Yang et al. Advances in Difference Equations (2018) 2018:469 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-018-1927-x a SpringerOpen Journal

RESEARCH Open Access

. . @CrossMark
A novel improved extreme learning

machine algorithm in solving ordinary
differential equations by Legendre neural
network methods

Yunlei Yang', Muzhou Hou' @ and Jianshu Luo?

“Correspondence:

houmuzhou@sina.com Abstract

'School of Mathematics and . . .

Statistics, Central South University, This paper develops a Legendre neural network method (LNN) for solving linear and
Changsha, China nonlinear ordinary differential equations (ODEs), system of ordinary differential

Full list of author information is equations (SODEs), as well as classic Emden—Fowler equations. The Legendre

available at the end of the article L -
polynomial is chosen as a basis function of hidden neurons. A single hidden layer

Legendre neural network is used to eliminate the hidden layer by expanding the
input pattern using Legendre polynomials. The improved extreme learning machine
(IELM) algorithm is used for network weights training when solving algebraic
equation systems, and several algorithm steps are summed up. Convergence was
analyzed theoretically to support the proposed method. In order to demonstrate the
performance of the method, various testing problems are solved by the proposed
approach. A comparative study with other approaches such as conventional methods
and latest research work reported in the literature are described in detail to validate
the superiority of the method. Experimental results show that the proposed Legendre
network with [ELM algorithm requires fewer neurons to outperform the numerical
algorithm in the latest literature in terms of accuracy and execution time.

Keywords: Legendre polynomial; Legendre neural network; Improved extreme
learning machine; ODEs; Classic Emden-Fowler equation

1 Introduction

Many problems encountered in science and engineering, for example, physics, chemistry,
biology, mechanics, astronomy, population, resources, economics, and so on, are related
to a mathematical model in the form of differential equations. Generally, the analytical ex-
pressions of mathematical solutions for practical problems do not exist or are difficult to
find. Therefore, it is necessary to study the numerical method of solving differential equa-
tions. This means calculating approximate value y; of exact solution y(x;) for differential
equations at discrete points x;,i =0, 1,... in the solution domain.

For a long time, many numerical methods were proposed for solving ODEs [1], includ-
ing single- and multi-step methods; single-step methods include Euler first order method
(EM) [2], second order Runge—Kutta (R-K) method inspired by Taylor’s expansion, Suen
third order R—K method (Suen-R-K3), the classic fourth-order R—K method (R-K4) [3—

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.

https://doi.org/10.1186/s13662-018-1927-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1927-x&domain=pdf
http://orcid.org/0000-0001-6658-2187
mailto:houmuzhou@sina.com

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 2 of 24

5], etc. In addition, in order to obtain high accuracy, based on the numerical integration
method, a lot of linear multi-step methods were proposed, such as Adams implicit for-
mulas [6], methods based on Taylor expansion [7], prediction—correction algorithms [8],
shooting methods [9], difference methods [10], etc. The numerical methods for solving
boundary value problem (BVP) have many mature research results, with high calculation
accuracy, but there is a problem that with increasing sample size, the execution time in-
creases rapidly.

With the development of artificial intelligence and computer technology, more and more
researchers have developed a keen interest in neural network methods. Neural networks
have been used in many fields such as pattern recognition [11], graphics processing [12],
risk assessment [13], control systems [14], forecasting [15—18], and classification [19],
showing wide application prospects. Based on the advantages of neural network meth-
ods, the use of neural network function approximation capabilities [20—22] has led to the
development of a number of adopted neural network model for solving differential equa-
tions. The neural network methods for solving differential equations mainly include the
following categories: multilayer perceptron neural network [23—28], radial basis function
neural network [29-31], multi-scale radial basis function neural network [32—35], cellular
neural network [36, 37], finite element neural network [38—46] and wavelet neural net-
work [28]. The main research focuses on two parts: the construction of the approximate
solution and the weights training algorithm.

Approximate solutions of differential equations are often constructed by selecting dif-
ferent activation functions: Meade and Fernandez [47, 48] used a hard limit function as
an activation function to construct the neural network model; Lagaris and Likas [23] pro-
posed that multi-layer perceptrons can be used to construct approximate solutions; a hy-
brid technique for constructing the neural network was studied by Ioannis and Tsoulos
[49]; Mall and Chakraverty [50] used a Legendre polynomial as an activation function to
construct an approximate solution; Xu Liying, Wen Hui and Zeng Zhezhao [51] proposed
using a triangular basis function as an activation function to construct approximate solu-
tions for solving ODEs. Regarding the research on network weights training optimization
algorithm, we mention Reidmiller and Braun [52] who proposed RPROP algorithm based
on local adaptation; Lagaris and Likas [23] proposed using DE-evolutionary algorithm to
train the weights in the neural network model of partial differential equations; Malek and
Shekari Beidokhti [53] presented an optimization algorithm for hybrid neural network
model; Rudd and Ferrari [54] analyzed the constrained integral method (CINT) combin-
ing the classical Galerkin method with the constrained BP process; Lucie and Peter [55]
proposed genetic algorithms for solving a neural network model.

This paper presents a novel Legendre neural network method with improved extreme
learning machine algorithm for solving several types of linear or nonlinear differen-
tial equations. Candidate solutions are expressed by using Legendre network. With the
boundary conditions taken into account, the problem of solving differential equations is
transformed into that of nonlinear algebraic equation systems. We call this method for
training network weights the improved extreme learning machine algorithm. Conver-
gence analysis, numerical experiments and a comparative study show the superiority of
the present method to other classical methods or methods in the recent literature. We
believe that the proposed method may be the first to use Legendre neural network model
with I[ELM algorithm in solving differential equations.

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 3 of 24

The aim and motivation of the present method is to propose a new Legendre neural
network with IELM algorithm to solve differential equations such as linear or nonlinear
ordinary differential equations, system of ordinary differential equations, and singular ini-
tial value Emden—Fowler equations. IELM algorithm is used here for training the network
weights. The advantages of the proposed approach are as follows:

« It is a single hidden layer neural network—by randomly choosing of the input layer

weights, we only need to train the weights of the output layer.

« It is easy to implement and runs quickly.

+ The improved extreme learning machine algorithm is an unsupervised learning

algorithm, and we use no optimization technique.

+ Calculation accuracy is higher than for other numerical methods presented in the

recent literature.

The organization of this paper is as follows: we give a description of the problem to
be solved in the next section. Section 3 talks about constructing Legendre neural net-
work for approximating and solving ODEs. IELM algorithm for training network weights
is proposed and several algorithm steps are summed up in Sect. 4. In Sect. 5, convergence
analysis of the proposed Legendre network is verified. We provide many numerical results
to verify the effectiveness of the algorithm and its superiority in performance in Sect. 6.

