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Abstract
In this article, we propose a new method that determines an efficient numerical
procedure for solving second-order fuzzy Volterra integro-differential equations in a
Hilbert space. This method illustrates the ability of the reproducing kernel concept of
the Hilbert space to approximate the solutions of second-order fuzzy Volterra
integro-differential equations. Additionally, we discuss and derive the exact and
approximate solutions in the form of Fourier series with effortlessly computable terms
in the reproducing kernel Hilbert spaceW3

2 [a,b]⊕W .3
2 [a,b]. The convergence of the

method is proven and its exactness is illustrated by three numerical examples.

Keywords: Reproducing kernel Hilbert space; Complete orthonormal system; Fuzzy
Volterra integro-differential equation

1 Introduction
Fuzzy integro-differential equations are very useful tools for modeling physical systems
under the differential sense and dynamical systems under the possibilistic uncertainty [1].
In recent years, fuzzy Volterra integro-differential equations (FVIDEs) in both theoreti-
cal and numerical calculations have been growing in many scientific applications [2–4].
They are usually encountered in many applications including fuzzy modeling in popu-
lation dynamics, experimental quantum optics to quantum gravity, and averaging fuzzy
biopolymers (see [5–7] and the references therein). Biswas et al. [8] have recently pro-
posed a numerical fuzzy differential transform (FDT) method for solving second-order
FVIDEs under the generalized concept of Seikkala differentiability of fuzzy functions.
A further literature review of fuzzy integro-differential equations can be found in [2, 3]
and [8].

The main goal of this article is to solve second-order FVIDEs in the Hilbert space
W 3

2 [a, b] ⊕ W .3
2 [a, b] under the assumption of strongly generalized differentiability. More

precisely, we provide a numerical approximate solution for fuzzy Volterra integro-
differential equation of the general form

y′′(t) = f (t) +
∫ t

a
k(t, s)g

(
y(s)

)
ds, t ≥ a, (1)
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subject to the fuzzy initial conditions

y(a) = γ1, y′(a) = γ2, (2)

where k(s, t) is an arbitrary kernel function, g is a continuous function, f is a continuous
fuzzy-valued function, and γ1, γ2 are fuzzy real numbers. In special cases the analytic so-
lution of FVIDE (1)–(2) can be found using the fuzzy Laplace transform (FLT) method.
However, a fuzzy solution of FVIDE (1)–(2) is usually very difficult to be derived analyt-
ically. To solve this issue, FVIDE (1)–(2) can be converted into two systems of Volterra
integro-differential equations which are solvable numerically using the reproducing ker-
nel Hilbert space (RKHS) method based on the Gram–Schmidt orthogonalization process.
Moreover, the authors in [9] have proven the existence and uniqueness of a fuzzy solution
for the second-order FVIDE (1)–(2) with the fuzzy kernel under strongly generalized dif-
ferentiability.

Reproducing kernel theory has important scientific applications in numerical analysis,
ordinary and fractional differential equations, probability, statistics, and learning theory.
Recently, RKHS method for solving a variety of fuzzy differential equations and fuzzy frac-
tional differential equations has been presented by Ahmadian et al. [10, 11]. The RKHS
method possesses many virtues; to begin with, it is conceivable to choose any point in
the interval of integration and as well the approximate solution would be appropriate and
applicable. Secondly, it is precise and requires less exertion to discover the numerical re-
sults. Thirdly, it is a proficient application to solve some scientific models in comparison
with the numerical solutions and the exact solutions. Fourthly, the method is easy to un-
derstand, and it needs little computational prerequisites. For more points of interest and
descriptions about the RKHS method, we allude to [12–17].

Our paper has the following structure. Section 2 presents some concepts and results
about the fuzzy numbers and the properties of fuzzy-number-valued functions, including
the H-differentiability or Hukuhara differentiability concept and the fuzzy integral. The
fuzzy Volterra integro-differential equations of the second order are introduced in Sect. 3.
Section 4 proposes a numerical method for solving fuzzy Volterra integro-differential
equations of second order. In Sect. 5, we present three numerical examples to illustrate
our method in Sect. 4. Finally, we end the paper with the conclusion in Sect. 6.

2 Preliminaries
We recall some basic definitions and theorems needed throughout the paper such as fuzzy
number, fuzzy-valued function, and the derivative of the fuzzy-valued functions.

Definition 2.1 (see [18]) A fuzzy number u : R −→ [0, 1] is a fuzzy subset of R with nor-
mal, convex, and upper semicontinuous membership function of bounded support.

Let R� denote the space of fuzzy real numbers. For 0 < α ≤ 1, set [u]α = {s ∈R | u(s) ≥ α}
and [u]0 = {s ∈R | u(s) > 0} (the closure of {s ∈ R | u(s) > 0}). Then the α-level set [u]α
is a nonempty compact interval for all 0 ≤ α ≤ 1 and any u ∈ R�. The notation [u]α =
[u1(α), u2(α)] denotes explicitly the α-level set of u. We refer to u1 and u2 as the lower and
upper branches on u, respectively.
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Theorem 2.2 (see [19]) A mapping u : R −→ [0, 1] is a fuzzy number with α-cut represen-
tation [u1(α), u2(α)] if and only if the following conditions are satisfied:

(i) the function u1 : [0, 1] →R is bounded nondecreasing;
(ii) the function u2 : [0, 1] →R is bounded nonincreasing;

(iii) for each r ∈ (0, 1], limα→r– u1(α) = u1(r) and limα→r– u2(α) = u2(r);
(iv) for each r ∈ (0, 1], limα→r+ u1(α) = u1(r) and limα→r+ u2(α) = u2(r);
(v) u1(α) ≤ u2(α) for all α ∈ [0, 1].

