears as an Euler–Lagrange
equation.

By a strong almost periodic solution of equation (1.1) we mean a function u : R → R
n

which is twice differentiable (in ordinary sense) such that u, u′, and u′′ are almost periodic
in the sense of Bohr [9] and u satisfies (1.1) for all t ∈ R. This solution is also called C2-
almost periodic in some earlier work.

A weak almost periodic solution of equation (1.1) is a function u : R → R
n which is

almost periodic in the sense of Besicovitch [4] and possesses a first-order and a second-
order generalized derivatives such that u satisfies (1.1) for all t ∈ R and the difference
between the two members of equation (1.1) has a quadratic mean value equal to zero. It
is natural that a strong almost periodic solution is also a weak almost periodic solution.

The variational method was used for the study of ordinary and functional differential
equations; see, for instance, [3, 5–7] and the references cited therein. By using a varia-
tional method in the mean, we investigate almost periodic solutions for equation (1.1).
The almost periodic solutions of (1.1) are characterized as critical points of functionals
having the following form:

u �→ lim
T→∞

1
2T

∫ T

–T

(
1
2
∣
∣u′(t)

∣
∣2 + f

(
u(t), u(–t)

)
+ e(t) · u(t)

)
dt (1.2)

on the Banach space of almost periodic functions.
This paper is organized as follows. Section 2 presents the considered notation for the

various function spaces and auxiliary assumptions. In Sect. 3, we develop variational prin-
ciples to study the almost periodic solutions of (1.1) and critical points of functionals de-
fined on spaces of almost periodic functions. In Sect. 4, we establish some results about
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the structure of the set of strong almost periodic solutions of (1.1). Finally, in Sect. 5, we
establish an existence result of weak almost periodic solutions of (1.1) by using the tech-
niques in the spirit of the direct methods of calculus of variations, and a result on the
density of the almost periodic forcing term for which (1.1) possesses a strong almost pe-
riodic solution.

2 Notation and preliminaries
First, we review some facts about Bohr almost periodic and Besicovitch almost periodic
functions. For more details on almost periodic functions, we refer the reader to the mono-
graphs [4, 9, 12, 14, 21].

Let AP0(Rn) be the space of the almost periodic functions from R into R
n in the sense

of Bohr [9], endowed with the norm

‖u‖∞ = sup
{∣∣u(t)

∣
∣ : t ∈R

}
.

It is easy to see that the space AP0(Rn) is a Banach space [9] endowed with the above norm.
N is the set of all nonnegative integers, for 1 ≤ k ∈ N, APk(Rn) stands for the space of

functions u ∈ Ck(R,Rn) ∩ AP0(Rn) such that u(j) := dju
dtj ∈ AP0(Rn) for all j = 1, . . . , k. It is a

Banach space endowed with the norm

‖u‖Ck = ‖u‖∞ +
k∑

j=1

∥
∥u(j)∥∥∞.

Every almost periodic function u possesses a mean time

M{u} = M
{

u(t)
}

t := lim
T→∞

1
2T

∫ T

–T
u(t) dt.

For λ ∈ R, a(u,λ) := M{u(t)e–iλt}t is the Fourier–Bohr coefficient of u associated to λ.
We denote by Λ(u) := {λ ∈ R : a(u,λ) �= 0} the set of exponents of u. We use the notation
mod(u) for the module of u which is the additive group generated by Λ(u).

Remark 2.1 For p ∈ [1,∞), Bp(Rn) is the completion of AP0(Rn) in Lp
loc(R,Rn) (Lebesgue

space) with respect to the norm

‖u‖p := M
{|u|p} 1

p .

Remark 2.2 For p = 2, B2(Rn) is a Hilbert space and its norm ‖·‖2 is associated to the inner
product (u | v) := M{u · v}. The elements of these spaces Bp(Rn) are called Besicovitch
almost periodic functions, cf. [4].

