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1 Introduction
During the last few years, the nonlinear fractional Schrödinger equation (NFSE) has been
widely used in modeling physical phenomena such as the propagation of waves in op-
tics and hydrodynamics, see [1–4] for details. Various numerical methods have been de-
veloped and used for solving the fractional Schrödinger equations. For example, a series
of difference schemes have been proposed by Wang and Huang [5–7] for the one- and
two-dimensional space-fractional nonlinear Schrödinger equations. A Fourier spectral
method has been developed by Duo and Zhang [8] considering the fractional parabolic
equations based on periodic or Neumann boundary conditions. Various numerical meth-
ods have been proposed by Dehghan et al. [9–14] for solving the systems of one- and
multi-dimensional nonlinear Schrödinger equations efficiently.

In this work, we consider the 3-coupled nonlinear fractional Schrödinger equation
(3CNFSE) embracing the fractional Laplacian (–�)α/2 (1 < α ≤ 2) as follows:

i
∂ψ1(x, t)

∂t
– γ1(–�)α/2ψ1 +

(
σ |ψ1|2 + �|ψ2|2 + σ |ψ3|2

)
ψ1 = 0, x ∈R, 0 < t ≤ T ,

i
∂ψ2(x, t)

∂t
– γ2(–�)α/2ψ2 +

(
�|ψ1|2 + σ |ψ2|2 + �|ψ3|2

)
ψ2 = 0, x ∈R, 0 < t ≤ T , (1)

i
∂ψ3(x, t)

∂t
– γ3(–�)α/2ψ3 +

(
σ |ψ1|2 + �|ψ2|2 + σ |ψ3|2

)
ψ3 = 0, x ∈R, 0 < t ≤ T
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with the initial conditions

ψ1(x, 0) = u0(x),

ψ2(x, 0) = v0(x), (2)

ψ3(x, 0) = w0(x),

and periodic boundary conditions on [xL, xR], where i =
√

–1, and γ , σ , � are real-constant
parameters.

Although the 2-coupled NFSE was considered in a number of research articles, the 3CN-
FSE was rarely mentioned. In fact, the 3CNFSE is important in modeling the propagation
of periodic solitary waves with perturbation in space, and this kind of model cannot be re-
placed by the 2-coupled NFSE. This inspired us to find some efficient numerical methods
for the 3CNFSE.

The fractional Laplacian in one-dimension has been defined in [15] as

∂α

∂|x|α u(x, t) = –(–�)α/2u(x, t) = –
1

2 cos πα
2

[
–∞Dα

x u(x, t) +x Dα
+∞u(x, t)

]
,

where 1 < α < 2. –∞Dα
x u(x, t) and xDα

+∞u(x, t) are the Riemann–Liouville derivatives to the
left and right, respectively:

–∞Dα
x u(x, t) =

1
Γ (2 – α)

∂2

∂x2

∫ x

–∞
u(ξ , t)

(x – ξ )α–1 dξ ,

and

xDα
+∞u(x, t) =

1
Γ (2 – α)

∂2

∂x2

∫ +∞

x

u(ξ , t)
(ξ – x)α–1 dξ ,

where Γ (·) denotes the gamma function.
As shown in [16], 3CNFSE (1) conserves mass of the waves, defined as Q(t) at time t:

Q1(t) =
∥∥ψ1(·, t)

∥∥2
L2

=
∫

R

∣∣ψ1(x, t)
∣∣2 dx,

Q2(t) =
∥
∥ψ2(·, t)

∥
∥2

L2
=

∫

R

∣
∣ψ2(x, t)

∣
∣2 dx, (3)

Q3(t) =
∥∥ψ3(·, t)

∥∥2
L2

=
∫

R

∣∣ψ3(x, t)
∣∣2 dx,

and the energy, or Hamiltonian,

E(t) =
∫

Rd

[
γ Re

(
ψ∗(x, t)(–�)α/2ψ(x, t)