For u, v ∈ R� and λ ∈ R, the sum u + v and the product λu are defined by [u + v]α =
[u]α + [v]α , [λu]α = λ[u]α , ∀α ∈ [0, 1], where [u]α + [v]α means the usual addition of two
intervals (subsets) of R and λ[u]α is the usual product between a scalar and a subset of R.
The metric structure is given by the Hausdorff distance D : R� × R� −→ R

+ ∪ {0}, by
D(u, v) = supα∈[0,1] max{|u1 – v1|, |u2 – v2|}.

Definition 2.3 (see [18]) Let y : [a, b] −→ R� and t0 ∈ (a, b). We say y is (1)-differentiable
at t0 if there is some element y′(t0) ∈ R� such that, for all h > 0 sufficiently close to 0, there
exist y(t0 + h) � y(t0), y(t0) � y(t0 – h), and the limits (in the metric D)

lim
h−→0+

y(t0 + h) � y(t0)
h

= lim
h−→0+

y(t0) � y(t0 – h)
h

= y′(t0).

In this case, we denote y′(t0) by D1
1y(t0). Also, y is (2)-differentiable if, for all h < 0 suffi-

ciently close to 0, there exist y(t0 +h)�y(t0), y(t0)�y(t0 –h), and the limits (in the metric D)

lim
h−→0–

y(t0 + h) � y(t0)
h

= lim
h−→0–

y(t0) � y(t0 – h)
h

= y′(t0).

In this case, this derivative is denoted by D1
2y(t0).

Theorem 2.4 (see [20]) Let y : [a, b] −→ R� be a fuzzy-valued function, where [y(t)]α =
[y1,α(t), y2,α(t)] for each α ∈ [0, 1].

(i) If y is (1)-differentiable, then y1,α and y2,α are differentiable functions and
[D1

1y(t)]α = [y′
1,α(t), y′

2,α(t)].
(ii) If y is (2)-differentiable, then y1,α and y2,α are differentiable functions and

[D1
2y(t)]α = [y′

2,α(t), y′
1,α(t)].

Theorem 2.5 (see [21]) Let D1
1y : [a, b] −→ R� or D1

2y : [a, b] −→ R�be fuzzy-valued func-
tions, where [y(t)]α = [y1,α(t), y2,α(t)] for each α ∈ [0, 1].

(i) If D1
1y is (1)-differentiable, then y′

1,α and y′
2,α are differentiable functions and

[y′′(t)]α = [y′′
1,α(t), y′′

2,α(t)].
(ii) If D1

1y is (2)-differentiable, then y′
1,α and y′

2,α are differentiable functions and
[y′′(t)]α = [y′′

2,α(t), y′′
1,α(t)].

(iii) If D1
2y is (1)-differentiable, then y′

1,α and y′
2,α are differentiable functions and

[y′′(t)]α = [y′′
2,α(t), y′′

1,α(t)].
(iv) If D1

2y is (2)-differentiable, then y′
1,α and y′

2,α are differentiable functions and
[y′′(t)]α = [y′′

1,α(t), y′′
2,α(t)].
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Theorem 2.6 (see [22]) Let y : [a, b] −→ R� be a continuous fuzzy function, where [y(t)]α =
[y1,α(t), y2,α(t)]. If y1,α(t) and y2,α(t) are integrable functions over [a, b], then

∫ b
a y(t) dt ∈ R�

and
[∫ b

a
y(t) dt

]
α

=
[∫ b

a
y1,α(t) dt,

∫ b

a
y2,α(t) dt

]
. (3)

3 Formulation of second-order FVIDE
This section studies the second-order FVIDEs under the concept of strongly generalized
differentiability in which the FVIDE is converted into an equivalent system. This system
consists of the crisp system of Volterra integro-differential equations for each type of dif-
ferentiability.

In order to design a numerical scheme for solving FVIDE (1)–(2), we first replace it
according to Theorem 2.5 by the following two systems:

(1, 1)-system

y′′
1,α(t) = f1,α(t) +

∫ t

a
U(t,α) ds,

y′′
2,α(t) = f2,α(t) +

∫ t

a
U(t,α) ds;

(1, 2)-system

y′′
2,α(t) = f1,α(t) +

∫ t

a
U(t,α) ds,

y′′
1,α(t) = f2,α(t) +

∫ t

a
U(t,α) ds.

Depending on the Zadeh extension principle in [23], if g in Eq. (1) is a strictly increasing
function, then

U(t,α) =

⎧⎨
⎩

k(t, s)g(y1,α(s)), k(t, s) ≥ 0,

k(t, s)g(y2,α(s)), k(t, s) < 0,

and

U(t,α) =

⎧⎨
⎩

k(t, s)g(y2,α(s)), k(t, s) ≥ 0,

k(t, s)g(y1,α(s)), k(t, s) < 0.

Moreover, if g in Eq. (1) is a strictly decreasing function, then

U(t,α) =

⎧⎨
⎩

k(t, s)g(y2,α(s)), k(t, s) ≥ 0,

k(t, s)g(y1,α(s)), k(t, s) < 0,

and

U(t,α) =

⎧⎨
⎩

k(t, s)g(y1,α(s)), k(t, s) ≥ 0,

k(t, s)g(y2,α(s)), k(t, s) < 0.
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Here, we want to mention that the sufficient conditions for the existence of a unique
solution to the second-order FVIDE (1)–(2) have been given in [9].