Now, we recall the definitions of some spaces, like Sobolev space, special to the almost
periodicity introduced by Blot [7]. Following Vo-Khac [27], the generalized derivative of
u ∈ B2(Rn) (when it exists) is ∇u ∈ B2(Rn) such that

lim
τ→0

M
{∣∣
∣∣∇u(t) –

u(t + τ ) – u(t)
τ

∣∣
∣∣

2}

t
= 0.
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The space B1,2(Rn) is the collection of all functions u ∈ B2(Rn) such that ∇u exists in
B2(Rn), and the space B2,2(Rn) is the space of u ∈ B1,2(Rn) such that ∇2u = ∇(∇u) exists
in B2(Rn). It is easy to verify that the above-mentioned spaces are Hilbert spaces with the
respective norms

‖u‖1,2 :=
(‖u‖2

2 + ‖∇u‖2
2
) 1

2 and ‖u‖2,2 :=
(‖u‖2

2 + ‖∇u‖2
2 + ‖∇2u‖2

2
) 1

2 .

For the function f : Rn ×R
n −→ R, (x, y) �→ f (x, y) of equation (1.1), we give the following

hypotheses:
(H1) f ∈ C1(Rn ×R

n,R);
(H2) |Df (X) – Df (Y )| ≤ a · |X – Y | for some constant a > 0 and for all X, Y ∈R

n ×R
n;

(H3) f is a convex function on R
n ×R

n;
(H4) f (x, y) ≥ c|ζ |2 +d for two numbers c > 0 and d ∈ R and for all (x, y) ∈R

n ×R
n, where

ζ = x or y.

3 Variational principles
We begin this section by establishing two lemmas which contain general properties of
almost periodic functions.

Lemma 3.1 If u ∈ AP0(Rn), then [t �→ u(–t)] ∈ AP0(Rn). Furthermore, if τ is an ε-
translation of u(t), then τ is also an ε-translation number of u(–t) and mod(u(t)) =
mod(u(–t)).

Proof The proof can be completed by using Bohr’s definition [9, p. 32]. �

Lemma 3.2 If u ∈ Bp(Rn), then the following assertions hold.
(1) M{u(t)}t = M{u(–t)}t .
(2) [t �→ u(–t)] ∈ Bp(Rn).

Proof The relation

M
{

u(–t)
}

t = lim
T→∞

1
2T

∫ T

–T
u(–t) dt = lim

T→∞
1

2T

∫ –T

T
–u(s) ds = M

{
u(t)

}
t

gives assertion (1). For assertion (2), note that if (um)m is a sequence in AP0(Rn) such that
limm→∞ ‖u – um‖p = 0, then using Lemma 3.1 and the facts that (um(–t))m is a sequence
in AP0(Rn) and ‖u – um‖p = ‖u(–t) – um(–t)‖p, we obtain

lim
m→∞

∥
∥u(–t) – um(–t)

∥
∥

p = 0,

which implies that [t �→ u(–t)] ∈ Bp(Rn). The proof is complete. �

Lemma 3.3 Under condition (H1), the functional J0 : AP1(Rn) →R defined by

J0(u) := M
{

1
2
∣
∣u′(t)

∣
∣2 + f

(
u(t), u(–t)

)
+ e(t) · u(t)

}

t
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is of class C1, and for all u, v ∈ AP0(Rn),

DJ0(u) · v = M
{

u′(t) · v′(t) + D1f
(
u(t), u(–t)

) · v(t)

+ D2f
(
u(t), u(–t)

) · v(–t) + e(t) · v(t)
}

t . (3.1)

Proof We consider the operator Q0 : AP1(Rn) → R defined by Q0(u) := M{ 1
2 |u′|2}. The

mapping q : Rn →R, q(x) = 1
2 |x|2, is of class C1, so the Nemytskĭı operatorN 0

q : AP0(Rn) →
AP0(R), N 0

q (φ) := [t �→ 1
2 |φ(t)|2], is of class C1, cf. [5]. The operator d

dt : AP1(Rn) →
AP0(Rn) defined by d

dt (u) := u′ is linear continuous, therefore, it is of class C1. The func-
tional M0 : AP0(R) → R defined by M0(φ) := M0

t {φ(t)} is linear continuous, and hence
it is of class C1.

Since Q0 = M0 ◦ N 0
q ◦ d

dt , Q0 is of class C1 as composition of C1-mappings. Hence, by
the chain rule, we have DQ0(u)v = M{u′ · v′}.