)
+

σ

2
∣∣ψ(x, t))

∣∣4
]

dx, (4)

where Re(φ) is the real part and φ∗ is the complex conjugate of a function φ.
The outline of this paper is organized as follows. In Sect. 2, we describe the space dis-

cretization for the 3CNFSE, which is the Fourier spectral method. In Sect. 3, we propose
the description of the modified exponential time differencing schemes as time integra-
tors for the 3CNFSE. In Sect. 4, the stability issues and rates of truncation errors to the
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proposed methods are analyzed and proved. In Sect. 5, numerical experiments are demon-
strated and the mass conservative property of the proposed schemes is indicated. Finally,
we give the conclusion in Sect. 6.

2 The Fourier spectral method
To apply the Fourier spectral method on the 3CNFSE, we follow the procedure given by
Weng et al. [17], and we transform ψ(x, t) into the discrete Fourier space

ψ̂(x, t) =
1
N

N–1∑

j=0

ψ(xj, t) exp(–iωxj), –
N
2

≤ ω ≤ N
2

– 1, (5)

where xj = 2π j/N , and N is the number of Fourier nodes. The inverse of formula (5) is

ψ(xj, t) =
N/2–1∑

ω=–N/2

ψ̂(ω, t) exp(iωxj), 0 ≤ j ≤ N – 1. (6)

The direct and inverse Fourier transforms in (5)–(6) can be computed efficiently using the
fft and ifft algorithms, respectively. As indicated in [16], the fractional Laplacian in (1) can
be characterized as

F
{

(–�)α/2u(x, t)
}

= |ω|αF{
u(x, t)

}
, (7)

where F is the Fourier transform acting on the spatial variable x. For periodic boundary
conditions, we can approximate the fractional Laplacian using a truncated series

(–�)α/2u ≈
N–1∑

j=0

ûjλ
α/2
j ϕj. (8)

For Dirichlet boundary conditions, we utilize the discrete sine transform, taking xl = a +
l�x and �x = L/(N + 1), where x ∈ [a, b], L represents the range of the spatial domain, and
�x is the space step size. For Neumann boundary conditions, we implement the discrete
cosine transform, taking xl = a + (l – 1)�x + �x/2 and �x = L/N .

3 The exponential time differential procedure
In this section, we develop two modified exponential time differencing (ETD) integrators
for the 3CFNSE. We combine the ETD schemes with the Fourier spectral method dis-
cretizing in space. The exponential time differencing scheme was introduced for the stiff
semi-linear problems in the form

ut = Lu + F (u, t), (9)

in which the operator L is linear, while the function F is nonlinear. After applying the
Fourier spectral method (7), we can write equation (9) into the form of a system of ODEs:

ut + Lu = N(u, t). (10)
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According to Duhamel’s principle, we could integrate equation (10) over a one-step in-
terval t = tn to tn+1 = tn + τ , which gives us

u
(
tn+1) = e–τLu

(
tn) + e–τL

∫ τ

0
esLN

(
u
(
tn + s

)
, tn + s

)
ds. (11)

Notice that we use un
h to represent the discrete approximation to u(tn). Deriving from

formulation (11), a fourth-order ETD Runge–Kutta (ETDRK4) scheme was introduced
by Cox and Mathew [18]. Also, we can obtain alternative ETD integrators using different
methods of approximation to the integral and exponential functions. To improve the per-
formance of the matrix exponential functions calculation, the exponential terms in the
ETDRK4 scheme are computed approximately using the fourth-order (2, 2)-Padé approx-
imation or the (1, 3)-Padé approximation described in [19].

