New oscillation theorems for second order quasi-linear difference equations with sub-linear neutral term

M. Nazreen Banu ${ }^{1 *}$ (c) and S. Mehar Banu ${ }^{2}$

"Correspondence:
nazz_reen@yahoo.com 'Department of Mathematics, Muthayammal Engineering College (Autonomous), Rasipuram, India Full list of author information is available at the end of the article

Abstract

In this paper, the authors obtain some new sufficient conditions for the oscillation of all solutions of the second order neutral difference equation $$
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right)+a_{n} x_{n-\ell}^{\gamma}=0, \quad n \geq n_{0}
$$ where $z_{n}=x_{n}+p_{n} x_{n-k}^{\alpha}$. The established results extend, unify and improve some of the results reported in the literature. Examples are provided to illustrate the importance of the main results.

MSC: 39A10 Keywords: Oscillation; Quasi-linear difference equations; Sub-linear neutral term

1 Introduction

Consider a quasi-linear neutral delay difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right)+q_{n} x_{n-\ell}^{\gamma}=0, \quad n \in \mathbb{N}\left(n_{0}\right), \tag{1.1}
\end{equation*}
$$

where $z_{n}=x_{n}+p_{n} x_{n-k}^{\alpha}$, and $\mathbb{N}\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, \ldots\right\}, n_{0}$ is a non-negative integer, subject to the following conditions:
$\left(\mathrm{H}_{1}\right)\left\{a_{n}\right\}$ is a positive real sequence such that $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}^{1 / \beta}}=\infty$;
$\left(\mathrm{H}_{2}\right)\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive real sequences for all $n \in \mathbb{N}\left(n_{0}\right)$ and $p_{n} \rightarrow 0$ as $n \rightarrow \infty$;
$\left(\mathrm{H}_{3}\right) k$ and ℓ are positive integers;
$\left(\mathrm{H}_{4}\right) \alpha \in(0,1], \beta$ and γ are ratio of odd positive integers.
Let $\theta=\max \{k, \ell\}$. By a solution of Eq. (1.1) we mean a real sequence $\left\{x_{n}\right\}$ defined for $n \geq$ $n_{0}-\theta$ and satisfying Eq. (1.1) for all $n \in \mathbb{N}\left(n_{0}\right)$. As usual, a nontrivial solution of Eq. (1.1) is said to be oscillatory if the terms of the sequence are neither eventually positive nor eventually negative and nonoscillatory otherwise.

Neutral type equations arise in a number of important applications in natural sciences and technology; see $[7,13]$. Hence, in recent years there has been great interest in studying the oscillation of such type of equations. From the review of literature, one can see that many oscillation results are available for the equation when $\alpha=1$; see $[1,2,5,8-11,14$,
$15,18,20$], and the references cited therein. Also few results available for the oscillation of Eq. (1.1) while $\beta=1$; see $[4,12,17,19,21,22]$. And as far as the authors knowledge there are no results available in the literature for the oscillatory behavior of Eq. (1.1).
Our purpose in this paper is to establish some new oscillation criteria for Eq. (1.1) which includes many of the known results as special cases when $\alpha=1$ or $\alpha=1$ and $\beta=1$ in Eq. (1.1). Further the methods used in this paper improve and extend some of the known results that are reported in the literature [$3,8-12,14,15,17-21$] and this is almost illustrated via examples.

2 Oscillation results

In this section, we obtain sufficient conditions for the oscillation of all solutions of Eq. (1.1). Due to the assumptions and the form of our equation, we need only to give proofs for the case of eventually positive solution since the proofs for eventually negative solutions would be similar.

For convenience, for any real positive sequence $\left\{\mu_{n}\right\}$ which is decreasing to zero, we set

$$
\begin{aligned}
& B_{n}=\left(1-p_{n} \mu_{n}^{\alpha-1}\right), \\
& Q_{n}=q_{n} B_{n-\ell}^{\gamma}, \\
& R_{n}=\sum_{s=n_{1}}^{n-1} a_{s}^{-1 / \beta}, \\
& \bar{R}_{n}=R_{n}+\frac{1}{\beta} \sum_{s=n_{1}}^{n-1} Q_{s} R_{s+1} R_{s-l}^{\beta} \mu_{s-\ell}^{\gamma-\beta}
\end{aligned}
$$

and

$$
C_{n}=\frac{R_{n-\ell}}{R_{n}}
$$

for $n \geq n_{1}$, where $n_{1} \in \mathbb{N}\left(n_{0}\right)$ is large enough.