Finally, in Sect. 7 we present some conclusions and directions for future research.

2 Description of the problem

We first introduce the general form of the following ordinary differential equations.

2.1 Second-order ordinary differential equations
We usually describe two-point BVP of second-order ODEs in the following form:

Y =fx9y)
J’(ﬂ) =aq, _y(b) =0y,

a<x<b. (1)

2.2 First-order system of ordinary differential equations

Let us use the following formula to represent the first-order SODE:

y; :ﬁ(x:yl,yb cee ,yn’)
yi(a) = o,

a<x<b(i=0,1,...,n). (2)

We know that first-order ODEs is a particular case of a system of ordinary differential

equations (2).

2.3 Higher-order ODEs and higher-order SODE problem
Higher-order ODEs have the general form as below:

Y = 6,5, 5,5,y D),

a<x<bh. (3)
ya)=ap, Y(a)=a1,....,5" V(a) = a1,

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 4 of 24

If we make the transformation y; = y,95 = ¥/,...,9, = "V, the higher-order ODEs
change to the following SODE:

i =92
Y2 =Y3
. (4)
y; :f(x’y’y/’ e ’y(n_l)) =f(x,)’1,y2, o :yn);
where the initial conditions are y;(a) = o, ¥2(a) = a1, ..., y4(4) = €;1-
If for a higher-order SODE composed of two higher-order ODEs
& = o, o, %ok, g,y Ly D),
(n) = g(x, x/’x//’ . ,x(m—l), , /, //’ o (n-1) ,
7 =gl $Y Yy) a<x<b 5)
x(a)=ay, ®(a)=o1,...,2" D (a) = o1,
@) =, ¥(@) = ety (@) = pinot,
we select state variables y1 = 4,92 = &', ..., ¥ = X" D Y1 = Y, Vime2 = Voo os Yimen = 7Y,
then the above system of higher-order ODEs can be expressed as:
Y1 =52
Yy =3
Von =L EYLY20 o Yoo Y1y - Ymn)s a<x<b (6)
Vrme1 = Yms2s
J’;nm :g(t)y17y21 oo 7ymr_ym+lv e ;ym+n);

with initial conditions y;(a) = «;_1,i = 1,2,...,m + n.
Considering the same notation as that of Jose [56], we can describe the above linear or

nonlinear ordinary differential equations in the following general form:

Ly(x) =f(x) inl (7)

with the initial or boundary conditions

By(x) =a ondl, (8)

where £ and B are differential operators on the interval I; y(x) denotes the vector to be
found, f(x) is a linear or nonlinear source term, which depends on x, y(x) and its deriva-

tives; a denotes the value of y(x) and its derivatives at the end points of interval 1.

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 5 of 24

By established the ODEs problem, differential equations (7) and (8) can be transformed

into a constrained optimization problem in the following form:

minimize

argmin|| Ly(x) - £(x) | ©
subject to

| By(®) - | = 0. 1o

3 Legendre basis function neural network for approximating and solving ODEs
3.1 Legendre basis function neural networks and approximation

In this subsection, employing the recursive properties of Legendre polynomials, we will
discuss construction of approximate solutions based on Legendre basis function neural
network.

Theorem 1 Suppose that the vector P(x) is defined as P(x) = [Po(x), P1(x),...,Pns1(x)], in
which P,(x),n=0,1,...,N + 1 is the nth order Legendre polynomial in the interval [0,1],
and let P'(x) be defined as P’'(x) = [Py(x), P} (%), ..., Py, (x)], where P(x),n=0,1,...,N + 1
is the derivative of the nth order Legendre polynomial P, (x). Then P’'(x) = P(x)M, where M
is the Legendre operational matrix given by

010 1 0 1 0 1
003 030 3 0
000 505 0 5
000070 7 0
M=10 000 09 o 9
000000 0 2n-1
|0 0 0000 0 O 0 d(N+2)x(N+2)

Proof The derivatives of Legendre polynomials satisfy the recurrence relation
P (x) =P, (%)= (2n+1)P,(x), (11)
and from this property, we can easily draw the conclusion. O

Theorem 2 For any continuous function y : [a,b] — R, there is a natural number N, con-
stants a,, by, B, (n=0,1,...,N), and Legendre polynomials Py(x), P1(x), ..., Py (x), such that
the Legendre neural network with N + 1 neurons is given by

N
YINNG) = Y BuPal@nx + by), (12)
n=0
YLNN S an approximation of y, and

N
¥@) = BuPulanx + by)

n=0

ly() = yian() || = <e. (13)

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 6 of 24

3.2 Legendre basis function neural networks for solving ODEs

Legendre basis neural networks consist of three layers: an input layer, a hidden Legendre
basis function layer and an output layer. The output of Legendre basis neural network for
general differential problem described in (7) is as follows:

N
YLNN(x) = an(ﬂnx + bn)ﬁr (14')

n=0

where a, is a weight connecting input to the nth hidden node, b, is the bias of the nth
hidden node, B is the hidden layer-to-output layer weight vector.
Substituting the approximate solution (14) into (7) and boundary conditions (8), we can

obtain an equation system of weights 8, and the new equation system is

Lyinn(x) =f(x) inl,
(15)
Byinn(x) = on dl.

Using a discretization of interval I = {x; : x; € [,i = 0,1,..., M}, define f; = f(x;). Then the
weights a,, b,, B can be solved for from the following system of equations:

Lo Palnii + by) f
: Bl=1]---]. (16)
B(Zi\io Pn (anxboundary + bn)) o

Let us take the following SODE as an example:

Y+ &y + &)y = fix),
Vo + @)y + ha(x)y, = fox), a=<x=<b. (17)

ya) =, y2(a) = aa,
Assume that the weight connecting input to the nth hidden node is 1, and the bias of

the nth hidden node is 0. Then the approximate solutions y1;nn, y21nn of the SODE are
given as below:

N

YINN®) = Y BiuPau() = P(x)B1, (18)
n=0
N

Y2 () =) BonPu(®) = P(x)a, (19)
n=0

where Bi = [Bi0, Bi1s---» Bin]’s B2 = [B20, Ba1s- .., Ban]”. By Theorem 1, we can rewrite
problem (17) as:

(P(x)M + g1(x)P(x)) 1 + g2(¥)P(x) B2 = f1(x),
h1(x)P(x)B1 + (P(x)M + hy(x)P(x)) B2 = f2(x),
P(a)B1 = o,
P(a)B = as.

