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Abstract
In this paper, the authors obtain some new sufficient conditions for the oscillation of
all solutions of the second order neutral difference equation

�(an(�zn)β) + qnx
γ

n–� = 0, n ≥ n0,

where zn = xn + pnxαn–k . The established results extend, unify and improve some of the
results reported in the literature. Examples are provided to illustrate the importance of
the main results.
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1 Introduction
Consider a quasi-linear neutral delay difference equation of the form

�
(
an(�zn)β

)
+ qnxγ

n–� = 0, n ∈ N(n0), (1.1)

where zn = xn + pnxα
n–k , and N(n0) = {n0, n0 + 1, . . .}, n0 is a non-negative integer, subject to

the following conditions:
(H1) {an} is a positive real sequence such that

∑∞
n=n0

1
a1/β

n
= ∞;

(H2) {pn} and {qn} are positive real sequences for all n ∈ N(n0) and pn → 0 as n → ∞;
(H3) k and � are positive integers;
(H4) α ∈ (0, 1],β and γ are ratio of odd positive integers.

Let θ = max{k,�}. By a solution of Eq. (1.1) we mean a real sequence {xn} defined for n ≥
n0 – θ and satisfying Eq. (1.1) for all n ∈ N(n0). As usual, a nontrivial solution of Eq. (1.1)
is said to be oscillatory if the terms of the sequence are neither eventually positive nor
eventually negative and nonoscillatory otherwise.

Neutral type equations arise in a number of important applications in natural sciences
and technology; see [7, 13]. Hence, in recent years there has been great interest in studying
the oscillation of such type of equations. From the review of literature, one can see that
many oscillation results are available for the equation when α = 1; see [1, 2, 5, 8–11, 14,
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15, 18, 20], and the references cited therein. Also few results available for the oscillation of
Eq. (1.1) while β = 1; see [4, 12, 17, 19, 21, 22]. And as far as the authors knowledge there
are no results available in the literature for the oscillatory behavior of Eq. (1.1).

Our purpose in this paper is to establish some new oscillation criteria for Eq. (1.1) which
includes many of the known results as special cases when α = 1 or α = 1 and β = 1 in
Eq. (1.1). Further the methods used in this paper improve and extend some of the known
results that are reported in the literature [3, 8–12, 14, 15, 17–21] and this is almost illus-
trated via examples.

2 Oscillation results
In this section, we obtain sufficient conditions for the oscillation of all solutions of Eq. (1.1).
Due to the assumptions and the form of our equation, we need only to give proofs for the
case of eventually positive solution since the proofs for eventually negative solutions would
be similar.

For convenience, for any real positive sequence {μn} which is decreasing to zero, we set

Bn =
(
1 – pnμ

α–1
n

)
,

Qn = qnBγ

n–�,

Rn =
n–1∑

s=n1

a–1/β
s ,

Rn = Rn +
1
β

n–1∑

s=n1

QsRs+1Rβ

s–lμ
γ –β

s–�

and

Cn =
Rn–�

Rn

for n ≥ n1, where n1 ∈N(n0) is large enough.

Lemma 2.1 Let {xn} be a positive solution of Eq. (1.1) for all n ∈N(n0). Then there exists a
n1 ∈ N(n0) such that for all n≥ n1

zn > 0, �zn > 0, �
(
an(�zn)β

) ≤ 0. (2.1)

Proof The proof of the lemma can be found in [3] and hence details are omitted. �

Lemma 2.2 Let {xn} be a positive solution of Eq. (1.1) for all n ∈N(n0) and suppose Eq. (2.1)
holds. Then there exists a n1 ∈N(n0) such that

zn ≥ Rna1/β
n �zn, n ≥ n1, (2.2)

and
{

zn

Rn

}
is decreasing for n ≥ n1. (2.3)
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Proof From (2.1), we see that a1/β
n �zn is decreasing and therefore

zn ≥
n–1∑

s=n1

a1/β
s+1�zs+1

a1/β
s

≥ Rna1/β
n �zn.