Lemma 2.1 Let $\left\{x_{n}\right\}$ be a positive solution of Eq. (1.1) for all $n \in \mathbb{N}\left(n_{0}\right)$. Then there exists a $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that for all $n \geq n_{1}$

$$
\begin{equation*}
z_{n}>0, \quad \Delta z_{n}>0, \quad \Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right) \leq 0 \tag{2.1}
\end{equation*}
$$

Proof The proof of the lemma can be found in [3] and hence details are omitted.

Lemma 2.2 Let $\left\{x_{n}\right\}$ be a positive solution of Eq. (1.1) for all $n \in \mathbb{N}\left(n_{0}\right)$ and suppose Eq. (2.1) holds. Then there exists a $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that

$$
\begin{equation*}
z_{n} \geq R_{n} a_{n}^{1 / \beta} \Delta z_{n}, \quad n \geq n_{1}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\frac{z_{n}}{R_{n}}\right\} \text { is decreasing for } n \geq n_{1} . \tag{2.3}
\end{equation*}
$$

Proof From (2.1), we see that $a_{n}^{1 / \beta} \Delta z_{n}$ is decreasing and therefore

$$
z_{n} \geq \sum_{s=n_{1}}^{n-1} \frac{a_{s+1}^{1 / \beta} \Delta z_{s+1}}{a_{s}^{1 / \beta}} \geq R_{n} a_{n}^{1 / \beta} \Delta z_{n} .
$$

Further, from the last in equality, we have

$$
\Delta\left(\frac{z_{n}}{R_{n}}\right) \leq 0, \quad t \geq t_{1}
$$

and so $\frac{z_{n}}{R_{n}}$ is decreasing for all $n \geq n_{1}$. This proof is now complete.

Lemma 2.3 Assume that, for large $n,\left(p_{n}, p_{n+1}, \ldots, p_{n+k-1}\right) \neq 0$. Then

$$
\Delta x_{n}+p_{n} x_{n-\ell}^{\alpha}=0, \quad n=0,1,2, \ldots
$$

has an eventually positive solution if and only if the corresponding inequality

$$
\Delta x_{n}+p_{n} x_{n-\ell}^{\alpha} \leq 0, \quad n=0,1,2, \ldots
$$

has an eventually positive solution.

Proof The proof of the lemma can be found in [21] and hence details are omitted.

Lemma 2.4 If $0<\alpha<1, \ell$ is a positive integer and $\left\{p_{n}\right\}$ is a positive real sequence with $\sum_{n=n_{0}}^{\infty} p_{n}=\infty$, then every solution of eqution $\Delta x_{n}+p_{n} x_{n-\ell}^{\alpha}=0$, is oscillatory.

Lemma 2.5 If $\alpha>1$. If there exists $a \lambda>\frac{1}{l} \ln \alpha$ such that $\lim _{n \rightarrow \infty} \inf \left[p_{n} \exp \left(-e^{\lambda n}\right)\right]>0$, then every solution of eqution $\Delta x_{n}+p_{n} x_{n-\ell}^{\alpha}=0$ is oscillatory.

The proof of the Lemmas 2.4 and 2.5 can be found in [16] and hence details are omitted. Next we state and prove some new oscillation results for Eq. (1.1).

Theorem 2.1 Let $\gamma \geq \beta$ be holds. Assume that there exists a positive real sequence $\left\{\mu_{n}\right\}$ tending to zero such that $B_{n}>0$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If the first order delay difference equation

$$
\begin{equation*}
\Delta w_{n}+Q_{n} \bar{R}_{n} w_{n-\ell}^{\gamma / \beta}=0 \tag{2.4}
\end{equation*}
$$

is oscillatory, then every solution of Eq. (1.1) is oscillatory.
Proof Let $\left\{x_{n}\right\}$ be a positive solution of Eq. (1.1) for all $n \in \mathbb{N}\left(n_{0}\right)$. Then there exists a $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that $x_{n}>0, x_{n-k}>0$ and $x_{n-\ell}>0$ for all $n \geq n_{1}$. By Lemma 2.1 , the sequence $\left\{z_{n}\right\}$ satisfies conditions (2.1) for all $n \geq n_{1}$. From the definition of z_{n} we have

$$
\begin{equation*}
x_{n}=z_{n}-p_{n} x_{n-k}^{\alpha} \geq z_{n}-p_{n} z_{n-\ell}^{\alpha} . \tag{2.5}
\end{equation*}
$$