(20)

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 7 of 24

Noting that x; = @ + 244, = 0,1,...,M, and defining

™
[wi1(x0), wia(xo) | [fi(xo) |
w1 (%a1), wia(Xar) Si(xar)
H= wa1 (o), Waa(%0)) B = B1 ’ T = JSalxo) ,
: Ba :
war (%a1), Waa (Xar1) Salxar)
W31, W32 (251
Wab Wa2 | opriayx(an+2) L 9“2 Joumsxa

where

w1 (x) = P(X)M + g1 (x)P(x), Wiz = g2 (x)P(x), war = 1 (x)P(x),
w(x) = P()M + hy(x)P(x), wa1 = P(a),

w3z = War = (0)v+1)x15 Wao = W31,
we can rewrite equation (20) in the form:
Hp =T. (21)

By solving the new system equation (21), the unknown weights of the Legendre neural
network are obtained.

Generally, by using the Legendre basis function neural network, the approximate solu-
tion of ODEs can be constructed. Then substituting the true solution of the problem by
the approximate solution and its derivatives, we can obtain a system equation for finding

network weights; the process is shown in Fig. 1.

4 |ELM algorithm for training the Legendre neural networks
There are many numerical algorithms for solving system equation (21). In this paper, fol-
lowing the ELM algorithm proposed by Huang Guangbin [57], we use IELM algorithm to

train the Legendre network.

Theorem 3 The system equation HB =T is solvable in the following several cases:
() If matrix H is a square invertible matrix, then = H™'T.
(I1) If matrix H is rectangular, then B = H'T, and B is the minimal least-squares
solution of HB =T, that is, § = argmin |HB - T/|.
(1) IfH is a singular matrix, then 8 = H'T, and H' = HT (A1 + HHT)™1, A is
regularization coefficient, which can be set according to a specific instance.

Proof For the proof of the theorem we refer to the related facts about the generalized
inverse matrix in matrix theory [58] and the paper by Guang-Bin Huang [57].
According to Theorem 2, and as in the article of Guang-Bin Huang [57], when using

extreme learning machine (ELM) algorithm to solve neural network model, that is, when

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 8 of 24

HpP=T

|/3 =argmin |[HS —T| |

Input layer Hidden layer Output layer

Figure 1 Neural network model for SODE based on Legendre polynomial

solving HB = T, the number of hidden neuron nodes must be less than or equal to the
sample size, that is, N < M.

But by matrix analysis theory, if matrix H is rectangular, there exists a 8, such that it
is the minimal least-squares solution of HB =T, that is, 8 = argmin ||[HS — T||. Here, H
is a rectangular matrix, and the number of hidden neuron nodes does not have to be less
than or equal to the sample size; we call this improved algorithm for solving HB = T the
improved extreme learning machine (IELM).

The steps for solving ODEs using Legendre network and IELM algorithm are as follows:

Step 1. Discretize the domainasa=xp<x; < --<xy=b,x;,=a + bM;“i,i =0,1,...,M,
and construct an approximate solution by using Legendre polynomial as an activation
function, that is, ypnun(x) = fo:o BuP,(x);

Step 2. At discrete points, substitute the approximate solution y;nn(x) and its derivatives
into the differential equation and its boundary conditions, and obtain the system equation
HB=T;

Step 3. Solve the system equation HB = T by IELM algorithm introduced in Theorem 3,
and obtain the network weights g = H' T, B = arg min || HB — T||;

Step 4. Form the approximate solution as y nn(x) = Zi,v:o B.P,(x) =P(x)B. O

5 Convergence analysis
In this section, we will verify the feasibility and convergence of the LNN method in solving
differential equations by proving another theorem.

Theorem 4 Given a standard single layer feedforward neural network with n + 1 hidden
nodes and Legendre basis function Pi(x) : R — R,i = 0,1,...,n, suppose that the approx-
imate solution of one-dimensional differential equations is given by (14). If we have any
m + 1 distinct samples (x, £), for any a,, b, randomly chosen from any intervals of R, respec-
tively, according to any continuous probability distribution, then the hidden layer output
matrix H of Legendre network is invertible and |HB — T|| = 0.

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 9 of 24

Proof According to Legendre network, for any m + 1 arbitrary and distinct samples (x, f),
with x =[x, ..., %)%, £ = [fo,...,.fu] T, let us consider the (i + 1)th column of the Legendre
hidden layer output matrix c(b;), c(b;) € R"*!, and suppose that b; € I, where [is an open
interval of R, and

c(by) = [Pi(aixo + bi), Pi(axy + by),..., Pi(@ixm + b;) | h (22)

then following the proof of Huang Guangbin [57], we can easily prove by contradiction
that the vector ¢ does not belong to any subspace whose dimension less than m + 1.

We assume that a; is generated randomly based on a continuous probability distribu-
tion, for any k # k', and we have a;x; # a;xy . Suppose that ¢ belongs to an m-dimensional

subspace and vector « is perpendicular to this subspace. Then we have

(et c(bi) — c(a)) = g - Pi(do + bi) + ay - Pildy + by) + - --

+ 0y - Pi(dy + b)) —c=0, (23)

where dj = a;x, k=0,1,...,mand ¢ = « - c(a), so we may as well assume «,, #0, and (23)

can be rewritten as

m—-1

Pi(dy + b)) ==y yiPildi + bi) + clay, (24)
k=0

where yi = ar/aty,, k = 0,...,m — 1, by the infinite differentiability of the function on the
left-hand side of (24). Calculating the derivatives of b; on both sides, we obtain

m-1
Pdy+b) ==Y vl di+b), 1=1,...mm+1,.., (25)
k=0

where the number of coefficients yx is less than the number of equations /, which produces
a contradiction, and so ¢ does not belong to any subspace whose dimension less than 1+ 1.
This means that for any a,, b, randomly chosen from any intervals of R, such as a, =
1,b, = 0, according to any continuous probability distribution, the column vectors of H
can be made of full rank with probability one, which validates the above theorem.
Moreover, there exists an # < m, so that matrix H is rectangular, and given any small
positive value ¢ > 0 and Legendre activation function P;(x) : R — R, for m arbitrary distinct
samples (x, f), and for any a,, b, randomly chosen from any intervals of R, according to any
continuous probability distribution, we have ||H,,xn 8,1 — fux1ll < €. O

6 Numerical results and comparative study

Numerical experiments were conducted to verify the effectiveness and superiority of the
Legendre network with IELM algorithm. The new scheme was tested on linear differential
equations (such as first order, second order ODEs, and SODE) and nonlinear differential
equations. A comparative study with other approaches is also described in this section, in-
cluding traditional methods and latest research works. We will discuss a differential equa-

tion appearing in practice (such as Emden—Fowler type equation) to validate the proposed

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 10 of 24

Legendre neural network with [ELM algorithm and will show that this method is very en-
couraging at the end of this section.