4 Analysis of the method with its convergence
In this section, we present a review of the notations and preliminary definitions of the
RKHS theory. Additionally, we demonstrate how to solve FVIDE (1)–(2) using the RKHS
method. Accordingly, we build orthonormal function systems of the space W 3

2 [0, 1] ⊕
W 3

2 [0, 1] based on the Gram–Schmidt orthogonalization process.

Definition 4.1 (see [24]) Let H be a Hilbert space. A function K : Ω × Ω → R is a repro-
ducing kernel of H if the following conditions are satisfied:

(i) for each x ∈ Ω , K(·, x) ∈ H ;
(ii) for each x ∈ Ω and φ ∈ H , 〈φ, K(·, x)〉 = φ(x), which is called the reproducing

property.

Definition 4.2 (see [24]) The Hilbert space W m
2 [a, b] is defined as W m

2 [a, b] = {y(t)|y(t),
y′(t), . . . , y(m–1)(t) are absolutely continuous , y(m)(t) ∈ L2[a, b] and y(a) = y′(a) = · · · =
y(m–1)(a) = 0 whenever m �= 1}. Whilst the inner product and the norm in W m

2 [a, b] are
defined by

〈
y1(t), y2(t)

〉
W m

2
=

m–1∑
i=0

y(i)
1 (a)y(i)

2 (a) +
∫ b

a
y(m)

1 (t)y(m)
2 (t) dt (4)

and ‖y1(t)‖W m
2

=
√

〈y1(t), y1(t)〉W m
2

, where y1, y2 ∈ W m
2 [a, b].

Definition 4.3 The Hilbert space W m
2 [a, b] ⊕ W m

2 [a, b], m = 1, 2, 3, . . . , n, can be defined
as W m

2 [a, b] ⊕ W m
2 [a, b] = {y = (y1, y2)T | y1, y2 ∈ W m

2 [a, b]}. Accordingly, the inner prod-
uct and the norm in W m

2 [a, b] ⊕ W m
2 [a, b] are built, respectively, by 〈y(t), z(t)〉W m

2 ⊕W m
2

=∑2
i=1〈yi(t), zi(t)〉W m

2
and ‖y(t)‖W m

2 ⊕W m
2

=
√∑2

i=1 ‖yi(t)‖2
W m

2
.

Theorem 4.4 (see [25]) The space W m
2 [a, b] is a complete reproducing kernel space. That

is, for each fixed t ∈ [a, b], there exists Rt(s) ∈ W m
2 [a, b] such that 〈y(s), Rt(s)〉W m

2
= y(t) for

any y(t) ∈ W m
2 [a, b] and any t ∈ [a, b]. The reproducing kernel Rt(s) can be written as

Rt(s) =

⎧⎨
⎩

∑2m–1
i=0 pi(t)si, s ≤ t,∑2m–1
i=0 qi(t)si, s > t.

(5)

The representation of the reproducing kernel function Rt(s) in W 3
2 [0, 1], using Mathe-

matica 7.0 software package, is provided by

Rt(s) =

⎧⎨
⎩

1 + 1
12 t2s2(3 + t) + ts(1 – 1

24 t4) + 1
120 t5, s ≤ t,

1 + 1
12 t2s2(3 + s) + ts(1 – 1

24 s4) + 1
120 s5, s > t.

(6)

To apply our technique on the Hilbert space W 3
2 [a, b] ⊕ W 3

2 [a, b], we define the linear
invertible operator L : W 3

2 [a, b] ⊕ W 3
2 [a, b] −→ W 1

2 [a, b] ⊕ W 1
2 [a, b] as Ly(t) = y′′(t) such
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that L =
[ L1 0

0 L2

]
and y(t) = (y1,α(t), y2,α(t))T . Thus, Eqs. (1) and (2) can be converted into

the form

Ly(t) = G
(
t, f (t), h

(
y(t)

))
, (7)

subject to the fuzzy initial conditions

y(a) = γ1, y′(a) = γ2, (8)

where h(y(t)) =
∫ t

a k(t, s)g(y(t)) ds, y(t) ∈ W 3
2 [a, b] ⊕ W 3

2 [a, b], and f (t) ∈ W 1
2 [a, b] ⊕

W 1
2 [a, b]. Here, G(t, f (t), h(y(t))) is G(t, f1,α(t), f2,α(t), h(y1,α(t)), h(y2,α(t))).

Lemma 4.5 L : W 3
2 [a, b] ⊕ W 3

2 [a, b] −→ W 1
2 [a, b] ⊕ W 1

2 [a, b] is a bounded linear operator.

Proof Firstly, it is easy to prove that L is a linear operator from W 3
2 [a, b] ⊕ W 3

2 [a, b] into
W 1

2 [a, b] ⊕ W 1
2 [a, b]. Secondly, we need to prove that ‖Ly‖W 1

2 ⊕W 1
2

≤ ξ‖y‖W 3
2 ⊕W 3

2
, where

ξ > 0. For each y ∈ W 3
2 [a, b] ⊕ W 3

2 [a, b], we have

∥∥Ly(t)
∥∥2

W 1
2 ⊕W 1

2
=

2∑
i=1

∥∥Liyi,α(t)
∥∥2

W 1
2

=
∥∥L1y1,α(t)

∥∥2
W 1

2
+

∥∥L2y2,α(t)
∥∥2

W 1
2

=
〈
L1y1,α(t), L1y1,α(t)

〉
W 1

2
+

〈
L2y2,α(t), L2y2,α(t)

〉
W 1

2

=
[
L1y1,α(a)

]2 +
∫ b

a

[
d
dt

(
L1y1,α(t)

)]2

dt +
[
L2y2,α(a)

]2

+
∫ b

a

[
d
dt

(
L2y2,α(t)

)]2

dt.