Since $\left\{z_{n}\right\}$ is increasing and $\left\{\mu_{n}\right\}$ is positive, decreasing and tending to zero, we have $z_{n} \geq \mu_{n}$ for all $n \geq n_{1}$. Using this and $0<\alpha \leq 1$ in (2.5), one obtains

$$
x_{n} \geq B_{n} z_{n}
$$

which together with Eq. (1.1)

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right) \leq-Q_{n} z_{n-\ell}^{\gamma} \tag{2.6}
\end{equation*}
$$

Now a simple computation shows that

$$
\begin{equation*}
\Delta\left(z_{n}-R_{n} a_{n}^{1 / \beta} \Delta z_{n}\right)=-R_{n+1} \Delta\left(a_{n}^{1 / \beta} \Delta z_{n}\right) \tag{2.7}
\end{equation*}
$$

By the discrete mean value theorem [1, Theorem 1.7.2], we have

$$
\begin{align*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right) & =\left(a_{n+1}^{\frac{1}{\beta}} \Delta z_{n+1}\right)^{\beta}-\left(a_{n}^{\frac{1}{\beta}} \Delta z_{n}\right)^{\beta} \\
& \geq \beta \frac{a_{n}\left(\Delta z_{n}\right)^{\beta}}{a_{n+1}^{1 / \beta} \Delta z_{n+1}} \Delta\left(a_{n}^{\frac{1}{\beta}} \Delta z_{n}\right) \tag{2.8}
\end{align*}
$$

where we have used $a_{n}^{\frac{1}{\beta}} \Delta z_{n}$ is positive and decreasing. Now from (2.6), (2.7) and (2.8), one obtains

$$
\begin{align*}
z_{n} & \geq R_{n} a_{n}^{\frac{1}{\beta}} \Delta z_{n}+\frac{1}{\beta} \sum_{s=n_{1}}^{n-1} \frac{R_{s+1} Q_{s} z_{s-l}^{\gamma} a_{s+1}^{\frac{1}{\beta}} \Delta z_{s+1}}{a_{s}\left(\Delta z_{s}\right)^{\beta}} \\
& \geq a_{n}^{\frac{1}{\beta}} \Delta z_{n}\left(R_{n}+\frac{1}{\beta} \sum_{s=n_{1}}^{n-1} \frac{R_{s+1} Q_{s} z_{s-l}^{\gamma}}{a_{s}\left(\Delta z_{s}\right)^{\beta}}\right) \tag{2.9}
\end{align*}
$$

where we have used $a_{n}^{\frac{1}{\beta}} \Delta z_{n}$ is positive and decreasing. From Lemma 2.2 we have

$$
\begin{equation*}
\frac{z_{n-l}}{R_{n-l}} \geq \frac{z_{n}}{R_{n}} \geq a_{n}^{\frac{1}{\beta}} \Delta z_{n}, \quad n \geq n_{1} \tag{2.10}
\end{equation*}
$$

Substituting (2.10) in (2.9), we obtain

$$
\begin{equation*}
z_{n} \geq a_{n}^{\frac{1}{\beta}} \Delta z_{n}\left(R_{n}+\frac{1}{\beta} \sum_{s=n_{1}}^{n-1} R_{s+1} R_{s-l}^{\beta} Q_{s} z_{s-l}^{\gamma}\right) \tag{2.11}
\end{equation*}
$$

Since $\gamma \geq \beta$, we have $z_{n}^{\gamma-\beta} \geq \mu_{n}^{\gamma-\beta}$ for all $n \geq n_{1}$, and using this in (2.11), one obtains

$$
z_{n-l}^{\gamma} \geq \bar{R}_{n-l}\left(a_{n-l}^{1 / \beta} \Delta z_{n-l}\right)^{\gamma}, \quad n \geq n_{1}
$$

Using (2.11) in (2.6), and in view of (2.1), one can see that $w_{n}=a_{n}\left(\Delta z_{n}\right)^{\beta}$ is a positive solution of the first order delay difference inequality

$$
\begin{equation*}
\Delta w_{n}+Q_{n} \bar{R}_{n-\ell}^{\gamma} w_{n-\ell}^{\gamma / \beta} \leq 0 \tag{2.12}
\end{equation*}
$$

But by Lemma 2.3, the associated difference equation

$$
\Delta w_{n}+Q_{n} \bar{R}_{n-\ell}^{\gamma} w_{n-\ell}^{\gamma / \beta}=0
$$

also has a positive solution, which is a contradiction. Hence we complete the proof.