All numerical results are obtained using MATLAB R2015a, on a computer with INTEL
Core 17-6500U CPU, 4 GB of memory, 512 GB SSD and WIN10 operating system.

We use mean absolute deviation (MAD) to measure the error of numerical solution:

1
MAD = —(A1+ A2+ ---+ Am), (26)
m
where A1, A2,..., Am is the absolute error at each discrete point.

6.1 Experimental results
Example 1 First, we consider the initial value problem of ODEs expressed as

, cos(x) 1
+ = ,
q sin(x) 4 sin(x)
3
1) = .
YW= 50
This problem has been solved in [1, 2], and the exact solution is y(x) = ifn*(i;

Example 2 The second problem is given by
1 _x
¥+ sy=e’ cos(x),
y(0)=0
and considered on the interval [0, 2]. The exact solution is y(x) = e 5 sin(x).

Example 3 For the third problem, we consider

, (1+ 3x?) 3 x% + 3%
Yy+lx+ ———= |Jy=x"+2x+ —,

1+x+x3 1+x+ax3
J’(O) = 1!
a2
which has the exact solution y(x) = 1‘;2;3 + %2 on the interval [0, 1].

Example 4 The last initial value problem of ODEs is as below:

y' —sin(x)y = 2x — 4% sin(x),

¥(0) = 0.
It has been solved in [0, 1], with the exact solution being y(x) = x%.

Figures 2 and 3 show the numerical solutions and absolute errors in Examples 1-4. The

numerical results are obtained by considering » = 10, m = 30.

Yang et al. Advances in Difference Equations

(2018) 2018:469

at]
z
>

38 1

364 1

34 . . .
1 12 14 16 18 2
X X
(a) Example 1 (b) Example 2

X X
(c) Example 3 (d) Example 4

Figure 2 Comparison between exact and LNN results for first-order ODEs

"o 02 04 06 08 1 0 02 04 06 08

-8 -1
x10 5 x10

Y
il

-
o
p——
—
I
=T
TSy

abs(y(x)-exact(y(x)))
»
k¢
abs(y(x)-exact(y(x))

abs(y(x)-exact(y(x)))
3
abs(y(x)-exact(y(x)
R -3

P
i [\
Y Py Vo j

0 P . . L * ot A L . .

=
%
)
%
Vad

0 02 04 06 08 1 0 02 04 06 08
X %
(c) Error of example 3 (d) Error of example 4

Figure 3 The absolute error for first-order ODEs

Example 5 Here we consider the second-order ODEs given as follows:

Y +xy —4dy = 124% — 3,

y(O)ZO» y(1)=2

with the interval being [0, 1], and the exact solution y(x) = x* + x.

Page 11 of 24

Yang et al. Advances in Difference Equations

(2018) 2018:469

2 1.5
* LNN 1k * LNN "
15f Exact Solution Exact Solution ***ik‘*
0.5 *skf*]
= —_ M**
Z 1 X or A
> > #
el
**** 05 ™
05F M*sk et
-1
**M
0 . . . \ 15 A .)
02 04 06 08 0 05 1 15
X X
(a) Example 5 (b) Example 6
0.8 15
* LNN * LNN
06 Exact Solution 1t Exact Solution ME
041 4
= Z o5 *****
= : = ok
0.2} M***
Jrater 0 JekRRAHH
N 23 ot
02 4 : 05 . k . s
02 04 06 08 0 02 04 06 08 1
X X
(c) Example 7 (d) Example 8
Figure 4 Comparison between exact and LNN results for second-order ODEs

Example 6 The next problem is given by

!

y

-y = -2sin(x),

¥(0) = -1, y(%) =1

and considered on the interval [0

bid

'

], with the exact solution being y(x) = sin(x) — cos(x).

Example 7 One more problem to be solved is

Y +2y +y=x>+3x+1,

$0)=0, y1)=-e'+1,

which is considered on the interval [0, 1], and the exact solution is y(x) = —e(™ + x> —x + 1.

Example 8 As the last problem we consider the following problem:

1 1 / 1 —%‘ ()
+=y +y=—=e75cos(x),
J 53’ y 5

y(0)=0, y(2)=e 3 sin(2),

defined on the interval [0,2] and having the exact solution y(x) = 75 sin(x).

Figures 4 and 5 show the numerical solutions and absolute errors in Examples 5-8. The

numerical results are obtained by considering » = 10, m = 30.

Page 12 of 24

Yang et al. Advances in Difference Equations

(2018) 2018:469

<10°13
= Ehemaabn N
a 25 ‘Q-"Va Y. .
S “
K] '3 'Y
k3] % ¥
g ®
315 % A
v
% X /
S %, &
2z x
©o05f L
\ &
0 n n 1 " ﬂv
0 02 04 06 08 1
X
13 (a) Error of example 5
4 10
= b
= S]
x3 PN 41
s P ;i
g wg—oa‘f’ ¥ !
32 o \q *
,;? / " /
= ki X i
81 b % /?
L f \ *
oL : L #
0 02 04 06 08 1

X
(c) Error of example 7

Figure 5 The absolute error for second-order ODEs

<10

1.2
2 A ™
3 i PR
> L . «hr A | LW
;50.5 Iy il i K i
@ ! ’? PV e ¥ i \
Fo6f Foayog Mg Tog
¢) \
x |f ol w0
204574 % ! 1] Vi it it x4
@ p i : - o
a AN] vy ! Iy
@ goF w1 i i L]
'
#
0 ')
0 05 1 15
X
1010 (b) Error of example 6
4
Zal o
2x, ¥ %
R 4
B2 F A &‘ q
% PO }
= ib * * *
@D o4 % \ h . 4
al . / \
s ARy
W P
0 ; : N
0 05 1 15 2

(d) Error of example 8

Example 9 Next we consider the initial value problem of SODEs expressed as

Y1 + 291 + ¥ = sin(x),
¥y — 491 — 22 = cos(x),
71(0) =0, ¥2(0) = -3,

which has been solved in [0, 2], and the exact solution is

y1(x) = 2sin(x) + x,

ya(x) = =3 sin(x) — 2cos(x) — 2% — 1.
Example 10 One more problem is given by

Yy + 291 —y2 = 2sin(x),
Vo —y1 42y = 2(cos(x) - sin(x)),

y1(0) =2, ¥2(0) =3,

and it is defined on the interval [0, 2], with the exact solution being

y1(x) = 2™ + sin(x),

yo(x) = 2™ + cos(x).