By the reproducing property of Rt(s), then y1,α(t) = 〈y1,α(s), Rt(s)〉W 3
2

and y2,α(t) = 〈y2,α(s),
Rt(s)〉W 3

2
. Thus,

L1y1,α(t) =
〈
y1,α(s), L1Rt(s)

〉
W 3

2
, L2y2,α(t) =

〈
y2,α(s), L2Rt(s)

〉
W 3

2
,

d
dt

(
L1y1,α(t)

)
=

〈
y1,α(s),

d
dt

(
L1Rt(s)

)〉
W 3

2

,

d
dt

(
L2y2,α(t)

)
=

〈
y2,α(s),

d
dt

(
L2Rt(s)

)〉
W 3

2

.

From the continuity of Rt(s) on [a, b], we have

∣∣L1y1,α(t)
∣∣ =

∣∣〈y1,α(s), L1Rt(s)
〉
W 3

2

∣∣ ≤ ‖y1,α‖W 3
2

∥∥L1Rt(s)
∥∥

W 3
2

≤ k1‖y1,α‖W 3
2

,
∣∣L2y2,α(t)

∣∣ =
∣∣〈y2,α(s), L2Rt(s)

〉
W 3

2

∣∣ ≤ ‖y2,α‖W 3
2

∥∥L2Rt(s)
∥∥

W 3
2

≤ k2‖y2,α‖W 3
2

,
∣∣∣∣ d
dt

(
L1y1,α(t)

)∣∣∣∣ =
∣∣∣∣
〈
y1,α(s),

d
dt

(
L1Rt(s)

)〉
W 3

2

∣∣∣∣ ≤ ‖y1,α‖W 3
2

∥∥∥∥ d
dt

(
L1Rt(s)

)∥∥∥∥
W 3

2

≤ k3‖y1,α‖W 3
2

,
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∣∣∣∣ d
dt

(
L2y2,α(t)

)∣∣∣∣ =
∣∣∣∣
〈
y2,α(s),

d
dt

(
L2Rt(s)

)〉
W 3

2

∣∣∣∣ ≤ ‖y2,α‖W 3
2

∥∥∥∥ d
dt

(
L2Rt(s)

)∥∥∥∥
W 3

2

≤ k4‖y2,α‖W 3
2

.

Thus,

∥∥Ly(t)
∥∥2

W 1
2 ⊕W 1

2
≤ k2

1‖y1,α‖2
W 3

2
+ (b – a)k2

3‖y1,α‖2
W 3

2
+ k2

2‖y2,α‖2
W 3

2
+ (b – a)k2

4‖y2,α‖2
W 3

2

=
(
k2

1 + (b – a)k2
3
)‖y1,α‖2

W 3
2

+
(
k2

2 + (b – a)k2
4
)‖y2,α‖2

W 3
2

≤ ξ 2(‖y1,α‖2
W 3

2
+ ‖y2,α‖2

W 3
2

)

= ξ 2
2∑

i=1

‖yi,α‖2
W 3

2

= ξ 2‖y‖2
W 3

2 ⊕W 3
2

,

where ξ 2 = max{k2
1 + (b – a)k2

3 , k2
2 + (b – a)k2

4}. The proof is complete. �

Next, to construct an orthogonal system of functions {ψij(t)}(∞,2)
(i,j)=(1,1) of the space

W 3
2 [a, b] ⊕ W 3

2 [a, b], we let ψij(t) = L∗Φij(t), where L∗ =
[ L∗

1 0
0 L∗

2

]
is the adjoint operator

of L and Φij(t) = (Φi1(t),Φi2(t))T . From now on the orthonormal system {ψ ij(t)}(∞,2)
(i,j)=(1,1) in

the space W 3
2 [a, b] ⊕ W 3

2 [a, b] can be derived from the Gram–Schmidt orthogonalization
process of {ψ ij(t)}(∞,2)

(i,j)=(1,1) as follows:

ψ ij(t) =
i∑

l=1

j∑
k=1

β
ij
lkψlk(t), (9)

where β
ij
lk are orthogonalization coefficients given by

β
ij
11 =

1
‖ψ11‖ , β

ij
lk =

(
‖ψlk‖2 –

l–1∑
p=1

〈
ψlk(t),ψ lp(t)

〉2
)– 1

2

(l = k �= 1),

β
ij
lk =

–
∑l–1

p=k〈ψlk(t),ψ lp(t)〉β ij
pk√

‖ψlk‖2 –
∑l–1

p=1〈ψlk(t),ψ lp(t)〉2
(l > k).

The main result of this article is the following theorems, which give the exact expression
of the solution of FVIDE (7)–(8) in the space W 3

2 [a, b] ⊕ W 3
2 [a, b] and the convergence of

our method.