The ETDRK4-P22 scheme is modified from the ETDRK4 scheme by approximating the
exponential terms with the (2, 2)-Padé approximation:

un+1
h = R2,2(τL)un

h + P1(τL)N
(
un

h, tn)

+ P2(τL)
(
N

(
an, tn + τ /2

)
+ N

(
bn, tn + τ /2

))
+ P3(τL)N

(
cn, tn + τ

)
, (12)

where

R2,2(τL) =
(
12I – 6τL + τ 2L2)(12I + 6τL + τ 2L2)–1,

P1(τL) = τ (2I – τL)
(
12I + 6τL + τ 2L2)–1,

P2(τL) = 4τ
(
12I + 6τL + τ 2L2)–1,

P3(τL) = τ (2I + τL)
(
12I + 6τL + τ 2L2)–1,

an = R2,2(τL/2)un
h + P(τL)N

(
un

h, tn),

bn = R2,2(τL/2)un
h + P(τL)N

(
an, tn + τ /2

)
,

cn = R2,2(τL/2)an + P(τL)
(
2N

(
bn, tn + τ /2

)
– N

(
un

h, tn)),

P(τL) = 24τ
(
48I + 12τL + τ 2L2)–1.

The ETDRK4-P13 scheme is modified from the ETDRK4 scheme by approximating the
exponential terms with the (1, 3)-Padé approximation:

un+1
h = R1,3(τL)un

h + P1(τL)N
(
un

h, tn)

+ P2(τL)
(
N

(
an, tn + τ /2

)
+ N

(
bn, tn + τ /2

))
+ P3(τL)N

(
cn, tn + τ

)
, (13)

where

R1,3(τL) = 24(8I – τL)
(
192I + 72τL + 12τ 2L2 + τ 3L3)–1,

P1(τL) = τ (4I – τL)
(
24I + 18τL + 6τ 2L2 + τ 3L3)–1,

P2(τL) = 2τ (4I + τL)
(
24I + 18τL + 6τ 2L2 + τ 3L3)–1,
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P3(τL) = τ
(
4I + 3τL + τ 2L2)(24I + 18τL + 6τ 2L2 + τ 3L3)–1,

an = R1,3(τL/2)un
h + P(τL)N

(
un

h, tn),

bn = R1,3(τL/2)un
h + P(τL)N

(
an, tn + τ /2

)
,

cn = R1,3(τL/2)an + P(τL)
(
2N

(
bn, tn + τ /2

)
– N

(
un

h, tn)),

P(τL) = τ
(
96I + 12τL + τ 2L2)(192I + 72τL + 12τ 2L2 + τ 3L3)–1.

4 Linear analysis of the ETDRK4-P schemes
4.1 Truncation error
It has been proved by Bueno-Orovio and Kay [20] that the Fourier spectral method applied
on the space-fractional derivatives, involved in the 3CNFSE, is of spectral-order. So, we
need to compute the overall truncation error in time. First, we investigate the ETDRK4-
P22 scheme (12). To accomplish this, we take the following semi-discretized system into
consideration:

∂U
∂t

= –AU + RU, (14)

where A and R denote matrices generated after we linearly discretize the NFSE in space
and U represents the solution vector. By applying the ETDRK4-P22 scheme (12) to the
linear system (14), we obtain

Un+1 =
(

I +
τA
2

+
τ 2A2

12

)–1[(
I –

τA
2

+
τ 2A2

12
+

τR
6

(
I –

τA
2

))
Un

+
τR
3

(
an + bn) +

τR
6

(
I +

τA
2

)
cn

]
, (15)

where

an =
(

I +
τA
4

+
τ 2A2

48

)–1(
I –

τA
4

+
τ 2A2

48
+

τR
2

)
Un,

bn =
(

I +
τA
4

+
τ 2A2

48

)–1[(
I –

τA
4

+
τ 2A2

48

)
Un +

τR
2

an
]

,

cn =
(

I +
τA
4

+
τ 2A2

48

)–1[(
I –

τA
4

+
τ 2A2

48

)
an +

τR
2

(
2bn – Un)

]
.