Further, from the last in equality, we have

�

(
zn

Rn

)
≤ 0, t ≥ t1,

and so zn
Rn

is decreasing for all n ≥ n1. This proof is now complete. �

Lemma 2.3 Assume that, for large n, (pn, pn+1, . . . , pn+k–1) �= 0. Then

�xn + pnxα
n–� = 0, n = 0, 1, 2, . . .

has an eventually positive solution if and only if the corresponding inequality

�xn + pnxα
n–� ≤ 0, n = 0, 1, 2, . . .

has an eventually positive solution.

Proof The proof of the lemma can be found in [21] and hence details are omitted. �

Lemma 2.4 If 0 < α < 1,� is a positive integer and {pn} is a positive real sequence with
∑∞

n=n0
pn = ∞, then every solution of eqution �xn + pnxα

n–� = 0, is oscillatory.

Lemma 2.5 If α > 1. If there exists a λ > 1
l lnα such that limn→∞ inf[pn exp(–eλn)] > 0, then

every solution of eqution �xn + pnxα
n–� = 0 is oscillatory.

The proof of the Lemmas 2.4 and 2.5 can be found in [16] and hence details are omitted.
Next we state and prove some new oscillation results for Eq. (1.1).

Theorem 2.1 Let γ ≥ β be holds. Assume that there exists a positive real sequence {μn}
tending to zero such that Bn > 0 for all n ∈N(n0). If the first order delay difference equation

�wn + QnRnwγ /β
n–� = 0 (2.4)

is oscillatory, then every solution of Eq. (1.1) is oscillatory.

Proof Let {xn} be a positive solution of Eq. (1.1) for all n ∈ N(n0). Then there exists a
n1 ∈ N(n0) such that xn > 0, xn–k > 0 and xn–� > 0 for all n ≥ n1. By Lemma 2.1, the sequence
{zn} satisfies conditions (2.1) for all n ≥ n1. From the definition of zn we have

xn = zn – pnxα
n–k ≥ zn – pnzα

n–�. (2.5)

Since {zn} is increasing and {μn} is positive, decreasing and tending to zero, we have
zn ≥ μn for all n ≥ n1. Using this and 0 < α ≤ 1 in (2.5), one obtains

xn ≥ Bnzn,
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which together with Eq. (1.1)

�
(
an(�zn)β

) ≤ –Qnzγ

n–�. (2.6)

Now a simple computation shows that

�
(
zn – Rna1/β

n �zn
)

= –Rn+1�
(
a1/β

n �zn
)
. (2.7)

By the discrete mean value theorem [1, Theorem 1.7.2], we have

�
(
an(�zn)β

)
=

(
a

1
β

n+1�zn+1
)β –

(
a

1
β
n �zn

)β

≥ β
an(�zn)β

a1/β
n+1�zn+1

�
(
a

1
β
n �zn

)
, (2.8)

where we have used a
1
β
n �zn is positive and decreasing. Now from (2.6), (2.7) and (2.8), one

obtains

zn ≥ Rna
1
β
n �zn +

1
β

n–1∑

s=n1

Rs+1Qszγ

s–la
1
β

s+1�zs+1

as(�zs)β

≥ a
1
β
n �zn

(

Rn +
1
β

n–1∑

s=n1

Rs+1Qszγ

s–l
as(�zs)β

)

, (2.9)

where we have used a
1
β
n �zn is positive and decreasing. From Lemma 2.2 we have

zn–l

Rn–l
≥ zn

Rn
≥ a

1
β
n �zn, n ≥ n1. (2.10)

Substituting (2.10) in (2.9), we obtain

zn ≥ a
1
β
n �zn

(

Rn +
1
β

n–1∑

s=n1

Rs+1Rβ

s–lQszγ

s–l

)

. (2.11)

Since γ ≥ β , we have zγ –β
n ≥ μ

γ –β
n for all n ≥ n1, and using this in (2.11), one obtains

zγ

n–l ≥ R̄n–l
(
a1/β

n–l�zn–l
)γ , n ≥ n1.