Corollary 2.2 Let all conditions of Theorem 2.1 hold with $\gamma=\beta$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{s=n-\ell}^{n-1} Q_{s} \bar{R}_{s-\ell}^{\gamma}>\left(\frac{\ell}{\ell+1}\right)^{\ell+1} \tag{2.13}
\end{equation*}
$$

then every solution of Eq. (1.1) is oscillatory.

Proof The proof follows from Theorem 2.1 and Theorem 7.6.1 of [6].

Corollary 2.3 Let all conditions of Theorem 2.1 hold with $\gamma>\beta$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If $\ell>k$ and there exists $a \lambda>\frac{1}{\ell-k} \ln \frac{\gamma}{\beta}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \left[Q_{n} \bar{R}_{n-l}^{\gamma} \exp \left(-e^{\lambda n}\right)\right]>0, \quad n \geq n_{1} \tag{2.14}
\end{equation*}
$$

Then every solution of Eq. (1.1) is oscillatory.
Proof The proof follows from Theorem 2.1 and Lemma 2.5.

Theorem 2.4 Let $\gamma<\beta$ be holds. Assume that there exists a positive decreasing real sequence $\left\{\mu_{n}\right\}$ tending to zero such that $B_{n}>0$ for all $n \in \mathbb{N}\left(n_{0}\right)$. Iffor all $N \geq n_{0}$,

$$
\begin{equation*}
\sum_{n=N}^{\infty} Q_{n}\left(R_{n-\ell}+\frac{M^{\gamma-\beta}}{\beta} \sum_{s=n_{1}}^{n-\ell-1} Q_{s} R_{s+1} R_{s-\ell}^{\gamma}\right)^{\gamma}=\infty \tag{2.15}
\end{equation*}
$$

for any constant $M>0$, then every solution of Eq. (1.1) is oscillatory.
Proof Assume that Eq. (1.1) has a positive solution such that there exists a $n_{1} \in \mathbb{N}\left(n_{0}\right)$ with $x_{n}>0, x_{n-k}>0$ and $x_{n-\ell}>0$ for all $n \geq n_{1}$. Proceeding as in the proof of Theorem 2.1 we have

$$
\begin{equation*}
z_{n} \geq a_{n}^{\frac{1}{\beta}} \Delta z_{n}\left(R_{n}+\frac{1}{\beta} \sum_{s=n_{1}}^{n-1} Q_{s} R_{s+1} R_{s-l}^{\beta} z_{s-\ell}^{\gamma-\beta}\right) . \tag{2.16}
\end{equation*}
$$

Since z_{n} / R_{n} is decreasing, there exists a constant $M>0$ such that $z_{n} / R_{n} \leq M$ for all $n \geq$ n_{1}, and from $\gamma<\beta$, we have $z_{n-\ell}^{\gamma-\beta} \geq M^{\gamma-\beta} R_{n-\ell}^{\gamma-\beta}$ for all $n \geq n_{1}$. Using this inequality in (2.16), we obtain

$$
z_{n-\ell}^{\gamma} \geq\left(a_{n-\ell}\left(\Delta z_{n-\ell}\right)^{\beta}\right)^{\gamma / \beta}\left(R_{n-\ell}+\frac{M^{\gamma-\beta}}{\beta} \sum_{s=n_{1}}^{n-\ell-1} Q_{s} R_{s+1} R_{s-\ell}^{\gamma}\right)^{\gamma}, \quad n \geq n_{1} .
$$

Using the last inequality in (2.6) and set $w_{n}=a_{n}\left(\Delta z_{n}\right)^{\beta}>0$, we have

$$
\Delta w_{n}+Q_{n}\left(R_{n-\ell}+\frac{M^{\gamma-\beta}}{\beta} \sum_{s=n_{1}}^{n-\ell-1} Q_{s} R_{s+1} R_{s-\ell}^{\gamma}\right)^{\gamma} w_{n-\ell}^{\gamma / \beta} \leq 0 .
$$