Figures 6 and 7 show the numerical solutions and absolute errors in Examples 9-10. The

numerical results are obtained by considering » = 10, m = 30.

Page 13 of 24

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 14 of 24

" k
* NN *MW a— |
N Exact Solution H | 3 Exact Solution
Y j
— = *
X X *,
=27 1 S 5F *y 1
> > *
*.
6 ok
10 ***sn
A ***** EnamnE s
0 \ A . 38 . . A
0 05 1 15 2 0 05 1 15 2
x (a) Example 9 x
2 - - - - 3

*.
E * LNN * LNN
19 Exact Solution | Exact Solution
25 %*. 1
*x
I] *x
—~ 18 —_ *.
x x | %
| >

x * x
= Hop g 2 *x,
>, *o o
Foko *x
Fokok Ko
| Fhko | 15F *yy T
16 o ol
15 1
0 02 04 06 08 1 0 02 04 06 08 1
X (b) Example 10 X

Figure 6 Comparison between exact and LNN results for SODE

Example 11 Consider the nonlinear boundary value problem from [59]

1

y ¥ -2y%),

= ﬁ(
y1) =1, y(2)=4/3

with the exact solution y(x) = 2x/(x + 1).

Figure 8 shows the numerical solutions and absolute errors of Example 11. These nu-
merical results are obtained with # = 22, m = 20.

We also calculated all the test examples with different parameters. Tables 1 and 2 show
the mean absolute deviation and execution time of each example. The execution time in
Table 2 is the average time of 100 repetitions (in seconds). By analyzing the data of Tables 1
and 2, the best parameter value for each testing problem becomes evident, and we observe
that the execution time was only slightly affected by changing network parameters.

6.2 Comparative study

A comparative study with other approaches such as traditional methods and latest re-
search work is described in this subsection to verify the superiority of the proposed
method. We first compared our approach with some common traditional methods.

For test Examples 1-4, different methods such as Euler method (EM), Suen third-order
Runge—Kutta method (Suen-R-K3),classical fourth-order Runge—Kutta method (R-K4),
cosine basis function neural network based on gradient descent algorithm (CNN(GD))
and improved extreme learning machine algorithm (CNN(IELM)) were used. Tables 3
and 4 show the numerical results by all the methods mentioned above; they show that
LNN method has maximum accuracy and minimum execution time. Table 5 gives the
parameters of each algorithm.

Yang et al. Advances in Difference Equations

(2018) 2018:469

«10710 10-10
14 " T 7 3 - .
iR
~12f i ~25 #
z 1 'lﬂ'\ ﬁ‘: 1 z o
= r ;o\ ! 1 & Aetrfrdy
g [y g7 s |
@© 08F ¥ ¥ ' ! 1 @ i
§ /\,\ ‘g\ i Vo ql>§ 15]
= L/ * :] A
X064 3 P ! XA x strtrna®
= ¢ A 4 % 9 4t
= i ¥ ¢y ! \ ; * > 1 # j
w041 i ! 1 '3 3
2 PV 4 ¥ 2 *
s i Vo ®os ¥ 1
0.2 B Ry L 1 il
i * ¥ o
0 ¥ n L n 0 L n
0 05 1 15 2 0 05 1 15 2
X X
(a) Error of example 9
«12 -12
10 T T T T 3 10 T T T
4
/ k™
=57 1 =25 cf"* *x 1
2 * B & ¥
Taf ot o S af P '
R % J g \
8 af * P 1 315} N r
2 x / 2 t‘ A
= ¥ bl g # ¥
>~2F \ , 4 > 1F # Y ¥
z % P V)
® x /4 @ e \ i
11 » Z 1 05w %
. X K ¥
&y
0 : . s : 0 . " g :
0 02 04 06 08 1 0 02 04 06 08 1
X X
(b) Error of example 10
Figure 7 The absolute error for SODE
-3
14 T T T T 3210 T T
LNN
Exact Solution
135 E pen
i 25 / * g
¥ \
/ \
. B ! \
13 ; Q
i i
2F # | —
1 1
125 1 — i i
= i 1
s | R i)
g i ! 4
Z 12 R $ s i ¥ ! 4 B
= o ¥ i
= * 0 i]
2 oo i ¥
© I | H i
115 1 H .] 1
! \ | A
1ri ¥ i v
! ! i \
11f B i \| / *
s i i f ;
t i 1
! Vo i
05 [i
L 4 ! & i
1.05 \ g i
e X \
¥ i
o~
g L . . . o ! . L .
1 12 14 16 18 2 1 12 14 16 18 2
» 4 X
(a) Example 11 (b) Error of example 11
Figure 8 (a) Comparison between exact and LNN results; (b) Absolute errors of Example 11

Shooting method (SM), difference method (DM), and CNN(IELM) method were used
to calculate solutions in Examples 5-8. All calculation were taken over 100 sample points,
and the number of neurons was 10 for neural network. The mean absolute deviation and

Page 15 of 24

Yang et al. Advances in Difference Equations (2018) 2018:469

Table 1 Mean absolute deviation of test examples with different parameters

Example m=100 n=10
n=>5 n=8 n=10 m =50 m =200 m =500

Example 1 2.179822e-04 1.124613e-07 6.070510e-08 1.594745e-08 3.258493e-08 1.893462e-08
Example 2 2.898579e-05 8788694e-09 1.654316e-10 2375011e-11 8614644e-11 5.764976e-11
Example 3 2651596e-04 1352667e-06 2.191930e-08 2476702e-08 2.041171-08 1.950112e-08
Example 4 1.365455e-15 8406017e-14 2.180178e-12 9.360722e-13 3.13950e-12 5474343e-12
Example 5 4.048192e-15 1.721054e-14 1911390e-13 1.914236e-13 2.815815e-13 3.639675e-13
Example 6 1.785691e-06 3.153652e-09 6.852182e-12 4.679648e-12 1.464149e-11 1.074478e-11
Example 7 1.535907e-05 2.385380e-11 1.783986e-13 8.363132e-14 9.388591e-14 3.149325e-13
Example 8 0.719036e-04 1.792439e-08 8.837987e-11 1.108446e-10 9.767964e-11 1.867956e-10
Example9 y; 1.011548e-04 1.198037e-08 2.726976e-11 4.126236e-11 3.043601e-11 2.383795e-11

y> 1.696858e-04 2.137740e-08 4481164e-11 1.15183e-10 4.740707e-11 1.311124e-11
Example 10 y; 4.814629e-07 7.071364e-12 2296702e-12 2.432451e-12 2.747277e-12 1.456190e-12