Furthermore, the operator Θ0 : AP1(Rn) →R defined by Θ0(u) := M{e ·u} is linear con-
tinuous, so it is of class C1 and its differential is given by DΘ0(u)v = M{e · v}.

We consider the operator Φ0 : AP1(Rn) → R defined by Φ0(u) := M{f (u(t), u(–t))}t . It
is not difficult to observe that the operator L0 : AP0(Rn) → AP0(Rn) × AP0(Rn) defined
by L0(u)(t) := (u(t), u(–t)) is linear. Both components of L0 are continuous and hence L0 is
continuous. Therefore, L0 is of class C1 and DL0(u)v = L0(v) for all u, v ∈ AP0(Rn).

Now, under assumption (H1), the Nemytskĭı operator N 0
f : AP0(Rn × R

n) → AP0(R)
defined by N 0

f (U)(t) := f (U(t)) is of class C1 (see [6] for details). Moreover, for all U , V ∈
(AP0(Rn))2, DN 0

f (U) · V = Df (U) · V .
Note that the linear operator M0 : AP0(R) → R defined by M0(u) := M{u(t)}t is con-

tinuous. It is of class C1 and thus DM0(φ)ψ = M(ψ) for all φ,ψ ∈ AP0(R). Further, the
linear operator in0 : AP1(Rn) → AP0(Rn), in0(u) := u is continuous, and consequently it is
of class C1 and so Din0(u)v = in0(v). Since Φ0 = M0 ◦ N 0

f ◦ L0 ◦ in0, Φ0 is of class C1 as a
composition of C1 operators. Using the chain rule, for all u, v ∈ AP1(Rn),

(
DΦ0(u) · v

)
(t) = M

{
D1f

(
u(t), u(–t)

) · v(t) + D2f
(
u(t), u(–t)

) · v(–t)
}

t .

By virtue of J0 = Q0 + Φ0 + Θ0, J0 is of class C1 as a sum of three C1 functionals. Therefore,
for all u, v ∈ AP1(Rn), we have (3.1). This completes the proof. �

Lemma 3.4 Assume that assumptions (H1) and (H2) are satisfied. Then the Nemytskiı̆
operator N 1

f : B2(Rn × R
n) → B1(R) defined by N 1

f (U)(t) := f (U(t)) is well defined and is
of class C1, and DN 1

f (U) · V = Df (U) · V for all U , V ∈ B2(Rn ×R
n).

Proof It suffices to remark that if (H1) and (H2) hold, then, for all X ∈R
n,

∣∣Df (X)
∣∣ ≤ ∣∣Df (X) – Df (0)

∣∣ +
∣∣Df (0)

∣∣ ≤ a|X| +
∣∣Df (0)

∣∣.

Using the mean value theorem (see [2, p. 144]), we deduce that, for all X ∈R
n,

∣
∣f (X)

∣
∣ ≤ ∣

∣f (X) – f (Y )
∣
∣ +

∣
∣f (0)

∣
∣

≤ sup
ξ∈]0,x[

∣∣Df (ξ )
∣∣|x| +

∣∣Df (0)
∣∣
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≤ (
a|X| +

∣∣Df (0)
∣∣)|X| +

∣∣Df (0)
∣∣

≤ a|X|2 +
∣
∣Df (0)

∣
∣|X| +

∣
∣Df (0)

∣
∣

≤ a|X|2 +
1
2
∣
∣Df (0)

∣
∣2 +

1
2
|X|2 +

∣
∣Df (0)

∣
∣

=
(

a +
1
2

)
|X|2 +

(
1
2
∣
∣Df (0)

∣
∣2 +

∣
∣Df (0)

∣
∣
)

.

Now, arguing as in [7, Theorem 2], we obtain the result. The proof is complete. �

Proposition 3.5 Under condition (H1), the following assertions are equivalent.
(1) u is a critical point of J0 on AP1(Rn).
(2) u is a strong almost periodic solution of (1.1).

Proof Define

q(t) := D1f
(
u(t), u(–t)

)
+ D2f

(
u(–t), u(t)

)
+ e(t).

We know that q ∈ AP0(Rn) for u ∈ AP0(Rn). Let us first assume assertion (1). Since the
mean value is invariant by reflection of the argument, we have

M
{

D2f
(
u(t), u(–t)

) · v(–t)
}

t = M
{

D2f
(
u(–t), u(t)

) · v(t)
}

t .