By Taylor expansion, Eq. (15) becomes

Un+1 =
[

I + τ (R – A) + τ 2
(

A2

2
– RA +

R2

2

)
+ τ 3

(
RA2

2
–

AR2

2
–

A3

6
+

R3

6

)

+ τ 4
(

A4

24
+

A2R2

4
–

AR3

6
–

A3R
6

+
R4

24

)
+ · · ·

]
Un. (16)

The exact solution of (14) is

U
(
tn+1) = exp

(
τ (R – A)

)
U

(
tn).
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Hence, the local truncation error of the ETDRK4-P22 scheme (12) is

en+1 =
[

I + τ (R – A) + τ 2
(

A2

2
– RA +

R2

2

)
+ τ 3

(
RA2

2
–

AR2

2
–

A3

6
+

R3

6

)

+ τ 4
(

A4

24
+

A2R2

4
–

AR3

6
–

A3R
6

+
R4

24

)
+ · · ·

]
Un – exp

(
τ (R – A)

)
U

(
tn)

= O
(
τ 5).

This result indicates that the ETDRK4-P22 scheme (12) has a local truncation error of
fourth order. The local truncation error of the ETDRK4-P13 scheme (13) can be computed
in a similar way.

4.2 Stability analysis
4.2.1 Amplification symbol
As defined by Yousuf et al. [21], a rational approximation Rr,s(z) to the exponential e–z is
called A-acceptable when |Rr,s(–z)| < 1 holds for all –z with negative real part. The approx-
imation is called L-acceptable when it is A-acceptable and it also satisfies |Rr,s(–z)| → 0 as
R(–z) → –∞.

In Fig. 1, we compare the behavior of functions exp(–z), R2,2(z), and R1,3(z), as defined in
schemes (12) and (13). It can be observed from the traces that R2,2(z) is A-acceptable and
R1,3(z) is L-acceptable. It can also be seen from Fig. 1 that R2,2(z) approximates to exp(–z)
better than R1,3(z) when z is close to 0.

Figure 2 illustrates the traces of exp(–z), R2,2(z), and R1,3(z) for z = x + iy ∈ [0, 20] ×
[–10, 10]. Since the results of the functions are complex, we plot their real parts. It can be
seen from the plots that R2,2(z) approximates to exp(–z) well when the absolute value of z
is close to 0, while R1,3(z) converges to 0 for an increasing absolute value of z.

4.3 Stability regions
The stability of the ETD schemes can be observed from the plots of their stability regions
(see also [18] and [22]). Let us consider the nonlinear ordinary differential equation

ut = cu + F(u), (17)

where the function F(u) is nonlinear. We assume that a fixed point u0 satisfying cu0 +
F(u0) = 0 exists, and u is the perturbation of u0. We denote λ = F ′(u0), and then we lin-

Figure 1 Behavior of functions exp(–z), R2,2(z), and
R1,3(z) for z ∈ [0, 50]
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Figure 2 Behavior of exp(–z), R2,2(z), and R1,3(z) for
z = x + iy ∈ [0, 20]× [–10, 10]

earize equation (17) to obtain

ut = cu + λu. (18)

If Re(c + λ) < 0, then we can say the fixed point u0 is stable. We denote x = λτ and y = cτ ,
with τ being a single time step, and then apply the ETDRK4-P22 scheme (12) to Eq. (18).
The amplification factor can be calculated in the following way:

un+1

un
= r(x, y) = c0 + c1x + c2x2 + c3x3 + c4x4, (19)

where

c0 =
1,327,104 – 331,776y – 55,296y2 + 20,736y3 + 3456y4 – 2160y5 + 372y6 – 30y7 + y8

(48 – 12y + y2)3(12 – 6y + y2)
,

c1 =
1,327,104 – 331,776y – 55,296y2 + 20,736y3 – 3456y4 + 432y5 – 36y6

(48 – 12y + y2)3(12 – 6y + y2)
,

c2 =
663,552 – 165,888y – 27,648y2 + 8064y3 – 288y4 – 48y5

(48 – 12y + y2)3(12 – 6y + y2)
,
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Figure 3 Stability regions of the ETDRK4-P22 and ETDRK4-P13 schemes for different y values

c3 =
221,184 – 55,296y – 9216y2 – 1152y3

(48 – 12y + y2)3(12 – 6y + y2)
,

c4 =
55,296 – 27,648y

(48 – 12y + y2)3(12 – 6y + y2)
.