Using (2.11) in (2.6), and in view of (2.1), one can see that wn = an(�zn)β is a positive
solution of the first order delay difference inequality

�wn + QnRγ

n–�wγ /β
n–� ≤ 0. (2.12)

But by Lemma 2.3, the associated difference equation

�wn + QnRγ

n–�wγ /β
n–� = 0

also has a positive solution, which is a contradiction. Hence we complete the proof. �
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Corollary 2.2 Let all conditions of Theorem 2.1 hold with γ = β for all n ∈N(n0). If

lim
n→∞ inf

n–1∑

s=n–�

QsR
γ

s–� >
(

�

� + 1

)�+1

(2.13)

then every solution of Eq. (1.1) is oscillatory.

Proof The proof follows from Theorem 2.1 and Theorem 7.6.1 of [6]. �

Corollary 2.3 Let all conditions of Theorem 2.1 hold with γ > β for all n ∈ N(n0). If � > k
and there exists a λ > 1

�–k ln γ

β
such that

lim
n→∞ inf

[
QnRγ

n–l exp
(
–eλn)] > 0, n ≥ n1. (2.14)

Then every solution of Eq. (1.1) is oscillatory.

Proof The proof follows from Theorem 2.1 and Lemma 2.5. �

Theorem 2.4 Let γ < β be holds. Assume that there exists a positive decreasing real se-
quence {μn} tending to zero such that Bn > 0 for all n ∈N(n0). If for all N ≥ n0,

∞∑

n=N

Qn

(

Rn–� +
Mγ –β

β

n–�–1∑

s=n1

QsRs+1Rγ

s–�

)γ

= ∞ (2.15)

for any constant M > 0, then every solution of Eq. (1.1) is oscillatory.

Proof Assume that Eq. (1.1) has a positive solution such that there exists a n1 ∈N(n0) with
xn > 0, xn–k > 0 and xn–� > 0 for all n ≥ n1. Proceeding as in the proof of Theorem 2.1 we
have

zn ≥ a
1
β
n �zn

(

Rn +
1
β

n–1∑

s=n1

QsRs+1Rβ

s–lz
γ –β

s–�

)

. (2.16)

Since zn/Rn is decreasing, there exists a constant M > 0 such that zn/Rn ≤ M for all n ≥
n1, and from γ < β , we have zγ –β

n–� ≥ Mγ –βRγ –β

n–� for all n ≥ n1. Using this inequality in (2.16),
we obtain

zγ

n–� ≥ (
an–�(�zn–�)β

)γ /β
(

Rn–� +
Mγ –β

β

n–�–1∑

s=n1

QsRs+1Rγ

s–�

)γ

, n ≥ n1.

Using the last inequality in (2.6) and set wn = an(�zn)β > 0, we have

�wn + Qn

(

Rn–� +
Mγ –β

β

n–�–1∑

s=n1

QsRs+1Rγ

s–�

)γ

wγ /β
n–� ≤ 0.

But by Lemma 2.3, the associated difference equation

�wn + Qn

(

Rn–� +
Mγ –β

β

n–�–1∑

s=n1

QsRs+1Rγ

s–�

)γ

wγ /β
n–� = 0 (2.17)
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also has a positive solution. But Lemma 2.4 and condition (2.15) imply that Eq. (2.17) is
oscillatory. This contradiction completes the proof. �

In the following by employing the Riccati substitution technique, we obtain new oscil-
lation criteria for Eq. (1.1).

Theorem 2.5 Let γ ≥ β hold. Assume that there exists a positive decreasing real sequence
{μn} tending to zero, such that Bn > 0 for all n ∈ N(n0). If there exists a positive, nondecreas-
ing a real sequence {ρn} such that

lim
n→∞ sup

n∑

s=N

(
ρsQsCγ

s μγ –β
s –

as(�ρs)1+β

(β + 1)β+1ρ
β
s

)
= ∞, (2.18)

for sufficiently large N > n1, then every solution of Eq. (1.1) is oscillatory.