Yo 2391016e-07 3228814e-11 1.79226%9e-12 8.192227e-13 6.997846e-12 5.358554e-12
Example 11 5.861896e-02 2.837823e-03 1.038392e-02 2.361003e-02 1.044330e-02 1.047949e-02

Table 2 Execution time of test examples with different parameters

Example m =100 n=10
n=>5 n=8 n=10 m =50 m =200 m =500

Example 1 0.0068 0.0073 0.0073 0.0073 0.0073 0.0077
Example 2 0.0057 0.0059 0.0065 0.0063 0.0063 0.0064
Example 3 0.0056 0.0059 0.0061 0.0060 0.0062 0.0068
Example 4 0.0037 0.0040 0.0040 0.0041 0.0042 0.0048
Example 5 0.0060 0.0063 0.0066 0.0063 0.0064 0.0071
Example 6 0.0056 0.0063 0.0062 0.0062 0.0061 0.0067
Example 7 0.0058 0.0059 0.0062 0.0060 0.0063 0.0067
Example 8 0.0057 0.0060 0.0061 0.0060 0.0062 0.0075
Example 9 0.0120 0.0121 0.0121 0.0122 0.0124 0.0132
Example 10 00118 00112 00114 00113 0.0117 0.0123
Example 11 0.0025 0.0030 0.0037 0.0033 0.0049 0.0082

Table 3 Mean absolute deviation of different methods for first-order ODEs

ODEs EM Suen-R-K3 R-K4 CNN(GD) CNN(IELM) LNN

Example 1 0.009438 7.199659e-08 3516257e-11 3.038010e-04 0.018023 6.070510e-08
Example 2 0.006143 2.556570e-08 2.508454e-11 5.306315e-04 0.010317 1.654316e-10
Example 3 0.003830 6.992166e-08 4.140991e-10 2.502357e-04 0.007621 2.191930e-08

Example 4 0.005874 4.650619e-09 2.364301e-11 2.463780e-04 0.010018 2.180179%-12

Table 4 Execution time of different methods for first-order ODEs

ODEs EM Suen-R-K3 R-K4 CNN(GD) CNN(IELM) LNN

Example 1 14122 43523 5.7430 57.2749 0.0311 0.0056
Example 2 1.4694 41127 58199 36168 0.0315 0.0106
Example 3 1.3024 3.9871 5.2435 75.1474 0.0268 0.0063
Example 4 1.2431 3.9994 5.3399 46.1268 0.0272 0.0043

execution time are shown in Tables 6 and 7. It is tempting to conclude that LNN method
has maximum accuracy, its execution time is less than that of the shooting and CNN
(IELM) methods, and the difference is not significant with the difference method.

We calculated 100 sample points for two SODE problems (Examples 9 and 10) using
EM, R-K4, CNN(IELM) methods; the number of neurons in the neural network method
is 10. Tables 8 and 9 show the experimental results. It is easy to conclude that LNN method
has maximum accuracy, its execution time is less than that of CNN(IELM) method, and
the differences are not significant with Euler and R-K4 methods.

Page 16 of 24

Yang et al. Advances in Difference Equations (2018) 2018:469

Table 5 Parameters of different methods

Methods Neurons (n) Sample size (m) Iterations Error sum (g) Moment (A)

EM - 100 100 - -

Suen-R-K3 - 100 100 - -

R-K4 - 100 100 - -

CNN(GD) 10 100 - 0.01 0.5

CNN(IELM) 10 100 - - -

LNN 10 100 - - -

Table 6 Mean absolute deviation of different methods for second-order ODEs

ODEs SM DM CNN (IELM) LNN

Example 5 3.630769e-10 1.838151e-05 0.004091 1.911390e-13

Example 6 5.590491e-11 1.046468e-05 0.004280 6.852182e-12

Example 7 1.794887e-11 1.282581e-06 0.003461 1.783986e-13

Example 8 1.110794e-09 1.439213e-05 0.001528 8.837987e-11

Table 7 Execution time of different methods for second-order ODEs

ODEs SM DM CNN(IELM) LNN

Example 5 0.0375 0.0060 0.0299 0.0064

Example 6 0.0365 0.0052 0.0330 0.0056

Example 7 0.0372 0.0051 0.0339 0.0057

Example 8 0.0371 0.0051 0.0294 0.0059

Table 8 Mean absolute deviation of different methods for SODE

ODEs EM R-K4 CNN(IELM) LNN

Example 9 3% 0.018838 2.247437e-10 0.005677 2.726976e-11
)% 0.046376 5.494596e-10 0.021612 4481164e-11

Example 10 3% 0.001791 1411037e-10 0.003651 2.296702e-12
)% 0.001202 1.041297e-10 0.006159 1.792269e-12

Table 9 Execution time of different methods for SODE

ODEs EM R-K4 CNN(IELM) LNN

Example 9 0.0155 0.0144 0.1182 0.0107

Example 10 0.0133 0.0140 0.1188 0.0104

The execution time for each algorithm in Table 4 is the average time of 30 repetitions,

while in Tables 7 and 9, we averaged over 100 times (results are in seconds).

By comparing with traditional methods, we testified the superiority of the new method

both in terms of calculation accuracy and execution time. In order to further prove the

superiority of the proposed method, a comparison with the latest reported methods is

done. The following three ODEs chosen for testing the proposed method are boundary

problems.

Example 12 The first problem chosen from [51] is

Yy =y-x*+1,

¥(0) =0.5

with x € [0,2] and the exact solution being y(x) = (x + 1) — 0.5¢".

Page 17 of 24

Yang et al. Advances in Difference Equations

(2018) 2018:469

107! T T T 108 T T T T
—-#-— Error in [46] /.f"\\
—-%-— BeNN error ?"f/ﬁ\ S .\«/m —ren
10°2F | —-#*-—LNN error ,/? i
A
- +
-~ * 9
, /)’ g 10
10°F o/ 3
T
104F E
10 10
= 5t a
= 10 3 X
b= =
kel ksl
2 2
$ 106F E $ 10M"F
= =
S =S
K] * K] !
s 107F 3 ©
10712
108F E
10°F 3 i
A 103 E
- ad] i
R
oL P g k
10 e E
- -
poae —-#-—BeNN error
—-#-— LNN error
10 1" L L L 10.1.2 L L L 1
0 05 1 15 2 0 02 04 06 08 1
X X
(a) Error comparison of example 12 (b) Error comparison of example 13
Figure 9 Error comparison of Examples 12 and 13

In our numerical experiment, the sampling parameter is m = 10, the result is shown
in Fig. 9(a). By comparison, the maximum error in [51] is 1.9e—2, the maximum error of
BeNN method in [60] is 2.7e-3, and the maximum error of the proposed LNN method
is 4.9e—10. It is easy to seen from Fig. 9(a) that LNN method can obtain higher solution
accuracy than the other two, which fully validates the superiority of LNN method with
IELM algorithm.