It can be observed from formula (19) that if y = 0, the amplification factor can be com-
puted as

r(x, 0) = 1 + x +
1
2

x2 +
1
6

x3 +
1

24
x4,

which corresponds to the fourth-order explicit Runge–Kutta (RK4) method. Notice that
we assumed r(x, y) < 1 to obtain the stability regions. Suppose that x is complex and y is
chosen to be some non-positive values. As can be seen in Fig. 3, the stability regions of
the two schemes are plotted. The axes of the plots are real and imaginary parts of x. It
was stated by Beylkin et al. [23] that the stability region has to expand as the value of |ck|
grows. It can be observed from Fig. 3 that the stability regions of the ETDRK4-P22 and
the ETDRK4-P13 schemes differ in shape, which is due to the different approaches they
approximate to the exponential terms.

5 Numerical experiments
In this section, the performance of the ETDRK4-P schemes is tested on a set of initial-
boundary value problems. The error in the temporal direction with sufficient Fourier
nodes N is computed as follows:

e(τ ) =
∥
∥U(τ , h) – U(τs, h)

∥
∥∞,

where U(τs, h) represents the “exact” solution. The temporal convergence rates were com-
puted as follows:

p =
log(e(τn)/e(τn+1))

log(τn/τn+1)
.

All the numerical experiments were undertaken on a Matlab R2013a platform based on
an Intel Core i5-6200U 2.40 GHz workstation.
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5.1 The split-step scheme
To test the efficiency of the ETDRK4-P schemes, we compare the numerical results with
the split-step scheme, which is an explicit time-splitting technique [8]. The second-order
split-step scheme utilizes the method of Strang splitting. From t = tn to tn+1 = tn + τ , the
solution of the equation is obtained in the following steps:

un,1
j = un

j exp
(
–iτF

(
un

j
)
/2

)
,

un,2
j =

N/2–1∑

l=–N/2

ûl
n,1 exp

(
–i|μ|ατ

)
exp(iμlxj), (20)

un+1
j = un,2

j exp
(
–iτF

(
un,2

j
)
/2

)
,

where 0 ≤ j ≤ N – 1, n ≥ 0, and ûl
n,1 is the lth discrete Fourier transform coefficient of the

vector solution Un,1. Combining with the Fourier spectral method, scheme (20) is named
the split-step Fourier spectral second-order (SSFS2) scheme.

Furthermore, the split-step Fourier spectral fourth-order (SSFS4) scheme is constructed
by combining the SSFS2 schemes using certain weights [24]:

un+1 = φτ
4
(
un) =

(
φωτ

2 ◦ φ
(1–2ω)τ
2 ◦ φωτ

2
)(

un), (21)

where ω = (2 + 21/2 + 2–1/3)/3, and φ2 is the SSFS2 operator.

5.2 A one-dimensional 3CNFSE
We consider 3CNFSE (1) together with the initial conditions as suggested in [25]:

ψ1(x, 0) = a0
(
1 – ε cos(lx)

)
,

ψ2(x, 0) = b0
(
1 – ε cos

(
l(x + θ )

))
, (22)

ψ3(x, 0) = c0
(
1 – ε cos(lx)

)
,

and periodic boundary conditions on [xL, xR], where a0, b0, and c0 represent the initial
wave amplitudes, the small parameter ε denotes the perturbation strength, and l is the
perturbed wave number [26]. In our numerical experiments, the parameters were chosen
as follows: γ1 = γ2 = γ3 = 1, � = 1, σ = 1, a0 = 0.2, b0 = 0.3, c0 = 0.2, ε = 0.1, l = 0.5, θ = 0,
xL = –4π , and xR = 4π .

