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Abstract
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1 Introduction
In this paper, we consider the system of nonlinear second-order difference equations

⎧
⎨

⎩

�2un–1 + f (n, un, vn) = 0, n = 1, N – 1,

�2vn–1 + g(n, un, vn) = 0, n = 1, N – 1,
(S)

subject to the multi-point boundary conditions

u0 =
p∑

i=1

aiuξi , uN =
q∑

i=1

biuηi , v0 =
r∑

i=1

civζi , vN =
l∑

i=1

divρi , (BC)

where N ∈ N, N ≥ 2, p, q, r, l ∈ N, � is the forward difference operator with stepsize 1,
�un = un+1 – un, �2un–1 = un+1 – 2un + un–1, and n = k, m means that n = k, k + 1, . . . , m
for k, m ∈ N, ξi ∈ N for all i = 1, p, ηi ∈ N for all i = 1, q, ζi ∈ N for all i = 1, r, ρi ∈ N for all
i = 1, l, 1 ≤ ξ1 < · · · < ξp ≤ N – 1, 1 ≤ η1 < · · · < ηq ≤ N – 1, 1 ≤ ζ1 < · · · < ζr ≤ N – 1, and
1 ≤ ρ1 < · · · < ρl ≤ N – 1.

Under sufficient conditions on the nonnegative nonlinearities f and g which contain
some concave functions, we investigate the existence and multiplicity of positive solu-
tions of problem (S)–(BC) by using the fixed point index theory. By a positive solution
of (S)–(BC), we mean a pair of sequences (u, v) = ((un)n=0,N , (vn)n=0,N ) satisfying (S) and
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(BC) with un ≥ 0 and vn ≥ 0 for all n = 0, N , and un > 0 for all n = 1, N or vn > 0 for all
n = 1, N . The existence and nonexistence of nonnegative and nontrivial solutions (u, v)
(un ≥ 0, vn ≥ 0 for all n = 0, N and (u, v) �= (0, 0)) of problem (S)–(BC) with some posi-
tive parameters in system (S) were studied in the papers [14] and [15] by using the Guo–
Krasnosel’skii fixed point theorem. We also mention the paper [19], where the authors
investigated the existence and multiplicity of positive solutions for problem (S)–(BC) un-
der some assumptions on the functions f and g which are different than those we use in
this paper. The existence, nonexistence, and multiplicity of positive solutions for system
(S) with parameters or without parameters, subject to the multi-point coupled boundary
conditions

u0 = 0, uN =
p∑

i=1

aivξi , v0 = 0, vN =
q∑

i=1

biuηi , (BC1)

were studied in the papers [16] and [18].
The mathematical modeling of many nonlinear problems from computer science, eco-

nomics, mechanical engineering, control systems, biological neural networks, and others
leads to the consideration of nonlinear difference equations (see [2, 4, 21, 23]). In the last
decades, many authors have investigated such problems by using various methods, such
as fixed point theorems, the critical point theory, upper and lower solutions, the fixed
point index theory, and the topological degree theory (see, for example, [1, 6–12, 17, 20,
24–28]).

The paper is organized as follows. In Sect. 2, we investigate a system of second-order lin-
ear difference equations subject to the boundary conditions (BC), and we present the prop-
erties of the corresponding Green functions. In Sect. 3, we prove the main theorems for
the existence and multiplicity of positive solutions of problem (S)–(BC) which are based
on some theorems from the fixed point index theory, and we present two examples to
support our results.

2 Preliminary results
We begin this section with a result from [14] related to the following system of second-
order difference equations:

�2un–1 + yn = 0, n = 1, N – 1, (1)

subject to the multi-point boundary conditions

u0 =
p∑

i=1

aiuξi , uN =
q∑

i=1

biuηi , (2)

where p, q ∈N, ξi ∈N for all i = 1, p, ηi ∈N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N – 1, 1 ≤ η1 <
· · · < ηq ≤ N – 1, and yn ∈R for all n = 1, N – 1.

We denote �1 = (1 –
∑q

i=1 bi)
∑p

i=1 aiξi + (1 –
∑p

i=1 ai)(N –
∑q

i=1 biηi).
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Lemma 2.1 ([14]) If �1 �= 0, then the solution (un)n=0,N of problem (1)–(2) is given by un =
∑N–1

j=1 G1(n, j)yj for all n = 0, N , where the Green function G1 is defined by

G1(n, j) = g0(n, j) +
1

�1

[

(N – n)

(

1 –
q∑

k=1

bk

)

+
q∑

i=1

bi(N – ηi)

] p∑

i=1

aig0(ξi, j)

+
1

�1

[

n

(

1 –
p∑

k=1

ak

)

+
p∑

i=1

aiξi

] q∑

i=1

big0(ηi, j), n = 0, N , j = 1, N – 1, (3)

and

g0(n, j) =
1
N

⎧
⎨

⎩

j(N – n), 1 ≤ j ≤ n ≤ N ,

n(N – j), 0 ≤ n ≤ j ≤ N – 1.
(4)

Next we will present some properties of the function g0 and the Green function G1.

Lemma 2.2 The function g0 given by (4) has the following properties:
(a) g0(n, j) ≥ 0 for all n = 0, N , j = 1, N – 1;
(b) g0(n, j) ≤ h(j) for all n = 0, N , j = 1, N – 1, where h(j) = g0(j, j) = 1

N j(N – j) for all
j = 1, N – 1;

(c) g0(n, j) ≥ k(n)h(j) for all n = 0, N , j = 1, N – 1, where k(n) = 1
N(N–1) n(N – n) for all

n = 0, N .