Theorem 4.6 Suppose {ti}∞i=1 is dense in [a, b], if y(t) ∈ W 3
2 [a, b] ⊕ W 3

2 [a, b] is the solution
of FVIDE (7)–(8), then

y(t) =
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lkGk

(
tl, f (tl), h

(
y(tl)

))
ψ ij(t), (10)

which is a convergent series in the sense of ‖ · ‖W 3
2 ⊕W 3

2
.
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Proof Firstly, we need to prove that {ψij(t)}(∞,2)
(i,j)=(1,1) is the complete system in W 3

2 [a, b] ⊕
W 3

2 [a, b] as follows:

ψij(t) = L∗Φij(t) =
〈
L∗Φij(s), Rt(s)

〉
W 3

2 ⊕W 3
2

=
〈
Φij(s), LsRt(s)

〉
W 1

2 ⊕W 1
2

= LsRt(s)|s=ti ∈ W 3
2 [a, b] ⊕ W 3

2 [a, b].

On the other hand, for each y ∈ W 3
2 [a, b] ⊕ W 3

2 [a, b], let 〈y(t),ψij(t)〉W 3
2 ⊕W 3

2
= 0. One has

〈
y(t),ψij(t)

〉
W 3

2 ⊕W 3
2

=
〈
y1,α(t),ψi1(t)

〉
W 3

2
+

〈
y2,α(t),ψi2(t)

〉
W 3

2

=
〈
y1,α(t), L∗

1Φi1(t)
〉
W 3

2
+

〈
y2,α(t), L∗

2Φi2(t)
〉
W 3

2

=
〈
L1y1,α(t),Φi1(t)

〉
W 1

2
+

〈
L2y2,α(t),Φi2(t)

〉
W 1

2

= L1y1,α(ti) + L2y2,α(ti)

= Ly(ti).

Thus, Ly(t) = 0 because {ti}∞i=1is dense on [a, b]. Hence, y(t) = 0 because of the existence of
L–1. Secondly, since {ψij(t)}(∞,2)

(i,j)=(1,1) is the complete system in W 3
2 [a, b]⊕W 3

2 [a, b] and from
Eq. (9), then the sequence {ψ ij(t)}(∞,2)

(i,j)=(1,1) is the complete orthonormal system in W 3
2 [a, b]⊕

W 3
2 [a, b]. Thirdly, using Fourier series expansion about {ψ ij(t)}(∞,2)

(i,j)=(1,1), we have

y(t) =
∞∑
i=1

2∑
j=1

〈
y(t),ψ ij(t)

〉
W 3

2 ⊕W 3
2
ψ ij(t)

=
∞∑
i=1

2∑
j=1

〈
y(t),

i∑
l=1

j∑
k=1

β
ij
lkψlk(t)

〉

W 3
2 ⊕W 3

2

ψ ij(t)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lk
〈
y(t),ψlk(t)

〉
W 3

2 ⊕W 3
2
ψ ij(t)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lk
〈
y(t), L∗Φlk(t)

〉
W 3

2 ⊕W 3
2
ψ ij(t)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lk
〈
Ly(t),Φlk(t)

〉
W 1

2 ⊕W 1
2
ψ ij(t)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lk
〈
Gk

(
t, f (t), h

(
y(t)

))
,Φlk(t)

〉
W 1

2 ⊕W 1
2
ψ ij(t)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lkGk

(
tl, f (tl), h

(
y(tl)

))
ψ ij(t).
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Since
∑∞

i=1
∑2

j=1
∑i

l=1
∑j

k=1 β
ij
lkGk(tl, f (tl), h(y(tl)))ψ ij(t) is a Fourier series in W 3

2 [a, b] ⊕
W 3

2 [a, b] and W 3
2 [a, b] ⊕ W 3

2 [a, b] is a Hilbert space, then it is a convergent series in the
sense of ‖ · ‖W 3

2 ⊕W 3
2

. The proof is complete. �

For numerical computations, we put the initial function y0(tl) = y(tl) and define the n-
term numerical solution of FVIDE (7)–(8) by truncating the series given in Eq. (10) as
follows:

yn(t) =
n∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1

β
ij
lkGk

(
tl, f (tl), h

(
yl–1(tl)

))
ψ ij(t). (11)

Theorem 4.7 Suppose that y(t) is the solution of FVIDE (7)–(8) and yn(t) is the approx-
imate solution of FVIDE (7)–(8), where y(t) and yn(t) are given by Eqs. (10) and (11), re-
spectively, then

(i) if ‖yn‖W 3
2 ⊕W 3

2
is bounded and {ti}n

i=1 is dense on [a, b], then ‖yn – y‖W 3
2 ⊕W 3

2
−→ 0 as

n → ∞;
(ii) ‖yn – y‖C −→ 0 as n → ∞;

(iii) the second derivative of yn converges to the second derivative of y uniformly as
n → ∞;

(iv) if ‖yn–1 – y‖W 3
2 ⊕W 3

2
−→ 0 as n → ∞, ‖yn–1‖W 3

2 ⊕W 3
2

is bounded, tn → τ as n → ∞,
G(t, f (t), h(y(t))) is continuous for t ∈ [a, b] and f , h are continuous functions, then
G(tn, f (tn), h(yn–1(tn))) → G(τ , f (τ ), h(y(τ ))).