In Figs. 4–8, surface plots of the absolute solutions to u1 and u2 of 3CNFSE (1) with
initial conditions (22), applying the ETDRK4-P22 method (12) with the Fourier spectral
method (N = 128, τ = 0.01), are demonstrated. It can be noticed that, for different α values,
the wave periods are different.

The convergence rates in Table 1 were computed using the solutions of u1 by the
ETDRK4-P22 scheme (12) with the Fourier spectral method (N = 256) for different α val-
ues. Because the analytic solution to this problem has not been discovered, we used the
solution of τs = 1/1600 as the “exact” solution. It can be observed from Tables 1 and 2 that
the ETDRK4-P22 scheme and the ETDRK4-P13 scheme are both fourth-order in time, be-
cause the convergence rate p is around 4 for all the α chosen. As we modified the regular
ETD scheme with the Padé approximations, we do not have to compute the exponential
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Figure 4 α = 1.2

Figure 5 α = 1.4

Figure 6 α = 1.6

Figure 7 α = 1.8
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Figure 8 α = 2

Table 1 Convergence rates of the ETDRK4-P22 scheme in time

τ α = 1.2 α = 1.6 α = 1.8 Avg. CPU (s)

e(τ ) p e(τ ) p e(τ ) p

1/100 1.5285e–2 3.982 1.6338e–2 4.049 1.6226e–2 4.026 2.3439
1/200 9.6741e–4 4.011 9.8719e–4 4.015 9.9607e–4 4.008 4.2552
1/400 6.0013e–5 3.993 6.1051e–5 3.993 6.1906e–5 4.010 8.0172
1/800 3.7697e–6 – 3.8349e–6 – 3.8427e–6 – 15.3620
1/1600 – – – – – – 28.3520

Table 2 Convergence rates of the ETDRK4-P13 scheme in time

τ α = 1.2 α = 1.6 α = 1.8 Avg. CPU (s)

e(τ ) p e(τ ) p e(τ ) p

1/100 1.2388e–2 3.989 1.3319e–2 4.005 1.2256e–2 3.996 2.4631
1/200 7.8010e–4 4.006 8.2984e–4 4.011 7.6792e–4 4.021 4.7275
1/400 4.8544e–5 4.012 5.1479e–5 4.007 4.7315e–5 4.015 8.6160
1/800 3.0095e–6 – 3.2014e–6 – 2.9261e–6 – 15.2435
1/1600 – – – – – – 29.0225

Table 3 Absolute mass errors of solutions to 3CNFSE (1) with initial conditions (22), using the
ETDRK4-P22 scheme (12) (N = 128, τ = 0.01)

α t = 25 t = 50 t = 75 t = 100

1.2 5.2037e–9 4.8303e–10 3.0584e–9 4.0778e–10
1.4 7.6506e–10 7.6807e–10 4.3926e–9 8.6931e–10
1.6 5.8098e–10 6.9978e–10 3.7575e–9 2.7728e–9
1.8 9.6843e–10 1.0083e–9 2.8843e–9 2.9347e–9
2.0 3.8854e–10 1.3883e–10 1.1255e–10 7.6353e–11

functions again and again inside the loop, which increases the efficiency of the schemes
by reducing the CPU time needed for the computation.