Hence, by Lemma 3.3, for all v ∈ AP1(Rn), we get 0 = M{u′ · v′ + q · v}. Finally, by using
the same reasoning as in the proof of [5, Theorem 1], we obtain u ∈ AP2(Rn) and u′′ = q,
which is exactly (1.1).

Conversely, if u is a strong almost periodic solution of (1.1), then we have u′′ = q. Hence,
for all v ∈ AP1(Rn), we obtain

DJ0(u) · v = M
{

u′ · v′ + q · v
}

= M
{

d
dt

(
u′ · v

)}
= 0.

This completes the proof. �

Lemma 3.6 If conditions (H1) and (H2) are fulfilled, then the functional J1 : B1,2(Rn) →R

defined by

J1(u) := M
{

1
2
∣∣∇u(t)

∣∣2 + f
(
u(t), u(–t)

)
+ e(t) · u(t)

}

t

is of class C1. Moreover, for all u, v ∈ B1,2(Rn),

DJ1(u) · v = M
{∇u(t) · ∇v(t) + D1f

(
u(t), u(–t)

) · v(t)

+ D2f
(
u(t), u(–t)

) · v(–t) + e(t) · v(t)
}

t . (3.2)

Proof We consider the operator Q1 : B1,2(Rn) → R defined by Q1(u) := M{ 1
2 |∇u|2}. The

mapping q : Rn → R, q(x) = 1
2 |x|2, is of class C1. Since Dq(x) = x satisfies conditions of
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[13, Theorem 2.6], the Nemytskĭı operator Nq : B2(Rn) → B1(R) defined by Nq(v) := [t �→
1
2 |v(t)|2] is of class C1 and DNq(v) · h = [t �→ v(t) · h(t)] for all v, h ∈ B2(Rn).

Since the derivation operator ∇ : B1,2(Rn) → B2(R) and the operator M : B1(R) → R

are linear continuous, ∇ and M are of class C1. Therefore, Q1 = M ◦Nq ◦ ∇ is of class C1

as a composition of C1-mappings. Moreover, using the chain rule, we have DQ1(u) · v =
M{∇u · ∇v} for all u, v ∈ B1,2(Rn).

Now, the operator Θ1 : B1,2(Rn) → R defined by Θ1(u) := M{e · u} is linear continuous,
and thus it is of class C1 and its differential is given by DΘ1(u)v = M{e · v}.

Let us consider the operator Φ1 : B1,2(Rn) → R defined by Φ1(u) := M{f (u(t), u(–t))}t .
Note that the linear operator L1 : B2(Rn) → B2(Rn) × B2(Rn) defined by L1(u)(t) :=
(u(t), u(–t)) is continuous and so it is of class C1. Moreover, for all u, v ∈ B2(Rn), we have
DL1(u)v = L1(v).

Under assumptions (H1) and (H2), by virtue of Lemma 3.4, the Nemytskĭı operator
N 1

f : B2(Rn × R
n) → B1(R) defined by N 1

f (U)(t) := f (U(t)) is of class C1 and for all
U , V ∈ B2(Rn ×R

n), DN 1
f (U) · V = Df (U) · V .

The continuous linear operator M1 : B1(R) → R defined by M1(u) := M{u(t)}t is of
class C1 and for all φ,ψ ∈ B1(R), DM1(φ)ψ = M(ψ). Besides, the linear operator in1 :
B1,2(Rn) → B2(Rn), in1(u) = u is of class C1 and Din1(u)v = in1(v).

Since Φ1 = M1 ◦ N 1
f ◦ L1 ◦ in1, Φ1 is of class C1 as it is composition of C1 operators.

Hence, by the chain rule, for all u, v ∈ B1,2(Rn),

(
DΦ1(u) · v

)
(t) = M

{
D1f

(
u(t), u(–t)

) · v(t) + D2f
(
u(t), u(–t)

) · v(–t)
}

t .

By virtue of J1 = Q1 + Φ1 + Θ1, J1 is of class C1 as a sum of three C1 functionals. Thus, for
all u, v ∈ B1,2(Rn), we obtain (3.2). The proof is complete. �

Proposition 3.7 Under conditions (H1) and (H2), the following assertions are equivalent.
(1) u is a critical point of J1 on B1,2(Rn).
(2) u is a weak almost periodic solution of (1.1).