Proof For the proofs of (a) and (b), see [7].
For (c), if 1 ≤ j ≤ n ≤ N , then we have

1
N

j(N – n) ≥ 1
N(N – 1)

n(N – n)
1
N

j(N – j) ⇔ N(N – 1) ≥ n(N – j),

which is satisfied for all j = 1, N – 1 and n = 0, N .
If 0 ≤ n ≤ j ≤ N – 1, then we obtain

1
N

n(N – j) ≥ 1
N(N – 1)

n(N – n)
1
N

j(N – j) ⇔ N(N – 1) ≥ j(N – n),

which is satisfied for all j = 1, N – 1 and n = 0, N . �

Lemma 2.3 If ai ≥ 0 for all i = 1, p,
∑p

i=1 ai < 1, bi ≥ 0 for all i = 1, q,
∑q

i=1 bi < 1, then the
Green function G1 of problem (1)–(2) given by (3) satisfies the inequalities

(a) G1(n, j) ≤ Ah(j) for all n = 0, N , j = 1, N – 1, where

A = 1 +
1

�1

(

N –
q∑

i=1

biηi

)( p∑

i=1

ai

)

+
1

�1

(

N –
p∑

i=1

ai(N – ξi)

)( q∑

i=1

bi

)

> 0.

(b) G1(n, j) ≥ k(n)h(j) for all n = 0, N , j = 1, N – 1.
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Proof By the assumptions on the coefficients ai, i = 1, p and bj, j = 1, q, we can easily see
that �1 > 0 and A > 0. By using Lemma 2.2, for all n = 0, N and j = 1, N – 1, we deduce

G1(n, j) ≤ h(j)

{

1 +
1

�1

[

N

(

1 –
q∑

k=1

bk

)

+
q∑

i=1

bi(N – ηi)

]( p∑

i=1

ai

)

+
1

�1

[

N

(

1 –
p∑

k=1

ak

)

+
p∑

i=1

aiξi

]( q∑

i=1

bi

)}

= Ah(j),

and

G1(n, j) ≥ g0(n, j) ≥ k(n)h(j),

that is, we obtain inequalities (a) and (b). �

Lemma 2.4 Assume that ai ≥ 0 for all i = 1, p,
∑p

i=1 ai < 1, bi ≥ 0 for all i = 1, q,
∑q

i=1 bi < 1,
and yn ≥ 0 for all n = 1, N – 1. Then the solution (un)n=0,N of problem (1)–(2) satisfies the
inequality un ≥ 1

A k(n)um for all n, m = 0, N .

Proof By using Lemmas 2.1–2.3, we deduce

un =
N–1∑

j=1

G1(n, j)yj ≥
N–1∑

j=1

k(n)h(j)yj ≥
N–1∑

j=1

1
A

G1(m, j)k(n)yj

=
1
A

k(n)
N–1∑

j=1

G1(m, j)yj =
1
A

k(n)um, ∀n, m = 0, N . �

We can also formulate similar results as Lemmas 2.1–2.4 for the discrete boundary value
problem

�2vn–1 + ỹn = 0, n = 1, N – 1, (5)

v0 =
r∑

i=1

civζi , vN =
l∑

i=1

divρi , (6)

where r, l ∈ N, ci ≥ 0 for all i = 1, r,
∑r

i=1 ci < 1, ζi ∈ N for all i = 1, r, di ≥ 0 for all i = 1, l,
∑l

i=1 di < 1, ρi ∈ N for all i = 1, l, 1 ≤ ζ1 < · · · < ζr ≤ N – 1, 1 ≤ ρ1 < · · · < ρl ≤ N – 1, and
ỹn ≥ 0 for all n = 1, N – 1.

We denote by

�2 =

(

1 –
l∑

i=1

di

) r∑

i=1

ciζi +

(

1 –
r∑

i=1

ci

)(

N –
l∑

i=1

diρi

)

> 0,
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G2(n, j) = g0(n, j) +
1

�2

[

(N – n)

(

1 –
l∑

k=1

dk

)

+
l∑

i=1

di(N – ρi)

] r∑

i=1

cig0(ζi, j)

+
1

�2

[

n

(

1 –
r∑

k=1

ck

)

+
r∑

i=1

ciζi

] l∑

i=1

dig0(ρi, j), n = 0, N , j = 1, N – 1,

B = 1 +
1

�2

(

N –
l∑

i=1

diρi

)( r∑

i=1

ci

)

+
1

�2

(

N –
r∑

i=1

ci(N – ζi)

)( l∑

i=1

di

)

> 0.

Then we deduce the inequalities G2(n, j) ≤ Bh(j) and G2(n, j) ≥ k(n)h(j) for all n = 0, N ,
j = 1, N – 1. In addition the solution (vn)n=0,N of problem (5)–(6) satisfies the inequality
vn ≥ 1

B k(n)vm for all n, m = 0, N .
We recall now some theorems concerning the fixed point index theory. Let E be a real

Banach space with the norm ‖ · ‖, P ⊂ E be a cone, “≤” be the partial ordering defined by
P, and 0 be the zero element in E. For � > 0, let B� = {u ∈ E,‖u‖ < �} be the open ball of
radius � centered at 0, and its boundary ∂B� = {u ∈ E,‖u‖ = �}. The proofs of our results
are based on the following fixed point index theorems (see [3, 5, 13, 22]).