In Tables 3 and 4, the absolute mass error was computed according to the formula
|(Q(tn) – Q(t0))/Q(t0)|. Tables 3 and 4 demonstrate the mass conservative property of the
ETDRK4-P22 scheme and the ETDRK4-P13 scheme, respectively. The numerical exper-
iments were undertaken on 3CNFSE (1) with various α values. It can be observed from
Tables 3 and 4 that the ETDRK4-P13 scheme (13) conserves mass of the waves better than
the ETDRK4-P22 scheme (12), because the absolute mass errors of the former are smaller
than the latter.
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Table 4 Absolute mass errors of solutions to 3CNFSE (1) with initial conditions (22), using the
ETDRK4-P13 scheme (13) (N = 128, τ = 0.01)

α t = 25 t = 50 t = 75 t = 100

1.2 4.4709e–10 9.6513e–11 5.9675e–10 3.3412e–10
1.4 3.9881e–11 1.1905e–11 2.3539e–11 9.1806e–10
1.6 6.7730e–10 8.7725e–11 4.6004e–11 9.8222e–10
1.8 4.8611e–10 3.8307e–11 7.6264e–11 5.2848e–10
2.0 5.4763e–11 8.1800e–11 8.3620e–11 8.6351e–11

Figure 9 A comparison of L∞ errors vs CPU time

Table 5 Stability of the ERK4 method and the ETDRK4-P13 scheme

t ERK4 (τ = 0.04) ETDRK4-P13 (τ = 0.04)

L∞ errors L∞ errors

10 inf 0.00082
20 inf 0.00173
30 inf 0.00243
40 inf 0.00328

In Fig. 9, we compare the efficiency of the ETDRK4-P schemes with that of the SSFS4
scheme (21) using the Log-Log plot of CPU time and L∞ errors. It can be observed from
Fig. 9 that to achieve the same level of errors, the ETDRK4-P schemes need less CPU time
than the SSFS4 scheme, which indicates the efficiency of the ETDRK4-P schemes.

In Table 5, the ETDRK4-P13 scheme is compared with the explicit fourth-order Runge–
Kutta (ERK4) method to illustrate the stability of the scheme. We can observe from Ta-
ble 5 that the solution of the ERK4 method blows up since t = 10, while the ETDRK4-P13
scheme remains stable with τ = 0.04. The reason for this difference is that the ETDRK4-p
schemes solve the nonlinear part of the equation implicitly, which improves the stability.

5.3 A two-dimensional 3CNFSE
Consider the 3CNFSE in a two-dimensional space:

iu1t + γ
(
∂α1

x u1 + ∂α1
y u1

)
+

(
ρ|u1|2 + |u2|2 + |u3|2

)
u1 = 0,

iu2t + γ
(
∂α2

x u2 + ∂α2
y u2

)
+

(|u1|2 + ρ|u2|2 + |u3|2
)
u2 = 0, (23)

iu3t + γ
(
∂α2

x u3 + ∂α2
y u3

)
+

(|u1|2 + |u2|2 + ρ|u3|2
)
u3 = 0,
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where (x, y, t) ∈ ΩT = Ω × [0, T], with initial conditions

u1(x, y, 0) = B1 exp
(
–(x – d)2 – y2) exp

(
–i ln

(
cosh

(
x2 + y2))),

u2(x, y, 0) = B2 exp
(
–(x + d)2 – y2) exp

(
–i ln

(
cosh

(
x2 + y2))), (24)

u3(x, y, 0) = B3 exp
(
–x2 – (y – d)2) exp

(
–i ln

(
cosh

(
x2 + y2))),

and boundary conditions

∂u1(x, y, t)
∂x

=
∂u1(x, y, t)

∂y
= 1 on ∂Ω ,

∂u2(x, y, t)
∂x

=
∂u2(x, y, t)

∂y
= 1 on ∂Ω , (25)

∂u3(x, y, t)
∂x

=
∂u3(x, y, t)

∂y
= 1 on ∂Ω ,

with γ = 1, ρ = 1, d = 5, B1 = B3 = 0.6, B2 = 0.8, Ω = [–10, 10]2.
In Figs. 10 and 11, we plotted the solutions to system (23) with (24) using the spectral

ETDRK4-P22 scheme. It can be seen from the surface plots that the three waves propagate
towards the origin and they merge into one wave at the interaction. Then, the waves keep
moving and separate apart. It can also be noticed from the traces that when α = 1.8, the
waves travel and disperse faster than α = 1.5, which indicates that the value of α affects
the speed of wave propagation and dispersion.