Proof Set

p(t) := D1f
(
u(t), u(–t)

)
+ D2f

(
u(–t), u(t)

)
+ e(t).

It is well known that p ∈ B2(Rn) if u ∈ B2(Rn). Now if we assume that u ∈ B1,2(Rn) is a
critical point of J1, then the condition DJ1(u) = 0 can be written as M{∇u · ∇v} = –M{p ·
v} for all v ∈ B1,2(Rn). Hence, using [7, Proposition 10], the last condition implies that
∇u ∈ B1,2(Rn), i.e., u ∈ B2,2(Rn) and ∇2u = p, which exactly means that u is a weak almost
periodic solution of (1.1).

Conversely, assume that the assertion (2) is true. Then ∇u ∈ B1,2(Rn). Using the fact that
M{∇w} = 0 for all w ∈ B1,2(Rn) (see [7, Proposition 3] for details) and [7, Proposition 9],
we have, for all h ∈ AP1(Rn),

0 = M
{∇(∇u · h)

}

= M
{∇2u · h

}
+ M

{∇u · h′}
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= M{p · h} + M
{∇u · h′}

= DJ1(u) · h.

Since AP1(Rn) is dense in B1,2(Rn), we have DJ1(u) · h = 0 for all h ∈ B1,2(Rn). Therefore,
DJ1(u) = 0, which proves our claim. This completes the proof. �

4 Structure results on AP0(Rn)
In this section, we give some structure results on the set of strong almost periodic solutions
of equation (1.1). The main tool is the variational structure of the problem.

Theorem 4.1 Under assumptions (H1) and (H3), the following assertions hold.
(1) The set of the strong almost periodic solutions of (1.1) is a convex closed subset of

AP1(Rn).
(2) If u1 is a T1 periodic solution of (1.1), u2 is a T2 periodic solution of (1.1), and T1/T2

is not rational, then (1 – θ )u1 + θu2 is a strong almost periodic but nonperiodic
solution of (1.1) for all θ ∈ (0, 1).

Proof Since f is convex and is of class C1, the operator J0 is convex and is of class C1 on
AP1(Rn). Therefore,

{
u ∈ AP1(

R
n) : J0(u) = inf J0

(
AP1(

R
n))} =

{
u ∈ AP1(

R
n) : DJ0(u) = 0

}

is closed and convex, and hence assertion (1) becomes a consequence of Proposition 3.5.
The assertion (2) is a straightforward consequence of (1). The proof is complete. �

Theorem 4.2 Under assumptions (H1) and (H3), if e = 0, then the following assertions
hold.

(1) If u is a strong almost periodic solution of (1.1) and T ∈ (0,∞) satisfies
a(u, 2π/T) �= 0, then there exists a nonconstant T periodic solution of (1.1).

(2) If u is a strong almost periodic solution of (1.1), then M{u} is a constant solution of
(1.1).

Proof Define CT ,ν(u)(t) := 1
ν

∑ν–1
k=0 u(t + kT) for all ν ∈ N

∗, where u is a strong almost pe-
riodic solution of (1.1). According to the Besicovitch theorem [4, p. 144], there exists a T
periodic continuous function denoted by uT such that

lim
ν→∞

∥∥CT ,ν(u) – uT
∥∥∞ = 0.

Thus we can easily verify that

lim
ν→∞

∥∥CT ,ν(u) – uT
∥∥
C1 = 0.

Since e = 0, t �→ u(t + kT) is a strong almost periodic solution. Furthermore, since CT ,ν(u)
is a convex combination of strong almost periodic solutions of (1.1), CT ,ν(u) is also a
strong almost periodic solution of (1.1), and hence uT is also strong almost periodic by
using the closedness of the set of strong almost periodic solutions. Thus uT is a T peri-
odic solution of (1.1). Now, using a straightforward calculation, we can easily observe that
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a(CT ,ν(u), 2π
T ) = a(u, 2π

T ) and consequently a(uT , 2π
T ) = a(u, 2π

T ) �= 0, then uT is not constant
which proves assertion (1).