Theorem 2.1 Let A : B� ∩ P → P be a completely continuous operator which has no fixed
points on ∂B� ∩ P. If ‖Au‖ ≤ ‖u‖ for all u ∈ ∂B� ∩ P, then i(A, B� ∩ P, P) = 1.

Theorem 2.2 Let A : B� ∩ P → P be a completely continuous operator. If there exists u0 ∈
P \ {0} such that u – Au �= λu0 for all λ ≥ 0 and u ∈ ∂B� ∩ P, then i(A, B� ∩ P, P) = 0.

Theorem 2.3 Let Ω ⊂ E be a bounded open set with 0 ∈ Ω . Assume that A : Ω ∩ P → P
is a completely continuous operator.

(a) If u �≤ Au for all u ∈ ∂Ω ∩ P, then the fixed point index i(A,Ω ∩ P, P) = 1.
(b) If Au �≤ u for all u ∈ ∂Ω ∩ P, then the fixed point index i(A,Ω ∩ P, P) = 0.

3 Existence and multiplicity of positive solutions
In this section we present sufficient conditions on the functions f and g such that problem
(S)–(BC) has positive solutions with respect to a cone.

We present the assumptions that we shall use in the sequel.
(H1) ai ≥ 0, ξi ∈N for all i = 1, p, 1 ≤ ξ1 < · · · < ξp ≤ N – 1,

bi ≥ 0, ηi ∈N for all i = 1, q, 1 ≤ η1 < · · · < ηq ≤ N – 1,
ci ≥ 0, ζi ∈N for all i = 1, r, 1 ≤ ζ1 < · · · < ζr ≤ N – 1,
di ≥ 0, ρi ∈N for all i = 1, l, 1 ≤ ρ1 < · · · < ρl ≤ N – 1, and
∑p

i=1 ai < 1,
∑q

i=1 bi < 1,
∑r

i=1 ci < 1,
∑l

i=1 di < 1.
(H2) The functions f , g : {1, . . . , N – 1} ×R+ ×R+ →R+ are continuous, (R+ = [0,∞)).
(H3) There exist functions a, b ∈ C(R+,R+) such that

(a) a(·) is concave and strictly increasing on R+ with a(0) = 0;
(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f i
0 = lim infv→0+

f (n,u,v)
a(v) ∈ (0,∞],

uniformly with respect to (n, u) ∈ {1, . . . , N – 1} ×R+, and

gi
0 = lim infu→0+

g(n,u,v)
b(u) ∈ (0,∞],

uniformly with respect to (n, v) ∈ {1, . . . , N – 1} ×R+;
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(c) limu→0+
a(Cb(u))

u = ∞ exists for any constant C > 0.
(H4) There exist α1,α2 > 0 with α1α2 ≤ 1 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f s∞ = lim supv→∞
f (n,u,v)

vα1 ∈ [0,∞),

uniformly with respect to (n, u) ∈ {1, . . . , N – 1} ×R+, and

gs∞ = limu→∞ g(n,u,v)
uα2 = 0

exists uniformly with respect to (n, v) ∈ {1, . . . , N – 1} ×R+.

(H5) There exist the functions c, d ∈ C(R+,R+) such that
(a) c(·) is concave and strictly increasing on R+;
(b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f i∞ = lim infv→∞ f (n,u,v)
c(v) ∈ (0,∞],

uniformly with respect to (n, u) ∈ {1, . . . , N – 1} ×R+, and

gi∞ = lim infu→∞ g(n,u,v)
d(u) ∈ (0,∞],

uniformly with respect to (n, v) ∈ {1, . . . , N – 1} ×R+;

(c) limu→∞ c(Cd(u))
u = ∞ exists for any constant C > 0.

(H6) There exist β1,β2 > 0 with β1β2 ≥ 1 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f s
0 = lim supv→0+

f (n,u,v)
vβ1 ∈ [0,∞),

uniformly with respect to (n, u) ∈ {1, . . . , N – 1} ×R+, and

gs
0 = limu→0+

g(n,u,v)
uβ2 = 0

exists uniformly with respect to (n, v) ∈ {1, . . . , N – 1} ×R+.

(H7) The functions f (n, u, v) and g(n, u, v) are nondecreasing with respect to u and v, and
there exists N0 > 0 such that

f (n, N0, N0) <
3N0

(N2 – 1) max{A, B} and g(n, N0, N0) <
3N0

(N2 – 1) max{A, B}

for all n ∈ {1, . . . , N – 1}.
By using the Green functions G1 and G2 from Sect. 2, our problem (S)–(BC) can be

written equivalently as the following system:

⎧
⎨

⎩

un =
∑N–1

i=1 G1(n, i)f (i, ui, vi), n = 0, N ,

vn =
∑N–1

i=1 G2(n, i)g(i, ui, vi), n = 0, N .
(7)

Then (u, v) = ((un)n=0,N , (vn)n=0,N ) is a solution of problem (S)–(BC) if and only if (u, v) is a
solution of system (7).