Example 13 The second differential equation is given by [61]
y'+y=2,
y(0)=1,5(1)=0

cos(1)-2
sin(1)

with the exact solution being y(x) = sin(x) — cos(x) + 2,x € [0, 1].

The sampling parameter in this test experiment is m = 10, the result is shown in Fig. 9(b).
By comparison, the maximum error of BeNN method in [60] is 7.3e-9, and the maximum
error of the proposed LNN method is 5.2e—12, so it is easy to seen from Fig. 9(b) that
LNN method can obtain higher accuracy solution than BeNN method in [60]. Considering
the method given by [61], the maximum error is 3.5e—2 with m = 50, while, using LNN
method, we are able to obtain a higher accuracy with maximum error 2.4e—13 by n = 10
neurons, which also fully validates the superiority of LNN method with IELM algorithm.

Example 14 We also test the SODE given by [49]

y; =cos(x), 1(0)=0,

Vo ==Y, ¥2(0) =1,

Page 18 of 24

Yang et al. Advances in Difference Equations (2018) 2018:469

1 1= 1
* LNN ** * LNN
Exact Solution f Exact Solution f
0.8 0.9 0.8
0.6 0.8 0.6
= = =
= S8 2
0.4 0.7 0.4
0.2 0.6 * LN 0.2
Exact Solution L
0 0.5 0
0 05 1 0 05 1 0 05 1
X X X
1.1 1
* LNN
1 H** Exact Solution £
0.8
0.9 e
0.6
Eos =
E 2
0.4
0.7
0.6 * LNN 02
Exact Solution L
0.5 0
0 05 1 0 05 1
X X
Figure 10 Comparison between exact and LNN results of Example 14

Vs = Y2, ¥3(0) =0,
Vi =3 y4(0) = 1,
Vs = Yar ¥5(0)=0

and its exact solution y1(x) = sin(x), y2(x) = cos(x),y3(x) = sin(x), ya(x) = cos(x), y5(x) =
sin(x), x € [0, 1].

As shown in Figs. 10 and 11, the sampling parameter is m = 10 in this study, and only
with 7 = 9 neurons. By comparison with the method proposed in [49] and BeNN method
in [60], the maximum errors are 2.3e—5 and 6.8e—8, the obtained maximum error of LNN
method with IELM algorithm is 4.0e—12, which fully validates the superiority of the new
proposed method.

6.3 Classic Emden-Fowler equation

Many problems in science and engineering can be modelled by Emden—Fowler equation.
A lot of attention has been focused on the numerical solution of Emden—Fowler type equa-
tion. In this subsection, we will apply the proposed alternative approach of Legendre neu-
ral network (LNN) with I[ELM algorithm to solve classic Emden—Fowler equation.

Example 15 Let us consider the classic Emden—Fowler equation given by [62]
2
Y+ =y +2y=0,
x

0 =1, »(0)=0,

Page 19 of 24

Yang et al. Advances in Difference Equations

(2018) 2018:469
-12 -12 -12
<1 %1 .
5 0 35 2 4 10
it ht
31 -\ I
=4 ¥ = ! = o
= A I I B =3 N
= I\ & 250 et bt it 1
> [> 7 \ > *
= \ = = 7o gy \
3 ;o = I ¥ A X 5 #
(;"3 ; \ 3 21 \ 7 % I\, g « ; \
¢ * 1 X ¥ \ Y X2 v
¢ / 2 ! v ? [E
=] X151 o = i
2 i{ * = ‘ \, = :
> d S ! 4 2 |
5 / B 1f! Y
Q / a i a1t
SN # @ © |/
/N / 05/ i
SN s I |
] 7 !
0 oty 0 0
0 05 1 0 05 1 0 05 1
X X x
-12 -12
10 x 10
3.5 3.5
i R
i it
4] !
=, O [e O &1
= i = FA
F257 1 .ﬁ_ 1 & 25 R .]
> i ¥y % | 2 « K d :
S L, \ i Y S RN \
C . o] . 5
x i \ [x | % \
@ ! v X : [} !]
K 15[! N i1 =1st! v
¥ | ¥ g & i
> i \ / > i
@ 1 o 5 4H
Q I \ 7 Q !
© l \'/ © |
05 * 05
3
0 d 0
0 05 1 0 05 1
X X
Figure 11 The absolute error of Example 14

where the exact solution is y = %,x €[0,1].

Here we choose 10 equidistant points in the domain [0, 1] to train the proposed Legendre
network and with 12 neurons. Figure 12 shows a comparison between the exact solution
and LNN results, and the absolute error at each point. Table 10 provides a more intuitive

comparison of the exact and numerical solution.

7 Conclusions
In this paper, we have presented a novel Legendre neural network to solve several linear

or nonlinear ODEs. A Legendre polynomial was chosen as a basis function of the hidden
neurons. We used Legendre polynomials to eliminate the hidden layer of the network by
expanding the input pattern. An improved extreme learning machine (IELM) algorithm
was used for network weights training when solving the algebraic equation systems. Con-
vergence analysis has proved the feasibility of this method. The accuracy of the proposed
method has been examined by solving a lot of testing examples, and the results obtained
by the proposed method have been compared with the exact solution. We found the pre-
sented method to be better. A comparative study has fully validated the superiority of the
new proposed method over other numerical algorithms published in the latest literature.
An application of the approach to solve the classic Emden—Fowler equation also shows
the feasibility and applicability of our method. From the presented investigation we can

see that the LNN neural network with IELM algorithm is straightforward, easily imple-

mentable and has higher accuracy when solving ODEs.