But by Lemma 2.3, the associated difference equation

$$
\begin{equation*}
\Delta w_{n}+Q_{n}\left(R_{n-\ell}+\frac{M^{\gamma-\beta}}{\beta} \sum_{s=n_{1}}^{n-\ell-1} Q_{s} R_{s+1} R_{s-\ell}^{\gamma}\right)^{\gamma} w_{n-\ell}^{\gamma / \beta}=0 \tag{2.17}
\end{equation*}
$$

also has a positive solution. But Lemma 2.4 and condition (2.15) imply that Eq. (2.17) is oscillatory. This contradiction completes the proof.

In the following by employing the Riccati substitution technique, we obtain new oscillation criteria for Eq. (1.1).

Theorem 2.5 Let $\gamma \geq \beta$ hold. Assume that there exists a positive decreasing real sequence $\left\{\mu_{n}\right\}$ tending to zero, such that $B_{n}>0$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If there exists a positive, nondecreasing a real sequence $\left\{\rho_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n}\left(\rho_{s} Q_{s} C_{s}^{\gamma} \mu_{s}^{\gamma-\beta}-\frac{a_{s}\left(\Delta \rho_{s}\right)^{1+\beta}}{(\beta+1)^{\beta+1} \rho_{s}^{\beta}}\right)=\infty \tag{2.18}
\end{equation*}
$$

for sufficiently large $N>n_{1}$, then every solution of Eq. (1.1) is oscillatory.

Proof Let $\left\{x_{n}\right\}$ be a positive solution of Eq. (1.1) for all $n \in \mathbb{N}\left(n_{0}\right)$. Then there exists a $n_{1} \in \mathbb{N}\left(n_{0}\right)$ such that $x_{n}>0, x_{n-k}>0$ and $x_{n-\ell}>0$ for all $n \geq n_{1}$. Then, by Lemma 2.1, z_{n} satisfies conditions (2.1) for all $n \geq n_{1}$. Define the Riccati transformation by

$$
\begin{equation*}
w_{n}=\rho_{n} a_{n}\left(\frac{\Delta z_{n}}{z_{n}}\right)^{\beta}, \quad n \geq n_{1} . \tag{2.19}
\end{equation*}
$$

Then $w_{n}>0$, for all $n \geq n_{1}$, and

$$
\begin{equation*}
\Delta w_{n}=\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\rho_{n} \frac{\Delta\left(a_{n}\left(\Delta z_{n}\right)^{\beta}\right)}{z_{n}^{\beta}}-\frac{\rho_{n}}{\rho_{n+1}} w_{n+1} \frac{\Delta z_{n}^{\beta}}{z_{n}^{\beta}}, \quad n \geq n_{1} . \tag{2.20}
\end{equation*}
$$

By the discrete mean value theorem, we have

$$
\begin{equation*}
\Delta z_{n}^{\beta}=z_{n+1}^{\beta}-z_{n}^{\beta}=\beta \frac{z_{n}^{\beta} \Delta z_{n}}{z_{n+1}} \tag{2.21}
\end{equation*}
$$

where we have used z_{n} is positive and increasing. Using (2.21) in (2.20), we obtain

$$
\begin{aligned}
\Delta w_{n} & \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\beta \frac{\rho_{n}}{\rho_{n+1}} w_{n+1} \frac{\Delta z_{n}}{z_{n+1}}-\rho_{n} Q_{n} \frac{z_{n-\ell}^{\gamma}}{z_{n}^{\beta}} \\
& \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\beta \frac{\rho_{n}}{\rho_{n+1}} \frac{w_{n+1}}{a_{n}^{1 / \beta}} \frac{a_{n}^{1 / \beta} \Delta z_{n}}{z_{n+1}}-\rho_{n} Q_{n} \frac{z_{n-\ell}^{\gamma}}{z_{n}^{\beta}} \\
& \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\beta \frac{\rho_{n}}{\rho_{n+1} a_{n}^{1 / \beta}} w_{n+1} \frac{a_{n+1}^{1 / \beta} \Delta z_{n+1}}{z_{n+1}}-\rho_{n} Q_{n} \frac{z_{n-\ell}^{\gamma}}{z_{n}^{\beta}}
\end{aligned}
$$

where we have used $a_{n}^{1 / \beta} \Delta z_{n}$ is positive and decreasing. Using (2.19) in the last inequality, we obtain