We consider the Banach space X = R
N+1 = {u = (un)n=0,N , ui ∈ R, i = 0, N} with the max-

imum norm ‖ · ‖, ‖u‖ = maxi=0,N |ui|, and the Banach space Y = X × X with the norm
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‖(u, v)‖Y = ‖u‖ + ‖v‖. We define the cones

P1 =
{

u ∈ X, u = (un)n=0,N , un ≥ 1
A

k(n)‖u‖,∀n = 0, N
}

⊂ X,

P2 =
{

v ∈ X, v = (vn)n=0,N , vn ≥ 1
B

k(n)‖v‖,∀n = 0, N
}

⊂ X,

and P = P1 × P2 ⊂ Y .
We introduce the operators Q1, Q2 : Y → X and Q : Y → Y defined by

Q1(u, v) =
(
Q1n(u, v)

)

n=0,N , Q2(u, v) =
(
Q2n(u, v)

)

n=0,N ,

Q1n(u, v) =
N–1∑

i=1

G1(n, i)f (i, ui, vi), n = 0, N ,

Q2n(u, v) =
N–1∑

i=1

G2(n, i)g(i, ui, vi), n = 0, N ,

Q(u, v) =
(
Q1(u, v), Q2(u, v)

)
, (u, v) =

(
(un)n=0,N , (vn)n=0,N

) ∈ Y .

The pair (u, v) is a solution of problem (S)–(BC) if and only if (u, v) is a fixed point of
operator Q in the space Y . So, we will investigate the existence of fixed points of opera-
tor Q. Under assumptions (H1) and (H2) and by using Lemma 2.4, we can easily prove
that Q(P) ⊂ P and the operator Q : P → P is completely continuous.

Theorem 3.1 Assume that (H1), (H2), (H3), and (H4) hold. Then problem (S)–(BC) has
at least one positive solution.

Proof By (H3), there exist C1 > 0, C2 > 0, and a sufficiently small r1 > 0 such that

f (n, u, v) ≥ C1a(v), ∀(n, u) ∈ {1, . . . , N – 1} ×R+, v ∈ [0, r1],

g(n, u, v) ≥ C2b(u), ∀(n, v) ∈ {1, . . . , N – 1} ×R+, u ∈ [0, r1],
(8)

and

a
(
C3b(u)

) ≥ 72C3 max{A, B}N3u
C1C2(N2 – 1)2 , ∀u ∈ [0, r1], (9)

where C3 = max{ (N–1)C2
N h(j), j = 1, N – 1}.

We will show that (Q1(u, v), Q2(u, v)) �≤ (u, v) for all (u, v) ∈ ∂Br1 ∩ P. We suppose that
there exists (u, v) ∈ ∂Br1 ∩ P, that is, ‖(u, v)‖Y = r1, such that (Q1(u, v), Q2(u, v)) ≤ (u, v).
Then u ≥ Q1(u, v) and v ≥ Q2(u, v). By using the monotonicity and concavity of a(·), the
Jensen inequality, Lemma 2.3, relations (8) and (9), we obtain

un ≥ Q1n(u, v) =
N–1∑

i=1

G1(n, i)f (i, ui, vi) ≥ C1

N–1∑

i=1

h(i)k(n)a(vi)

≥ C1k(1)
N–1∑

i=1

h(i)a(vi) =
C1

N

N–1∑

i=1

h(i)a

(N–1∑

j=1

G2(i, j)g(j, uj, vj)

)
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≥ C1

N

N–1∑

i=1

h(i)a

(

C2

N–1∑

j=1

G2(i, j)b(uj)

)

≥ C1

N

N–1∑

i=1

h(i)a

(

C2

N–1∑

j=1

h(j)k(i)b(uj)

)

≥ C1

N

N–1∑

i=1

h(i)a

(

C2k(1)
N–1∑

j=1

h(j)b(uj)

)

=
C1

N

(N–1∑

i=1

h(i)

)

a

(
C2

N

N–1∑

j=1

h(j)b(uj)

)

≥ C1(N2 – 1)
6N(N – 1)

N–1∑

j=1

a
(

(N – 1)C2

N
h(j)b(uj)

)

=
C1(N + 1)

6N

N–1∑

j=1

a
(

(N – 1)C2

NC3
h(j) · C3b(uj)

)

≥ C1(N + 1)
6N

N–1∑

j=1

(N – 1)C2

NC3
h(j)a

(
C3b(uj)

)

≥ C1C2(N2 – 1)
6N2C3

N–1∑

j=1

h(j)
72C3 max{A, B}N3

C1C2(N2 – 1)2 uj

≥ 12N max{A, B}
N2 – 1

N–1∑

j=1

h(j)
1
A

k(j)‖u‖

≥ 12N max{A, B}
N2 – 1

N–1∑

j=1

h(j)
1

AN
‖u‖

≥ 2‖u‖, ∀n = 1, N – 1.

So, ‖u‖ ≥ maxn=1,N–1 un ≥ 2‖u‖, and then

‖u‖ = 0. (10)

In a similar manner, we deduce

a(vi) ≥ a
(
Q2i(u, v)

)
= a

(N–1∑

j=1

G2(i, j)g(j, uj, vj)

)

≥ 1
N – 1

N–1∑

j=1

a
(
(N – 1)G2(i, j)g(j, uj, vj)

)

≥ 1
N – 1

N–1∑

j=1

a
(
(N – 1)h(j)k(i)C2b(uj)

)

≥ 1
N – 1

N–1∑

j=1

a
(

C2(N – 1)
N

h(j)b(uj)
)

=
1

N – 1

N–1∑

j=1

a
(

C2(N – 1)
NC3

h(j) · C3b(uj)
)

≥ 1
N – 1

N–1∑

j=1

C2(N – 1)
NC3

h(j)a
(
C3b(uj)

)
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≥ C2

NC3

N–1∑

j=1

h(j)
72C3 max{A, B}N3

C1C2(N2 – 1)2 uj

=
72N2 max{A, B}

(N2 – 1)2C1

N–1∑

j=1

h(j)