Proof (i) From Eq. (11) and the orthonormality of {ψ ij(t)}(∞,2)
(i,j)=(1,1), we have ‖yn+1‖2

W 3
2 ⊕W 3

2
=

‖y0‖2
W 3

2 ⊕W 3
2

+
∑n+1

i=1
∑2

j=1 A2
ij, where Aij =

∑i
l=1

∑j
k=1 β

ij
lkGk(tl, f (tl), h(yl–1(tl)))ψ ij(t). Since

‖yn+1‖W 3
2 ⊕W 3

2
≥ ‖yn‖W 3

2 ⊕W 3
2

and ‖yn‖W 3
2 ⊕W 3

2
is bounded, then ‖yn‖W 3

2 ⊕W 3
2

is convergent
and {∑2

j=1 A2
ij}∞i=1 ∈ l2. If m > n, then ‖ym – yn‖2

W 3
2 ⊕W 3

2
=

∑m
l=n+1

∑2
j=1 A2

ij → 0 as m, n → ∞.
But W 3

2 [a, b] ⊕ W 3
2 [a, b] is a Hilbert space, then ‖yn – y‖W 3

2 ⊕W 3
2

−→ 0 as n → ∞. More
details can be found in [26].

(ii) Based on the reproducing property of Rt(s) and from (i), then

∣∣yn(t) – y(t)
∣∣ =

∣∣〈yn(s) – y(s), Rt(s)
〉
W 3

2 ⊕W 3
2

∣∣
≤ ∥∥yn(s) – y(s)

∥∥
W 3

2 ⊕W 3
2

∥∥(
Rt(s)

)∥∥
W 3

2 ⊕W 3
2

≤ k5‖yn – y‖W 3
2 ⊕W 3

2
→ 0 as n → ∞,

which means that ‖yn – y‖C −→ 0 as n → ∞.
(iii) Since yn converges to y uniformly, then

∣∣y′′
n(t) – y′′(t)

∣∣ =
∣∣∣∣ d2

dt2

(
yn(t) – y(t)

)∣∣∣∣

=
∣∣∣∣ d2

dt2

〈
yn(s) – y(s), Rt(s)

〉
W 3

2 ⊕W 3
2

∣∣∣∣

=
∣∣∣∣
〈
yn(s) – y(s),

d2

dt2

(
Rt(s)

)〉
W 3

2 ⊕W 3
2

∣∣∣∣
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≤ ∥∥yn(s) – y(s)
∥∥

W 3
2 ⊕W 3

2

∥∥∥∥ d2

dt2

(
Rt(s)

)∥∥∥∥
W 3

2 ⊕W 3
2

≤ k6‖yn – y‖W 3
2 ⊕W 3

2
→ 0 as n → ∞.

Thus, ‖y′′
n – y′′‖C → 0 as n → ∞.

(iv) Firstly, we prove that yn–1(tn) → y(τ ) (n → ∞) as follows:

∣∣yn–1(tn) – y(τ )
∣∣ =

∣∣yn–1(tn) – yn–1(τ ) + yn–1(τ ) – y(τ )
∣∣

≤ ∣∣yn–1(tn) – yn–1(τ )
∣∣ +

∣∣yn–1(τ ) – y(τ )
∣∣.

From ‖yn–1 – y‖W 3
2 ⊕W 3

2
−→ 0 as n → ∞, it follows that |yn–1(τ ) – y(τ )| → 0 as n → ∞.

Based on the reproducing property of Rt(s), then

∣∣yn–1(tn) – yn–1(τ )
∣∣ =

∣∣〈yn–1(t), Rtn (s)
〉
–

〈
yn–1(t), Rτ (s)

〉∣∣
=

∣∣〈yn–1(t), Rtn (s) – Rτ (s)
〉∣∣

≤ ∥∥yn–1(t)
∥∥

W 3
2 ⊕W 3

2

∥∥Rtn (s) – Rτ (s)
∥∥

W 3
2 ⊕W 3

2
.

Since the kernel function Rt(s) is symmetric, ‖Rtn (s) – Rτ (s)‖W 3
2 ⊕W 3

2
→ 0 as n → ∞,

which means that |yn–1(tn) – yn–1(τ )| → 0 as n → ∞. Thus, |yn–1(tn) – y(τ )| → 0 as
n → ∞. Secondly, since f and h are continuous functions and tn → τ , then f (tn) →
f (τ ) as n → ∞ and h(yn–1(tn)) → h(y(τ )) as n → ∞. From the continuity of G, then
G(tn, f (tn), h(yn–1(tn))) → G(τ , f (τ ), h(y(τ ))). The proof is complete. �

5 Numerical results
In order to illustrate the accuracy of the method proposed in Sect. 4, we present three
examples using Mathematica 7.0. The results obtained by our method are compared with
the exact solution of each example and are found to be in good agreement with each other.

Example 5.1 Consider the following second-order FVIDE:

y′′(t) = [α – 1, 1 – α] +
∫ t

0
y(s) ds, 0 ≤ t ≤ 1,α ∈ [0, 1], (12)

subject to the fuzzy initial conditions

y(0) = [α – 1, 1 – α], y′(0) = [0, 0]. (13)

Equations (12) and (13) are replaced by two systems of Volterra integro-differential
equations as (1, 1)-system

y′′
1,α(t) = (α – 1) +

∫ t
0 y1,α(s) ds, 0 ≤ t ≤ 1,

y′′
2,α(t) = (1 – α) +

∫ t
0 y2,α(s) ds, 0 ≤ t ≤ 1,

y1,α(0) = α – 1, y2,α(0) = 1 – α,
y′

1,α(0) = 0, y′
2,α(0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)
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Table 1 Numerical results for (1, 1)-system at t = 0.5 and various α