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\beta \frac{\rho_{n}}{\rho_{n+1}^{1+1 / \beta} a_{n}^{1 / \beta}} w_{n+1}^{1+1 / \beta}-\rho_{n} Q_{n} \frac{z_{n-\ell}^{\gamma}}{z_{n}^{\beta}} . \tag{2.22}
\end{equation*}
$$

From (2.3) we have

$$
\frac{z_{n-\ell}}{R_{n-\ell}} \geq \frac{z_{n}}{R_{n}}
$$

or

$$
z_{n-\ell} \geq \frac{R_{n-\ell}}{R_{n}} z_{n}
$$

and using this in (2.21) yields

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\beta \rho_{n}}{\rho_{n+1}^{1+\frac{1}{\beta}} a_{n}^{\frac{1}{\beta}}} w_{n+1}^{1+\frac{1}{\beta}}-\rho_{n} Q_{n} C_{n}^{\gamma} \mu_{n}^{\gamma-\beta} \tag{2.23}
\end{equation*}
$$

where we have used $\gamma \geq \beta$ and $z_{n} \geq \mu_{n}$, for all $n \geq n_{1}$. Letting $A=\frac{\Delta \rho_{n}}{\rho_{n+1}}$ and $B=\frac{\beta \rho_{n}}{\rho_{n+1}^{1+\frac{1}{\beta}} a_{n}^{\frac{1}{\beta}}}$ and using the inequality given in Lemma 2.6 of [15], it follows from (2.23) that

$$
\begin{equation*}
\Delta w_{n} \leq-\rho_{n} Q_{n} C_{n}^{\gamma} \mu_{n}^{\gamma-\beta}+\frac{a_{n}\left(\Delta \rho_{n}\right)^{\beta+1}}{(\beta+1)^{\beta+1} \rho_{n}^{\beta}} \tag{2.24}
\end{equation*}
$$

Let $N \geq n_{1}$ be sufficiently large and summing (2.24) from N to n, we obtain

$$
\sum_{s=N}^{n}\left[\rho_{s} Q_{s} C_{s}^{\gamma} \mu_{s}^{\gamma-\beta}-\frac{a_{s}\left(\Delta \rho_{s}\right)^{\beta+1}}{(\beta+1)^{\beta+1} \rho_{s}^{\beta}}\right] \leq w_{N}
$$

which contradicts (2.18). This completes the proof.

Theorem 2.6 Let $\gamma<\beta$ be holds. Assume that there exists a positive, nondecreasing real sequence $\left\{\mu_{n}\right\}$ tending to zero, such that $B_{n}>0$ for all $n \in \mathbb{N}\left(n_{0}\right)$. If there exists a positive, nondecreasing real sequence $\left\{\rho_{n}\right\}$ such that, for some sufficiently large $N \geq n_{1}$,

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n}\left(\rho_{s} Q_{s} C_{s}^{\gamma} \mu_{s}^{\gamma-\beta}-\frac{M^{\beta-\gamma} a_{s}\left(\Delta \rho_{s}\right)^{1+\beta}}{(\beta+1)^{\beta+1} \rho_{s}^{\beta}}\right)=\infty
$$

for any constant $M>0$, then every solution of Eq. (1.1) is oscillatory.

Proof The proof is similar to that of Theorem 2.5 except the inequality (2.23) is replaced by

$$
\Delta w_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\beta \rho_{n}}{\rho_{n+1}^{1+\frac{1}{\beta}} a_{n}^{\frac{1}{\beta}}} w_{n+1}^{1+\frac{1}{\beta}}-M^{\gamma-\beta} \rho_{n} Q_{n} C_{n}^{\gamma} R_{n}^{\gamma-\beta},
$$

where we have used $\frac{z_{n}}{R_{n}} \leq M$, for all $n \geq n_{1}$ and $\gamma<\beta$, and hence the details are omitted. This completes the proof.