Proof Let {xn} be a positive solution of Eq. (1.1) for all n ∈ N(n0). Then there exists a
n1 ∈ N(n0) such that xn > 0, xn–k > 0 and xn–� > 0 for all n ≥ n1. Then, by Lemma 2.1, zn

satisfies conditions (2.1) for all n ≥ n1. Define the Riccati transformation by

wn = ρnan

(
�zn

zn

)β

, n ≥ n1. (2.19)

Then wn > 0, for all n ≥ n1, and

�wn =
�ρn

ρn+1
wn+1 + ρn

�(an(�zn)β )
zβ

n
–

ρn

ρn+1
wn+1

�zβ
n

zβ
n

, n ≥ n1. (2.20)

By the discrete mean value theorem, we have

�zβ
n = zβ

n+1 – zβ
n = β

zβ
n�zn

zn+1
, (2.21)

where we have used zn is positive and increasing. Using (2.21) in (2.20), we obtain

�wn ≤ �ρn

ρn+1
wn+1 – β

ρn

ρn+1
wn+1

�zn

zn+1
– ρnQn

zγ

n–�

zβ
n

≤ �ρn

ρn+1
wn+1 – β

ρn

ρn+1

wn+1

a1/β
n

a1/β
n �zn

zn+1
– ρnQn

zγ

n–�

zβ
n

≤ �ρn

ρn+1
wn+1 – β

ρn

ρn+1a1/β
n

wn+1
a1/β

n+1�zn+1

zn+1
– ρnQn

zγ

n–�

zβ
n

,

where we have used a1/β
n �zn is positive and decreasing. Using (2.19) in the last inequality,

we obtain

�wn ≤ �ρn

ρn+1
wn+1 – β

ρn

ρ
1+1/β
n+1 a1/β

n
w1+1/β

n+1 – ρnQn
zγ

n–�

zβ
n

. (2.22)
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From (2.3) we have

zn–�

Rn–�

≥ zn

Rn

or

zn–� ≥ Rn–�

Rn
zn

and using this in (2.21) yields

�wn ≤ �ρn

ρn+1
wn+1 –

βρn

ρ
1+ 1

β

n+1 a
1
β
n

w
1+ 1

β

n+1 – ρnQnCγ
n μγ –β

n , (2.23)

where we have used γ ≥ β and zn ≥ μn, for all n ≥ n1. Letting A = �ρn
ρn+1

and B = βρn

ρ
1+ 1

β
n+1 a

1
β
n

and using the inequality given in Lemma 2.6 of [15], it follows from (2.23) that

�wn ≤ –ρnQnCγ
n μγ –β

n +
an(�ρn)β+1

(β + 1)β+1ρ
β
n

. (2.24)

Let N ≥ n1 be sufficiently large and summing (2.24) from N to n, we obtain

n∑

s=N

[
ρsQsCγ

s μγ –β
s –

as(�ρs)β+1

(β + 1)β+1ρ
β
s

]
≤ wN ,

which contradicts (2.18). This completes the proof. �

Theorem 2.6 Let γ < β be holds. Assume that there exists a positive, nondecreasing real
sequence {μn} tending to zero, such that Bn > 0 for all n ∈ N(n0). If there exists a positive,
nondecreasing real sequence {ρn} such that, for some sufficiently large N ≥ n1,

lim
n→∞ sup

n∑

s=N

(
ρsQsCγ

s μγ –β
s –

Mβ–γ as(�ρs)1+β

(β + 1)β+1ρ
β
s

)
= ∞

for any constant M > 0, then every solution of Eq. (1.1) is oscillatory.