(N–1∑

θ=1

G1(j, θ )f (θ , uθ , vθ )

)

≥ 72N2 max{A, B}
(N2 – 1)2C1

N–1∑

j=1

h(j)

(N–1∑

θ=1

h(θ )k(j)C1a(vθ )

)

≥ 72N max{A, B}
(N2 – 1)2

(N–1∑

j=1

h(j)

)(N–1∑

θ=1

h(θ )a(vθ )

)

=
12N max{A, B}

N2 – 1

N–1∑

θ=1

h(θ )a(vθ )

≥ 12N max{A, B}
N2 – 1

N–1∑

θ=1

h(θ )a
(

1
B

k(θ )‖v‖
)

≥ 12N max{A, B}
N2 – 1

(N–1∑

θ=1

h(θ )

)

a
(

1
BN

‖v‖
)

≥ 2N max{A, B} 1
BN

a
(‖v‖)

≥ 2a
(‖v‖), ∀i = 1, N – 1.

Then we conclude that a(‖v‖) = a(supi=0,N vi) ≥ a(v1) ≥ 2a(‖v‖), and hence a(‖v‖) = 0.
By (H3)(a), we obtain

‖v‖ = 0. (11)

Therefore, by (10) and (11), we deduce that ‖(u, v)‖Y = 0, which is a contradiction. Hence
(Q1(u, v), Q2(u, v)) �≤ (u, v) for all (u, v) ∈ ∂Br1 ∩P. By Theorem 2.3(b), we conclude that the
fixed point index

i(Q, Br1 ∩ P, P) = 0. (12)

On the other hand, by (H4) we deduce that there exist C4 > 0, C5 > 0, and C6 > 0 such
that

f (n, u, v) ≤ C4vα1 + C5, ∀(n, u, v) ∈ {1, . . . , N – 1} ×R+ ×R+,

g(n, u, v) ≤ ε1uα2 + C6, ∀(n, u, v) ∈ {1, . . . , N – 1} ×R+ ×R+,
(13)

with

ε1 = min

{
6

B(N2 – 1)

(
3

4AC4(N2 – 1)

)α2

,
6α2+1

8B(AC4)α2 (N2 – 1)α2+1

}

.
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Then, by (13), we have

Q1n(u, v) =
N–1∑

i=1

G1(n, i)f (i, ui, vi) ≤
N–1∑

i=1

Ah(i)
(
C4vα1

i + C5
)

= AC4

N–1∑

i=1

h(i)vα1
i + AC5

N2 – 1
6

, ∀n = 0, N ,

Q2n(u, v) =
N–1∑

i=1

G2(n, i)g(i, ui, vi) ≤
N–1∑

i=1

Bh(i)
(
ε1uα2

i + C6
)

= Bε1

N–1∑

i=1

h(i)uα2
i + BC6

N2 – 1
6

, ∀n = 0, N .

(14)

We consider now the functions p̃, q̃ : R+ → R+ defined by

p̃(w) =
AC4(N2 – 1)

6

[(
3w

4AC4(N2 – 1)

)α2

+
BC6(N2 – 1)

6

]α1

+
AC5(N2 – 1)

6
,

q̃(w) =
6α2

8(AC4(N2 – 1))α2

(
AC4(N2 – 1)

6
wα1 +

AC5(N2 – 1)
6

)α2

+
BC6(N2 – 1)

6
.

Because

lim
w→∞

p̃(w)
w

= lim
w→∞

q̃(w)
w

=

⎧
⎨

⎩

0, if α1α2 < 1,

1/8, if α1α2 = 1,

we conclude that there exists R1 > r1 such that

p̃(w) ≤ 1
4

w, q̃(w) ≤ 1
4

w, ∀w ≥ R1. (15)

We will show that (u, v) �≤ (Q1(u, v), Q2(u, v)) for all (u, v) ∈ ∂BR1 ∩ P. We suppose that
there exists (u, v) ∈ ∂BR1 ∩ P, that is, ‖(u, v)‖Y = R1, such that (u, v) ≤ (Q1(u, v), Q2(u, v)).
So, by (14), we obtain

un ≤ Q1n(u, v) ≤ AC4

N–1∑

i=1

h(i)vα1
i + AC5

N2 – 1
6

, ∀n = 0, N ,

vn ≤ Q2n(u, v) ≤ Bε1

N–1∑

i=1

h(i)uα2
i + BC6

N2 – 1
6

, ∀n = 0, N .

Then, for all n = 0, N , we deduce

un ≤ AC4

N–1∑

i=1

h(i)

(

Bε1

N–1∑

j=1

h(j)uα2
j + BC6

N2 – 1
6

)α1

+ AC5
N2 – 1

6

= AC4
N2 – 1

6

(

Bε1

N–1∑

j=1

h(j)uα2
j + BC6

N2 – 1
6

)α1

+ AC5
N2 – 1

6
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≤ AC4
N2 – 1

6

(

Bε1

N–1∑

j=1

h(j)‖u‖α2 + BC6
N2 – 1

6

)α1

+ AC5
N2 – 1

6

= AC4
N2 – 1

6

(

Bε1
N2 – 1

6
‖u‖α2 + BC6

N2 – 1
6

)α1

+ AC5
N2 – 1

6

≤ AC4
N2 – 1

6

[(
3‖u‖

4AC4(N2 – 1)