3 Examples

In this section, we present three examples to illustrate the main results.
Example 3.1 Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(\left(\Delta z_{n}\right)^{3}\right)+\frac{q_{0}}{n^{3}} x_{n-1}^{3}=0, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

where $z_{n}=x_{n}+\frac{1}{2 n^{\frac{2}{3}}} x_{n-2}^{\frac{1}{3}}$ and $q_{0}>0$. Comparing with Eq. (1.1), we have $a_{n}=1, p_{n}=\frac{1}{2 n^{\frac{2}{3}}}, q_{n}=$ $\frac{q_{0}}{n^{3}}, \ell=1, k=2, \alpha=\frac{1}{3}$, and $\beta=\gamma=3$. A simple calculation yields $R_{n}=n-1$. By choosing $\mu_{n}=\frac{1}{n^{\frac{2}{3}}}$, we see that $Q_{n}=\frac{q_{0}}{8 n^{3}}$ and $\bar{R}_{n}=(n-1)+\frac{q_{0}}{96 n^{2}}\left(n^{2}-5 n+8\right)\left(n^{2}-5 n+4\right)$. The condition (2.13) becomes

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf \sum_{s=n-1}^{n-1} \frac{q_{0}}{8 s^{3}}\left[s-2+\frac{q_{0}}{96(s-1)^{2}}\left(s^{2}-7 s+14\right)\left(s^{2}-7 s+10\right)\right]^{3} \\
& \quad=\lim _{n \rightarrow \infty} \inf \frac{q_{0}}{8}\left[1-\frac{2}{n-1}+\frac{q_{0}}{96(n-2)^{2}}\left(n^{2}-9 n+22\right)\left(n^{2}-9 n+18\right)\right]^{3}=\infty
\end{aligned}
$$

and therefore by Corollary 2.2, we see that every solution of Eq. (3.1) is oscillatory.
Example 3.2 Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(\left(\Delta z_{n}\right)^{3}\right)+\frac{q_{0}}{n} x_{n-1}^{5}=0, \quad n \geq 1 \tag{3.2}
\end{equation*}
$$

where $z_{n}=x_{n}+\frac{1}{3 n^{\frac{2}{3}}} x_{n-2}^{\frac{1}{3}}$ and $q_{0}>0$. Compared with Eq. (1.1), we have $a_{n}=1, p_{n}=\frac{1}{3 n^{\frac{2}{3}}}$, $q_{n}=\frac{q_{0}}{n}, \ell=1, k=2, \alpha=\frac{1}{3}, \beta=3$ and $\gamma=5$. Simple calculation shows that $R_{n}=n-1$. By choosing $\mu_{n}=\frac{1}{n^{\frac{2}{3}}}$, we see that $Q_{n}=\frac{32 q_{0}}{243 n}$ and $C_{n}=\frac{n-2}{n-1}$. By taking $\rho_{n}=n^{2}$, the condition (2.18) becomes

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n}\left(\frac{32}{243} \frac{q_{0}}{s^{\frac{1}{3}}}\left(\frac{s-2}{s-1}\right)^{5}-\frac{(2 s+1)^{4}}{256 s^{6}}\right)=\infty
$$

and hence by Theorem 2.5, every solution of Eq. (3.2) is oscillatory.
Example 3.3 Consider the second order neutral difference equation

$$
\begin{equation*}
\Delta\left(\left(\Delta z_{n}\right)^{3}\right)+\frac{q_{0}}{n} x_{n-1}=0, \quad n \geq 1 \tag{3.3}
\end{equation*}
$$

where $z_{n}=x_{n}+\frac{p_{0}}{n^{\frac{2}{3}}} x_{n-2}^{\frac{1}{3}}$, and $p_{0} \in[0,1)$ and $q_{0}>0$. Comparing with Eq. (1.1), we have $a_{n}=1, p_{n}=\frac{p_{0}}{n^{2 / 3}}, q_{n}=\frac{q_{0}}{n}, \ell=1, k=2, \alpha=\frac{1}{3}, \beta=3$, and $\gamma=1$. Simple calculation shows that $R_{n}=n-1$. By taking $\mu_{n}=\frac{1}{n}$, we have $Q_{n}=\frac{q_{0}}{n}\left(1-p_{0}\right)$. The condition (2.14) becomes

$$
\sum_{n=N}^{\infty} \frac{q_{0}}{n}\left(1-p_{0}\right)\left(n-2+\frac{q_{0}\left(1-p_{0}\right)}{3 M^{2}} \sum_{s=3}^{n-2}(s-2)\right) \geq \sum_{n=N}^{\infty}\left(1-p_{0}\right) q_{0} \frac{(n-2)}{n}=\infty
$$

and hence by Theorem 2.4, every solution of Eq. (3.3) is oscillatory.