Proof The proof is similar to that of Theorem 2.5 except the inequality (2.23) is replaced
by

�wn ≤ �ρn

ρn+1
wn+1 –

βρn

ρ
1+ 1

β

n+1 a
1
β
n

w
1+ 1

β

n+1 – Mγ –βρnQnCγ
n Rγ –β

n ,

where we have used zn
Rn

≤ M, for all n ≥ n1 and γ < β , and hence the details are omitted.
This completes the proof. �
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3 Examples
In this section, we present three examples to illustrate the main results.

Example 3.1 Consider the second order neutral difference equation

�
(
(�zn)3) +

q0

n3 x3
n–1 = 0, n ≥ 1, (3.1)

where zn = xn + 1

2n
2
3

x
1
3
n–2 and q0 > 0. Comparing with Eq. (1.1), we have an = 1, pn = 1

2n
2
3

, qn =
q0
n3 , � = 1, k = 2,α = 1

3 , and β = γ = 3. A simple calculation yields Rn = n – 1. By choosing
μn = 1

n
2
3

, we see that Qn = q0
8n3 and Rn = (n–1)+ q0

96n2 (n2 –5n+8)(n2 –5n+4). The condition

(2.13) becomes

lim
n→∞ inf

n–1∑

s=n–1

q0

8s3

[
s – 2 +

q0

96(s – 1)2

(
s2 – 7s + 14

)(
s2 – 7s + 10

)]3

= lim
n→∞ inf

q0

8

[
1 –

2
n – 1

+
q0

96(n – 2)2

(
n2 – 9n + 22

)(
n2 – 9n + 18

)
]3

= ∞

and therefore by Corollary 2.2, we see that every solution of Eq. (3.1) is oscillatory.

Example 3.2 Consider the second order neutral difference equation

�
(
(�zn)3) +

q0

n
x5

n–1 = 0, n ≥ 1, (3.2)

where zn = xn + 1

3n
2
3

x
1
3
n–2 and q0 > 0. Compared with Eq. (1.1), we have an = 1, pn = 1

3n
2
3

,

qn = q0
n , � = 1, k = 2,α = 1

3 ,β = 3 and γ = 5. Simple calculation shows that Rn = n – 1. By
choosing μn = 1

n
2
3

, we see that Qn = 32q0
243n and Cn = n–2

n–1 . By taking ρn = n2, the condition
(2.18) becomes

lim
n→∞ sup

n∑

s=N

(
32

243
q0

s 1
3

(
s – 2
s – 1

)5

–
(2s + 1)4

256s6

)
= ∞

and hence by Theorem 2.5, every solution of Eq. (3.2) is oscillatory.

Example 3.3 Consider the second order neutral difference equation

�
(
(�zn)3) +

q0

n
xn–1 = 0, n ≥ 1, (3.3)

where zn = xn + p0

n
2
3

x
1
3
n–2, and p0 ∈ [0, 1) and q0 > 0. Comparing with Eq. (1.1), we have

an = 1, pn = p0
n2/3 , qn = q0

n ,� = 1, k = 2,α = 1
3 ,β = 3, and γ = 1. Simple calculation shows that

Rn = n – 1. By taking μn = 1
n , we have Qn = q0

n (1 – p0). The condition (2.14) becomes

∞∑

n=N

q0

n
(1 – p0)

(

n – 2 +
q0(1 – p0)

3M2

n–2∑

s=3

(s – 2)

)

≥
∞∑

n=N

(1 – p0)q0
(n – 2)

n
= ∞

and hence by Theorem 2.4, every solution of Eq. (3.3) is oscillatory.
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4 Conclusion
In this paper, by using a Riccati type transformation and the discrete mean value theorem
we have established some new oscillation criteria for more general second order neutral
difference equations. The obtained results include similar results to the ones established
for second order difference equations with linear neutral terms or nonlinear neutral terms
reported in the literature. Further none of the results in the papers [3–5, 8–12, 14, 15, 17–
22] can be applied to Eqs. (3.1) to (3.3) to yield any conclusion.
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