)α2

+ BC6
N2 – 1

6

]α1

+ AC5
N2 – 1

6

≤ AC4
N2 – 1

6

[(
3‖(u, v)‖Y

4AC4(N2 – 1)

)α2

+ BC6
N2 – 1

6

]α1

+ AC5
N2 – 1

6
, (16)

and

vn ≤ Bε1

N–1∑

i=1

h(i)uα2
i + BC6

N2 – 1
6

≤ Bε1

N–1∑

i=1

h(i)

(

AC4

N–1∑

j=1

h(j)vα1
j + AC5

N2 – 1
6

)α2

+ BC6
N2 – 1

6

≤ Bε1
N2 – 1

6

(

AC4
N2 – 1

6
‖v‖α1 + AC5

N2 – 1
6

)α2

+ BC6
N2 – 1

6

≤ 6α2

8(AC4(N2 – 1))α2

(

AC4
N2 – 1

6
‖v‖α1 + AC5

N2 – 1
6

)α2

+ BC6
N2 – 1

6

≤ 6α2

8(AC4(N2 – 1))α2

(

AC4
N2 – 1

6
∥
∥(u, v)

∥
∥α1

Y + AC5
N2 – 1

6

)α2

+ BC6
N2 – 1

6
. (17)

By using (16), (17), and (15), we conclude that un ≤ 1
4‖(u, v)‖Y and vn ≤ 1

4‖(u, v)‖Y for
all n = 0, N . Therefore we obtain that ‖(u, v)‖Y ≤ 1

2‖(u, v)‖Y , and so ‖(u, v)‖Y = 0, which
is a contradiction because ‖(u, v)‖Y = R1 > 0. So, (u, v) �≤ (Q1(u, v), Q2(u, v)) for all (u, v) ∈
∂BR1 ∩ P. By Theorem 2.3(a), we deduce that the fixed point index

i(Q, BR1 ∩ P, P) = 1. (18)

Because Q has no fixed points on ∂Br1 ∪ ∂BR1 , by (12) and (18), we conclude that

i
(
Q, (BR1 \ Br1 ) ∩ P, P

)
= i(Q, BR1 ∩ P, P) – i(Q, Br1 ∩ P, P) = 1.

So the operator Q has at least one fixed point (u1, v1) ∈ (BR1 \Br1 )∩P, with r1 < ‖(u1, v1)‖Y <
R1, that is, ‖u1‖ > 0 or ‖v1‖ > 0. Because u1 ∈ P1 and v1 ∈ P2, we obtain u1

n > 0 for all
n = 1, N or v1

n > 0 for all n = 1, N . �

Theorem 3.2 Assume that (H1), (H2), (H5), and (H6) hold. Then problem (S)–(BC) has
at least one positive solution.

Proof By (H5) there exist Ci > 0, i = 7, . . . , 11, such that

f (n, u, v) ≥ C7c(v) – C8, g(n, u, v) ≥ C9d(u) – C10,

∀(n, u, v) ∈ {1, . . . , N – 1} ×R+ ×R+, (19)
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and

c
(
C12d(u)

) ≥ 72C12N3 max{A, B}u
C7C9(N2 – 1)2 – C11, ∀u ∈R+, (20)

where C12 = max{C9(N–1)
N h(i), i = 1, N – 1} > 0. Then we obtain

Q1n(u, v) =
N–1∑

i=1

G1(n, i)f (i, ui, vi) ≥
N–1∑

i=1

G1(n, i)
(
C7c(vi) – C8

)

≥
N–1∑

i=1

h(i)k(n)
(
C7c(vi) – C8

) ≥
N–1∑

i=1

h(i)k(1)
(
C7c(vi) – C8

)

=
1
N

N–1∑

i=1

h(i)
(
C7c(vi) – C8

)
, ∀n = 1, N – 1,

Q2n(u, v) =
N–1∑

i=1

G2(n, i)g(i, ui, vi) ≥
N–1∑

i=1

G2(n, i)
(
C9d(ui) – C10

)

≥
N–1∑

i=1

h(i)k(n)
(
C9d(ui) – C10

) ≥
N–1∑

i=1

h(i)k(1)
(
C9d(ui) – C10

)

=
1
N

N–1∑

i=1

h(i)
(
C9d(ui) – C10

)
, ∀n = 1, N – 1.

(21)

We will prove that the set U = {(u, v) ∈ P, (u, v) = Q(u, v) + λ(ϕ1,ϕ2),λ ≥ 0} is bounded,
where (ϕ1,ϕ2) ∈ P \ {(0, 0)}. Indeed, (u, v) ∈ U implies that u ≥ Q1(u, v), v ≥ Q2(u, v) for
some ϕ1,ϕ2 ≥ 0. By (21), we obtain

un ≥ Q1n(u, v) ≥ C7

N

N–1∑

i=1

h(i)c(vi) – C13, ∀n = 1, N – 1, (22)

vn ≥ Q2n(u, v) ≥ C9

N

N–1∑

i=1

h(i)d(ui) – C14, ∀n = 1, N – 1, (23)

where C13 = C8(N2 – 1)/(6N), C14 = C10(N2 – 1)/(6N).
By the monotonicity and concavity of c(·) and the Jensen inequality, inequality (23) im-

plies that

c(vn + C14) ≥ c

(
C9

N

N–1∑

i=1

h(i)d(ui)

)

≥ 1
N – 1

N–1∑

i=1

c
(

C9(N – 1)
N

h(i)d(ui)
)