4 Conclusion

In this paper, by using a Riccati type transformation and the discrete mean value theorem we have established some new oscillation criteria for more general second order neutral difference equations. The obtained results include similar results to the ones established for second order difference equations with linear neutral terms or nonlinear neutral terms reported in the literature. Further none of the results in the papers [3-5, 8-12, 14, 15, 17$22]$ can be applied to Eqs. (3.1) to (3.3) to yield any conclusion.

Acknowledgements

The authors thank the referee for carefully reading the manuscript and suggesting very useful comments which improve the content of the paper.

Funding

Not Applicable.
Availability of data and materials
Not Applicable.
Competing interests
The authors declare that they have no competing interests.

Authors' contributions
The authors have equally made the contributions. All authors read and approved the final manuscript.
Author details
'Department of Mathematics, Muthayammal Engineering College (Autonomous), Rasipuram, India. ${ }^{2}$ Department of Mathematics, Government Arts College (Autonomous), Salem, India.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 14 October 2018 Accepted: 13 December 2018 Published online: 22 December 2018

References

1. Agarwal, R.P.: Difference Equations and Inequalities. Marcel Dekker, New York (2000)
2. Agarwal, R.P., Bohner, M., Grace, S.R., O'Regan, D.: Discrete Oscillation Theory. Hindawi Publ. Corp., New York (2005)
3. Chang, J.: Kamenev-type oscillation criteria for delay difference equations. Acta Math. Sci. 27, 574-580 (2007)
4. Dharuman, C., Thandapani, E.: Oscillation of solutions of nonlinear difference equations with a superlinear neutral term. Nonauton. Dyn. Syst. 5, 52-58 (2018)
5. Elizabeth, S., Graef, J.R., Sundaram, P., Thandapani, E.: Classifying nonoscillatory solutions and oscillation of a neutral difference equation. J. Differ. Equ. Appl. 11, 605-618 (2005)
6. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendan Press, Oxford (1991)
7. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)
8. Jiang, J.: Oscillatory criteria for second order quasilinear neutral delay difference equations. Appl. Math. Comput. 125, 287-293 (2002)
9. Jiang, J.: Oscillation of second order nonlinear neutral delay difference equations. Appl. Math. Comput. 146, 791-801 (2003)
10. Li, H.J., Yeh, C.C.: Oscillation criteria for second order neutral delay difference equations. Comput. Math. Appl. 36, 123-132 (1998)
11. Li, W.T., Saker, S.H.: Oscillation of second order sub linear neutral delay difference equations. Appl. Math. Comput. 146, 543-551 (2003)
12. Liu, X.: Oscillation of solutions of neutral difference equations with a nonlinear neutral term. Comput. Math. Appl. 52, 439-448 (2006)
13. Mac Donald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge (1989)
14. Saker, S.H.: New oscillation criteria for second order nonlinear neutral delay difference equations. Appl. Math. Comput. 142, 99-111 (2003)
15. Sun, Y.G., Saker, S.H.: Oscillation for second order nonlinear neutral delay difference equation. Appl. Math. Comput. 163, 909-918 (2005)
16. Tang, X.H., Liu, Y.J.: Oscillation for nonlinear delay difference equations. Tamkang J. Math. 32, 275-280 (2001)
17. Thandapani, E., Pandian, S., Balasubramanian, R.K.: Oscillation of solutions of nonlinear neutral difference equations with nonlinear neutral term. Far East J. Appl. Math. 15, 47-62 (2004)
18. Tripathy, A.K.: On the oscillation of second order nonlinear neutral delay difference equations. Electron. J. Qual. Theory Differ. Equ. 2008, 11 (2008)
19. Vidhya, K.S., Dharuman, C., Graef, J.R., Thandapani, E.: Oscillation of second order difference equations with a sublinear neutral term. J. Math. Appl. 40, 59-67 (2017)
20. Wang, D.M., Xu, Z.T.: Oscillation of second order quasilinear neutral delay difference equations. Acta Math. Appl. Sin. 27, 93-104 (2011)
21. Yildiz, M.K., Ogunmez, H.: Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term. Hacet. J. Math. Stat. 43, 809-814 (2014)
22. Zhang, Z., Chen, J., Zhang, C.: Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term. Comput. Math. Appl. 41, 1487-1491 (2001)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