To prove assertion (2), it suffices to choose T ∈ (0,∞) such that 2π
T (Z – {0}) ∩ Λ(u) = ∅.

So all the Fourier–Bohr coefficients of uT are zero except (perhaps) the mean value of uT

which is equal to M{u}. This completes the proof. �

5 Existence results
In this section, we study the weak almost periodic solutions of equation (1.1). In the pre-
vious section, we use a variational viewpoint but here the Hilbert structure of B2(Rn) per-
mits us to obtain an existence theorem by using direct methods of calculus of variations.
Finally, in Theorem 5.2, we give a result of density of the almost periodic forcing term for
which equation (1.1) possesses usual almost periodic solutions.

Theorem 5.1 Under assumptions (H1)–(H4), for each e ∈ B2(Rn), there exists a u ∈
B2,2(Rn) which is a weak almost periodic solution of (1.1). Moreover, the set of the weak
almost periodic solutions of (1.1) is a convex set.

Proof Using Lemma 3.6, under assumptions (H1) and (H2), the functional J1 is of class C1.
It follows from (H3) that J1 is a convex functional. Since the mean value is invariant by
reflection, assumption (H4) implies that, for all u ∈ B1,2(Rn),

J1(u) ≥ 1
2
‖u‖2

1,2 + c‖u‖2
2 – ‖u‖2‖e‖2 ≥ α‖u‖2

1,2 – ‖u‖2‖e‖2,

where α := min{ 1
2 , c}. Consequently, J1 is coercive on B1,2(Rn), i.e., J1(u) → ∞ as ‖u‖1,2 →

∞, and so (see [10, p. 46]) there exists a u ∈ B1,2(Rn) such that J1(u) = inf J1(B1,2(Rn)).
Therefore, we conclude that DJ1(u) = 0 and u is a weak almost periodic solution of (1.1)
by using Proposition 3.7. Hence, the existence is proved.

On the basis of Lemma 3.6, the set of the weak almost periodic solutions of (1.1) is
equal to the set {u ∈ B1,2(Rn) : DJ1(u) = 0}. Since J1 is convex, this set is also equal to {u ∈
B1,2(Rn) : J1(u) = inf J1(B1,2(Rn))} which is a convex set. Thus, the set of the weak almost
periodic solutions of (1.1) is convex. The proof is complete. �

Theorem 5.2 Assume that (H1)–(H4) hold. Then, for each e ∈ AP0(Rn) and for each ε > 0,
there exist an eε ∈ AP0(Rn) and a uε ∈ AP2(Rn) such that ‖e – eε‖2 < ε and

u′′
ε (t) = D1f

(
uε(t), uε(–t)

)
+ D2f

(
uε(–t), uε(t)

)
+ eε(t).

Proof Consider the operator Γ : B2,2(Rn) → B2(Rn) defined by

Γ (u) := ∇2u – D1f
(
u(t), u(–t)

)
– D2f

(
u(–t), u(t)

)
.

Under (H1) and (H2), the operators

⎧
⎨

⎩
Γ1 : B2,2(Rn) → B2(Rn),

Γ1(u)(t) := D1f (u(t), u(–t)),
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and
⎧
⎨

⎩
Γ2 : B2,2(Rn) → B2(Rn),

Γ2(u)(t) := D2f (u(–t), u(t)),

are continuous (cf. [7, Theorem 1]). Since the operator ∇2 : B2,2(Rn) → B2(Rn) is continu-
ous, Γ is continuous.

From Theorem 5.1, we know that Γ (B2,2(Rn)) = B2(Rn), and so AP0(Rn) ⊂ Γ (B2,2(Rn)).
Let e ∈ AP0(Rn). Then e ∈ Γ (B2,2(Rn)), and thus there exists a u ∈ B2,2(Rn) such that
Γ (u) = e. Since AP2(Rn) is dense in B2,2(Rn), for each ε ∈ (0,∞), there exists a uε ∈ AP2(Rn)
such that ‖uε – u‖2,2 < ε. An application of continuity of Γ implies that ‖Γ (uε) – e‖2 < ε.
Taking into account that Γ (uε) ∈ AP0(Rn), let eε := Γ (uε). Then eε and uε satisfy the de-
sired results. This completes the proof. �
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