α Exact solution Approximate solution

0 [–0.890245911500779, 0.890245911500779] [–0.888487875540245, 0.888487875540245]
0.2 [–0.712196729200623, 0.712196729200623] [–0.710790300432196, 0.710790300432196]
0.4 [–0.534147546900467, 0.534147546900467] [–0.533092725324147, 0.533092725324147]
0.6 [–0.356098364600311, 0.356098364600311] [–0.355395150216098, 0.355395150216098]
0.8 [–0.178049182300155, 0.178049182300155] [–0.177697575108049, 0.177697575108049]
1 [0, 0] [0, 0]

Table 2 Numerical results for (1, 2)-system at t = 0.5 and various α

α Exact solution Approximate solution

0 [–0.8544486824714743, 0.8544486824714743] [–0.8521702477360533, 0.8521702477360531]
0.2 [–0.6835589459771796, 0.6835589459771796] [–0.6817361981888437, 0.681736198188843]
0.4 [–0.5126692094828845, 0.5126692094828845] [–0.5113021486416323, 0.5113021486416318]
0.6 [–0.3417794729885898, 0.3417794729885898] [–0.34086809909442184, 0.3408680990944215]
0.8 [–0.1708897364942948, 0.1708897364942948] [–0.17043404954721061, 0.1704340495472106]
1 [0, 0] [0, 0]

(1, 2)-system

y′′
1,α(t) = (1 – α) +

∫ t
0 y2,α(s) ds, 0 ≤ t ≤ 1,

y′′
2,α(t) = (α – 1) +

∫ t
0 y1,α(s) ds, 0 ≤ t ≤ 1,

y1,α(0) = α – 1, y2,α(0) = 1 – α,
y′

1,α(0) = 0, y′
2,α(0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

The corresponding (1, 1)-system has the exact solution

y(t) =
[

(α – 1)e0.5t
(

cos

(
t√
2

)
–

1√
2

sin

(
t√
2

))
,

(1 – α)e0.5t
(

cos

(
t√
2

)
–

1√
2

sin

(
t√
2

))]
, (16)

and the corresponding (1, 2)-system has the exact solution

y(t) =
[

(α – 1)e0.5t
(

cos

(√
3

2
t
)

–
1√
3

sin

(√
3

2
t
))

,

(1 – α)e0.5t
(

cos

(√
3

2
t
)

–
1√
3

sin

(√
3

2
t
))]

. (17)

Using the RKHS method, taking α = 0.2(i – 1), i = 1, 2, . . . , 6, the numerical results at t =
0.5 for n = 10 are presented for both the (1, 1)-system and the (1, 2)-system in Tables 1 and
2, respectively. In order to show the efficiency of the RKHS method in solving FVIDE (12)–
(13), absolute errors are calculated at α = 0.5, n = 10 and various t for the two branches of
the (1, 1)-system in Tables 3 and 4 and for the two branches of the (1, 2)-system in Tables 5
and 6.

Without losing the general issue, we will solve the next two examples, unlike Exam-
ple 5.1, either using the (1, 1)-system or the (1, 2)-system to avoid repetitions.
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Table 3 The absolute errors of approximating y1,α for (1, 1)-system at various t and α = 0.5

ti Exact solution Approximate solution Absolute error

0 –0.5 –0.5 0
0.2 –0.4919942732092149 –0.49155676396105286 4.3750924816210457× 10–4

0.4 –0.4659175034022215 –0.46513632990261633 7.811734996051589× 10–4

0.6 –0.4186325706793184 –0.4177266247210882 9.059459582302365× 10–4

0.8 –0.3470103621084155 –0.34632653813195646 6.838239764590526× 10–4

1 –0.2480352042594187 –0.24803520425941872 0

Table 4 The absolute errors of approximating y2,α for (1, 1)-system at various t and α = 0.5

ti Exact solution Approximate solution Absolute error

0 0.5 0.5 0
0.2 0.4919942732092149 0.49155676396105263 4.375092481623266× 10–4

0.4 0.4659175034022215 0.46513632990261655 7.811734996049369× 10–4

0.6 0.4186325706793184 0.41772662472108835 9.059459582300699× 10–4

0.8 0.3470103621084155 0.34632653813195679 6.838239764587195× 10–4

1 0.2480352042594187 0.24803520425941916 4.440892098500626× 10–16

Table 5 The absolute errors of approximating y1,α for (1, 2)-system at various t and α = 0.5

ti Exact solution Approximate solution Absolute error

0 –0.5 –0.5000000000000001 1.1102230246251565× 10–16

0.2 –0.4893347110786599 –0.4887536023044621 5.811087741978138× 10–4

0.4 –0.45471216929013725 –0.45368890889731417 1.0232603928230777× 10–3

0.6 –0.3923561778762831 –0.3911974694888205 1.1587083874625703× 10–3

0.8 –0.298878446816582 –0.2980336644678224 8.447823487595651× 10–4

1 –0.1715140126819416 –0.17151401268194177 1.6653345369377348× 10–16

Table 6 The absolute errors of approximating y2,α for (1, 2)-system at various t and α = 0.5

ti Exact solution Approximate solution Absolute error

0 0.5 0.5000000000000002 2.220446049250313× 10–16

0.2 0.4893347110786599 0.4887536023044618 5.811087741980914× 10–4

0.4 0.45471216929013725 0.45368890889731406 1.0232603928231887× 10–3

0.6 0.3923561778762831 0.3911974694888207 1.1587083874623483× 10–3

0.8 0.298878446816582 0.2980336644678221 8.447823487598982× 10–4

1 0.1715140126819416 0.17151401268194189 2.7755575615628914× 10–16

Example 5.2 (see [9]) Consider the following second-order FVIDE:

y′′(t) =
[
(–10 + 5α)e1–t – (1 + 0.5α)t, (–3 – 2α)e1–t –

(
0.6 + 0.1α – 0.2α2)t

]