=
1

N – 1

N–1∑

i=1

c
(

C9(N – 1)
NC12

h(i) · C12d(ui)
)
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≥ 1
N – 1

N–1∑

i=1

C9(N – 1)
NC12

h(i)c
(
C12d(ui)

)

=
C9

NC12

N–1∑

i=1

h(i)c
(
C12d(ui)

)
, ∀n = 1, N – 1. (24)

Since c(vn) ≥ c(vn + C14) – c(C14), by relations (22), (23), and (24), we deduce

un ≥ C7

N

N–1∑

i=1

h(i)c(vi) – C13

≥ C7

N

N–1∑

i=1

h(i)
[
c(vi + C14) – c(C14)

]
– C13

=
C7

N

N–1∑

i=1

h(i)c(vi + C14) – C15

≥ C7

N

N–1∑

i=1

h(i)

[
C9

NC12

N–1∑

j=1

h(j)c
(
C12d(uj)

)
]

– C15

=
C7C9(N2 – 1)

6N2C12

N–1∑

j=1

h(j)c
(
C12d(uj)

)
– C15

≥ C7C9(N2 – 1)
6N2C12

N–1∑

j=1

h(j)
(

72C12N3 max{A, B}
C7C9(N2 – 1)2 uj – C11

)

– C15

=
12N max{A, B}

N2 – 1

N–1∑

j=1

h(j)uj – C16 ≥ 2‖u‖ – C16, ∀n = 1, N – 1,

where C15 = C7c(C14)(N2–1)
6N + C13, C16 = C7C9C11(N2–1)2

36N2C12
+ C15.

Therefore ‖u‖ ≥ u1 ≥ 2‖u‖ – C16, and then

‖u‖ ≤ C16. (25)

Since c(vn) ≥ c( 1
B k(n)‖v‖) ≥ c( 1

BN ‖v‖) ≥ 1
BN c(‖v‖) for all n = 1, N – 1, then by relations

(19), (22), (23), and (24), we obtain

c(vn) ≥ c(vn + C14) – c(C14)

≥ C9

NC12

N–1∑

i=1

h(i)c
(
C12d(ui)

)
– c(C14)

≥ C9

NC12

N–1∑

i=1

h(i)
(

72C12N3 max{A, B}
C7C9(N2 – 1)2 ui – C11

)

– c(C14)

=
72N2 max{A, B}

C7(N2 – 1)2

N–1∑

i=1

h(i)ui – C17

≥ 72N2 max{A, B}
C7(N2 – 1)2

N–1∑

i=1

h(i)

(
C7

N

N–1∑

j=1

h(j)c(vj) – C13

)

– C17
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=
12N max{A, B}

N2 – 1

N–1∑

j=1

h(j)c(vj) – C18

≥ 12N max{A, B}
N2 – 1

N–1∑

j=1

h(j)
1

BN
c
(‖v‖) – C18

≥ 2c
(‖v‖) – C18, ∀n = 1, N – 1,

where C17 = C9C11(N2–1)
6NC12

+ c(C14), C18 = 12C13N2 max{A,B}
C7(N2–1) + C17.

Then c(‖v‖) ≥ c(v1) ≥ 2c(‖v‖) – C18, and so c(‖v‖) ≤ C18. By (H5)(a) and (c), we deduce
that limv→∞ c(v) = ∞. Thus there exists C19 > 0 such that

‖v‖ ≤ C19. (26)

By (25) and (26), we conclude that ‖(u, v)‖Y ≤ C16 + C19 for all (u, v) ∈ U . That is the set U
is bounded. Then there exists a sufficiently large R2 > 0 such that (u, v) �= Q(u, v) +λ(ϕ1,ϕ2)
for all (u, v) ∈ ∂BR2 ∩ P and λ ≥ 0. By Theorem 2.2 we deduce that

i(Q, BR2 ∩ P, P) = 0. (27)

On the other hand, by (H6) there exist C20 > 0 and a sufficiently small r2 > 0, (r2 < R2,
r2 ≤ 1) such that

f (n, u, v) ≤ C20vβ1 , ∀(n, u) ∈ {1, . . . , N – 1} ×R+, v ∈ [0, r2],

g(n, u, v) ≤ ε2uβ2 , ∀(n, v) ∈ {1, . . . , N – 1} ×R+, u ∈ [0, r2],
(28)

where ε2 = (2ABβ1 C20( N2–1
6 )β1+1)–1/β1 > 0.

We will show that (u, v) �≤ Q(u, v) for all (u, v) ∈ ∂Br2 ∩ P. We suppose that there exists
(u, v) ∈ ∂Br2 ∩ P, that is, ‖(u, v)‖Y = r2 ≤ 1, such that (u, v) ≤ (Q1(u, v), Q2(u, v)), or u ≤
Q1(u, v) and v ≤ Q2(u, v). Then by (28) we obtain

un ≤ Q1n(u, v) =
N–1∑

i=1

G1(n, i)f (i, ui, vi) ≤ AC20

N–1∑

i=1

h(i)vβ1
i

≤ AC20

N–1∑

i=1

h(i)

(N–1∑

j=1

G2(i, j)g(j, uj, vj)

)β1

≤ AC20

N–1∑

i=1

h(i)

(

B
N–1∑

j=1

h(j)ε2uβ2
j

)β1

≤ ABβ1 C20(N2 – 1)εβ1
2

6

(N–1∑

j=1

h(j)