Figure 12 depicts the traces of mass errors of solutions to system (23) with (24) using the
spectral ETDRK4-P22 scheme. It can be observed from Fig. 12 that the proposed spectral
ETDRK4-P22 scheme conserves the mass of the system well, because the mass errors are
kept to the level of 10–11 despite the oscillation at the time of the wave interaction.

Figure 10 Surface plots of solutions to system (23) with (24) using the spectral ETDRK4-P22 scheme (α = 1.5,
N = 128 and τ = 0.001)
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Figure 11 Surface plots of solutions to system (23) with (24) using the spectral ETDRK4-P22 scheme (α = 1.8,
N = 128 and τ = 0.001)

Figure 12 Traces of mass errors of solutions to system (23) with (24) using the spectral ETDRK4-P22 scheme
(α = 1.8, N = 128 and τ = 0.001)

5.4 A three-dimensional 3CNFSE
Consider the three-dimensional initial-boundary-value problem:

iu1t + γ
(
∂α

x u1 + ∂α
y u1 + ∂α

z u1
)

+
(
ρ|u1|2 + |u2|2 + |u3|2

)
u1 = 0,

iu2t + γ
(
∂α

x u2 + ∂α
y u2 + ∂α

z u2
)

+
(|u1|2 + ρ|u2|2 + |u3|2

)
u2 = 0, (26)

iu3t + γ
(
∂α

x u3 + ∂α
y u3 + ∂α

z u3
)

+
(|u1|2 + |u2|2 + ρ|u3|2

)
u3 = 0,

where (x, y, z, t) ∈ ΩT = Ω × [0, T], with initial conditions

u1(x, y, z, 0) = B1 exp
(
–10

(
(x + d)2 + y2 + z2)),

u2(x, y, z, 0) = B2 exp
(
–10

(
(x – d)2 + y2 + z2)), (27)

u3(x, y, z, 0) = B3 exp
(
–10

(
x2 + (y – d)2 + z2)),
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Figure 13 Profile of solutions to 3CNFSE (26) using the spectral ETDRK4-P13 scheme (α = 1.8, N = 160)

Figure 14 Profile of solutions to 3CNFSE (26) using the spectral ETDRK4-P13 scheme (α = 1.5, N = 160)

with γ = 1, ρ = 1, d = 5, B1 = B2 = B3 = 20, Ω = [–20, 20]3, T = 3, and periodic boundary
conditions on ∂Ω .

In physics, 3CNFSE (26) can be used to model the dispersion of quantum energy density.
In Figs. 13 and 14, the solutions to 3CNFSE (26) using the spectral ETDRK4-P13 scheme
are depicted. To better illustrate the merge of the energy density, we set z = 0 and plotted
the solutions in the x–y plane. It can be concluded from the two figures that the dispersion
effect increases as the value of α grows larger.

Figure 15 depicts the trace of energy errors of solutions to system (26) with (27) using the
spectral ETDRK4-P13 scheme. It can be observed from Fig. 15 that the proposed spectral
ETDRK4-P13 scheme conserves the energy of the system well, because the energy errors
are kept to the level of 10–14. We computed the energy error using the formula (E(t) –
E(0))/E(0), where E(t) is defined in (4).
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Figure 15 Trace of energy errors of solutions to
Eq. (26) with α = 1.8

6 Conclusion
In this work, two modified exponential time differencing Runge–Kutta schemes, using
the Padé approximation to the matrix exponential functions, have been developed for the
3-coupled space-fractional nonlinear Schrödinger equation. The stability issues are dis-
cussed by computing the amplification factors and plotting the stability regions. Local
truncation errors are calculated to indicate the accuracy of the proposed schemes. Nu-
merical experiments are undertaken on the equations with various α values. The results
indicate that the proposed schemes conserve mass of the waves well.
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