+
∫ t

0
[–0.2 + 0.1α, –0.1]es–1y(s) ds, 0 ≤ t ≤ 1, (18)

subject to the fuzzy initial conditions

y(0) =
[
(–10 + 5α)e, (–3 – 2α)e

]
, y′(0) =

[
(3 + 2α)e, (10 – 5α)e

]
. (19)
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Table 7 The absolute errors of approximating y1,α for (1, 1)-system at various t and α

α y1,α (0) y1,α (0.25) y1,α (0.5) y1,α (0.75) y1,α (1)

0.5 3.55271× 10–15 9.35382× 10–6 9.70896× 10–6 5.66864× 10–6 7.10543× 10–14

0.75 7.10543× 10–15 7.79485× 10–6 8.09080× 10–6 4.72387× 10–6 5.32907× 10–14

1 1.24345× 10–14 6.23588× 10–6 6.47264× 10–6 3.77909× 10–6 4.61853× 10–14

Table 8 The absolute errors of approximating y2,α for (1, 1)-system at various t and α

α y2,α (0) y2,α (0.25) y2,α (0.5) y2,α (0.75) y2,α (1)

0.5 1.06581× 10–14 4.98870× 10–6 5.17811× 10–6 3.02328× 10–6 6.75016× 10–14

0.75 1.06581× 10–14 5.61229× 10–6 5.82538× 10–6 3.40119× 10–6 4.97379× 10–14

1 1.24345× 10–14 6.23588× 10–6 6.47264× 10–6 3.77909× 10–6 4.61853× 10–14

Here, the (1, 1)-system is

y′′
1,α(t) = (–10 + 5α)e1–t – (1 + 0.5α)t +

∫ t
0 (–0.2 + 0.1α)es–1y1,α(s) ds,

y′′
2,α(t) = (–3 – 2α)e1–t – (0.6 + 0.1α – 0.2α2)t –

∫ t
0 (0.1)es–1y2,α(s) ds,

y1,α(0) = (–10 + 5α)e, y2,α(0) = (–3 – 2α)e,
y′

1,α(0) = (3 + 2α)e, y′
2,α(0) = (10 – 5α)e,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

where 0 ≤ t ≤ 1. The corresponding (1, 1)-system has the exact solution

y(t) =
[
(–10 + 5α)e1–t , (–3 – 2α)e1–t]. (21)

Using the method presented in Sect. 4, taking n = 100, ti = 0.25(i – 1), i = 1, 2, . . . , 5, the
numerical results of (1, 1)-system in Example 5.2 in different values of α are shown in
Tables 7 and 8.

Example 5.3 (see [9]) Consider the following second-order FVIDE:

y′′(t) =
[

(3α – 3) sin t +
3

20
(
α2 – 6α + 5

)
t cos2 t,

(9 – 9α) sin t –
9

20
(
α2 – 6α + 5

)
t cos2 t

]

+
∫ t

0
[0.1 + 0.3α, 0.5 – 0.1α]t cos(s)y(s) ds, 0 ≤ t ≤ 1, (22)

subject to the fuzzy initial conditions

y(0) = [0, 0], y′(0) = [–9 + 9α, 3 – 3α]. (23)

Here, the (1, 2)-system is

y′′
2,α(t) = (3α – 3) sin t +

3
20

(
α2 – 6α + 5

)
t cos2 t +

∫ t

0
(0.1 + 0.3α)t cos(s)y1,α(s) ds,

y′′
1,α(t) = (9 – 9α) sin t –

9
20

(
α2 – 6α + 5

)
t cos2 t +

∫ t

0
(0.5 – 0.1α)t cos(s)y2,α(s) ds,

y1,α(0) = 0, y2,α(0) = 0,

y′
1,α(0) = –9 + 9α, y′

2,α(0) = 3 – 3α,

(24)
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Table 9 The absolute errors of approximating (1, 2)-system at various t and α = 0.5

n y1,α (0.16) y2,α (0.16) y1,α (0.96) y2,α (0.96)

5 4.40853× 10–3 1.46951× 10–3 1.48218× 10–2 4.94061× 10–3

10 1.12017× 10–3 3.73391× 10–4 5.20311× 10–3 1.73437× 10–3

100 4.84584× 10–6 1.61528× 10–6 7.23713× 10–6 2.41238× 10–6

where 0 ≤ t ≤ 1. The corresponding (1, 2)-system has the exact solution

y(t) =
[
(–9 + 9α) sin t, (3 – 3α) sin t

]
. (25)

One can observe from Table 9 that as n gets larger, the physical behavior of the absolute
errors approaches to zero very rapidly. Anyway, Table 9 also shows that our RKHS method
gives reasonable results for small n as well.

6 Conclusion
We have introduced a new method for solving second-order FVIDEs based on reproduc-
ing kernel theory. The proposed technique gives solutions with good generalization and
high exactness. The robustness of this technique has been proved by numerical simula-
tions. As a future research line, this technique can be expanded to solving a class of fuzzy
ordinary differential algebraic equations and fuzzy partial integro-differential equations.
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