)β1

‖u‖β1β2

= ABβ1 C20

(
N2 – 1

6

)β1+1

ε
β1
2 ‖u‖β1β2

≤ ABβ1 C20ε
β1
2

(
N2 – 1

6

)β1+1

‖u‖ =
1
2
‖u‖, ∀n = 0, N .
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Therefore ‖u‖ ≤ 1
2‖u‖, so

‖u‖ = 0. (29)

In addition

vn ≤ Q2n(u, v) =
N–1∑

i=1

G2(n, i)g(i, ui, vi)

≤ B
N–1∑

i=1

h(i)ε2uβ2
i ≤ Bε2(N2 – 1)

6
‖u‖β2 , ∀n = 0, N . (30)

By (29) and (30) we deduce that ‖v‖ = 0, and then ‖(u, v)‖Y = 0, which is a contradiction
because ‖(u, v)‖Y = r2 > 0. Then (u, v) �≤ Q(u, v) for all (u, v) ∈ ∂Br2 ∩ P. By Theorem 2.3(a),
we conclude that

i(Q, Br2 ∩ P, P) = 1. (31)

Because Q has no fixed points on ∂Br2 ∪ ∂BR2 , by (27) and (31), we deduce that

i
(
Q, (BR2 \ Br2 ) ∩ P, P

)
= i(Q, BR2 ∩ P, P) – i(Q, Br2 ∩ P, P) = –1.

So the operator Q has at least one fixed point (u2, v2) ∈ (BR2 \Br2 )∩P, with r2 < ‖(u2, v2)‖Y <
R2, which is a positive solution for our problem (S)–(BC). �

Theorem 3.3 Assume that assumptions (H1), (H2), (H3), (H5), and (H7) hold. Then prob-
lem (S)–(BC) has at least two positive solutions.

Proof By using (H7), for any (u, v) ∈ ∂BN0 ∩ P, we obtain

Q1n(u, v) ≤ A
N–1∑

i=1

h(i)f (i, N0, N0) <
3AN0

(N2 – 1) max{A, B}
N–1∑

i=1

h(i) ≤ N0

2
, ∀n = 0, N ,

Q2n(u, v) ≤ B
N–1∑

i=1

h(i)g(i, N0, N0) <
3BN0

(N2 – 1) max{A, B}
N–1∑

i=1

h(i) ≤ N0

2
, ∀n = 0, N .

Then we deduce

∥
∥Q(u, v)

∥
∥

Y =
∥
∥Q1(u, v)

∥
∥ +

∥
∥Q2(u, v)

∥
∥ < N0 =

∥
∥(u, v)

∥
∥

Y , ∀(u, v) ∈ ∂BN0 ∩ P.

Because Q has no fixed points on ∂BN0 , by Theorem 2.1 we conclude that

i(Q, BN0 ∩ P, P) = 1. (32)

On the other hand, from (H3) and (H5), and the proofs of Theorems 3.1 and 3.2, we
know that there exist a sufficiently r1 > 0 (r1 < N0) and a sufficiently large R2 > N0 such
that

i(Q, Br1 ∩ P, P) = 0, i(Q, BR2 ∩ P, P) = 0. (33)
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Because Q has no fixed points on ∂Br1 ∪ ∂BR2 ∪ ∂BN0 , by relations (32) and (33), we obtain

i
(
Q, (BR2 \ B̄N0 ) ∩ P, P

)
= i(Q, BR2 ∩ P, P) – i(Q, BN0 ∩ P, P) = –1,

i
(
Q, (BN0 \ B̄r1 ) ∩ P, P

)
= i(Q, BN0 ∩ P, P) – i(Q, Br1 ∩ P, P) = 1.

Then Q has at least one fixed point (u1, v1) ∈ (BR2 \ B̄N0 ) ∩ P and has at least one fixed
point (u2, v2) ∈ (BN0 \ B̄r1 ) ∩ P. Therefore, problem (S)–(BC) has two distinct positive so-
lutions (u1, v1), (u2, v2). �

Remark 3.1 In (H3), if a(v) = vp with p ≤ 1 and b(u) = uq with q > 0, the condition from
(H3)(c) is satisfied if pq < 1. In (H5), if c(v) = vp with p ≤ 1, and d(u) = uq with q > 0, the
condition from (H5)(c) is satisfied if pq > 1.

Examples
(1) We consider f (n, u, v) = n

n+1 (1 + e–(u+v)) and g(n, u, v) = (1 + e–n)uθ for
(n, u, v) ∈ {1, . . . , N – 1} ×R+ ×R+. For a(v) = vp with p ≤ 1, and b(u) = uq for q > 0
and pq < 1, then assumptions (H3) and (H4) are satisfied if q > θ and α2 > θ . For
example, if θ = 5

4 , p = 1
3 , q = 4

3 , α1 = 1
3 , and α2 = 3, we can apply Theorem 3.1, and we

deduce that problem (S)–(BC) has at least one positive solution.
(2) We consider f (n, u, v) = (1 + e–u)vθ1 and g(n, u, v) = (1 + e–v)uθ2 for

(n, u, v) ∈ {1, . . . , N – 1} ×R+ ×R+. For c(v) = vp with p ≤ 1, and d(u) = uq for q > 0
and pq > 1, then assumptions (H5) and (H6) are satisfied if p < θ1, q < θ2, β1 < θ1,
and β2 < θ2. For example, if θ1 = 4, θ2 = 2, p = 3

5 , q = 9
5 , β1 = 3, and β2 = 1

3 , we can
apply Theorem 3.2, and we conclude that problem (S)–(BC) has at least one positive
solution.
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