In addition, the neural network for solving ODEs and PDEs has been discussed a lot and
still has some potential to work on. The recent research articles such as [63—-66] have stud-

Page 20 of 24

Yang et al. Advances in Difference Equations

(2018) 2018:469

13
1 % T T T 25 10 T T
TR * NN
N Exact Solution PR S A
S i ~
N\ / Sy
0.95 " / B
! k2
\ N N
/
X /
- \ *
0.9 \\ i
X\ 1
\ |
\ ~ | i
_ = 1.5 i
0.85 ¥ > i
= \ 8 ‘
‘; \\ i i’
\ 3 i
08 * Z i
\\\ ® 1
\ i
\]
\ i
075 * i
\ 05 1
I
07F !
i
]
U
e b
0 02 04 06 08 0 02 04 06 08 1
X X
(a) Example 15 (b) Error of example 15
Figure 12 (a) Comparison between exact and LNN results; (b) absolute error of Example 15

Table 10 Exact and LNN neural network results

Absolute error

Input points xg Exact results LNN results
0 1 1 0
0.1 0.9966699984131 0.9966699984129 1.8e-13
02 0.9867198985254 0.9867198985252 22e-13
0.3 0.9702688457452 0.9702688457450 2.3e-13
04 0.9475135272247 0.9475135272245 2.3e-13
0.5 0.9187253698655 0.9187253698653 2.3e-13
06 0.8842466786034 0.8842466786032 22e-13
0.7 0.8444857748514 0.8444857748511 2.2e-13
038 0.7999112103978 0.7999112103976 2.1e-13
0.9 0.7510451462491 0.7510451462489 2.0e-13
1 0.6984559986366 0.6984559986364 1.8e-13

ied using neural network method to solve several fractional differential equations (FDEs).
We have never dealt with the numerical solution of FDEs using neural network method.
This will become an important research direction for us in the future. As mentioned in
many articles, a variety of phenomena in astrophysics and mathematical physics can be
described by Emden—Fowler equations, so this differential equation will also become a
research direction for us in the future. If we consider only one type of orthogonal poly-
nomial, there are some published papers as [67, 68], hybrid methods may also be a new

research direction.

Acknowledgements
The authors sincerely thank the reviewers for their careful reading and valuable comments, which improved the quality of

this paper.

Funding

This work was supported by the National Natural Science Foundation of China under Grants 61375063, 61271355,
11301549 and 11271378.

Page 21 of 24

Yang et al. Advances in Difference Equations (2018) 2018:469

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed to the draft of the manuscript, all authors read and approved the final manuscript.

Author details
'School of Mathematics and Statistics, Central South University, Changsha, China. 2College of Arts and Science, National
University of Defense Technology, Changsha, China.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 September 2018 Accepted: 9 December 2018 Published online: 19 December 2018

References

1.
2.

3.

10.
11.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

Han, X.: Numerical Analysis. Higher Education Press, Beijing (2011) (in Chinese)

Zhang, Q. Single-step method for solving the initial value problem of ordinary differential equations. Bull. Sci. Tech.
28(2),7-9(2012)

Wang, B.: Numerical solution of differential equations and Matlab implementation. J. Tongling Vocat. Tech. Coll. 10(3),
95-97 (2011)

. Wang, P, Yuan, H, Liu, P, et al.: Finite difference method and implicit Runge-Kutta method for solving Burgers

equation. J. Changchun Univ. Sci. Technol. 36(1), 158-160 (2013)

. Deng, C, Dai, Z, Jiang, S.: Higher-order explicit index Runge-Kutta method. J. Beijing Univ. Chem. Technol. 40(5),

123-127(2013)

. Li, M, Chen, H,, Zhang, Z. Fifth-order Adams scheme for solving first order ODEs. J. Shaoguan Univ. 34(12), 14-17

(2013)
Huang, Z, Hu, Z,, Wang, C..: A study on construction for linear multi-step methods based on Taylor expansion. Adv.
Appl. Math. 4(4), 343-356 (2015)

. Liu, D.: Contrast test of predictor-corrector method for fourth-order Adams—Bashforth combination formula.

J. Xichang Coll. 26(3), 43-46 (2012)

. Le, A: Shooting method in the application of ordinary difference equations boundary value problem. Sci. Mosaic 5,

247-249 (2011)

Li, S.: Finite difference method for ordinary differential equations and its simple application. Anhui University (2010)
Abdulla, M.B,, Costa, AL, Sousa, R.L.: Probabilistic identification of subsurface gypsum geohazards using artificial
neural networks. Neural Comput. Appl. 29(12), 1377-1391 (2018)

. Jiao, Y, Pan, X, Zhao, Z,, et al.: Learning sparse partial differential equations for vector-valued images. Neural Comput.

Appl. 29(11), 1205-1216 (2018)

Wanag, Y, Liu, M., Bao, Z, et al.: Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis
in power systems. Neural Comput. Appl. (2018). https://doi.org/10.1007/500521-018-3490-5

Qiao, J,, Zhang, W.: Dynamic multi-objective optimization control for wastewater treatment process. Neural Comput.
Appl. 29(11), 1261-1271 (2018)

. Armaghani, D.J, Hasanipanah, M., Mahdiyar, A, et al.: Airblast prediction through a hybrid genetic algorithm—ANN

model. Neural Comput. Appl. 29(9), 619-629 (2018)
Herndndez-Travieso, J.G,, Ravelo-Garcia, A.G., Alonso-Herndndez, J.B,, et al.: Neural networks fusion for temperature
forecasting. Neural Comput. Appl. (2018). https://doi.org/10.1007/500521-018-3450-0

. Hou, M, Liu, T, Yang, Y.: A new hybrid constructive neural network method for impacting and its application on

tungsten price prediction. Appl. Intell. 47(1), 28-43 (2017)

Xi, L, Hou, M., Lee, M, et al.: A new constructive neural network method for noise processing and its application on
stock market prediction. Appl. Soft Comput. 15, 57-66 (2014)

Dwivedi, AK: Artificial neural network model for effective cancer classification using microarray gene expression
data. Neural Comput. Appl. 29(12), 1545-1554 (2018)

Hou, M.: Han, X.: Constructive approximation to multivariate function by decay RBF neural network. IEEE Trans. Neural
Netw. 21(9), 1517-1523 (2010)

Hou, M., Han, XH.: The multidimensional function approximation based on constructive wavelet RBF neural network.
Appl. Soft Comput. 11(2), 2173-2177 (2011)

Hou, M., Han, X.: Multivariate numerical approximation using constructive L-2(R) RBF neural network. Neural Comput.
Appl. 21(1), 25-34 (2012)

Lagaris, 1.E, Likas, A.C.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.
Neural Netw. 9(5), 987-1000 (1998)

He, S., Reif, K, Unbehauen, R.: Multilayer networks for solving a class of partial differential equations. Neural Netw.
13(3), 385-396 (2000)

Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function
networks. Neural Netw. 14(2), 185-199 (2001)

Chua, LO, Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257-1272 (1988)

Ramuhalli, P, Udpa, L., Udpa, S.S.: Finite element neural networks for solving differential equations. IEEE Trans. Neural
Netw. 16(6), 1381-1392 (2005)

Li, X, Ouyang, J, Li, Q, Ren, J.: Integration wavelet neural network for steady convection dominated diffusion
problem. In: 3rd International Conference on Information and Computing, vol. 2, pp. 109-112 (2010)

Li, J, Luo, S, Qi, Y., Huang, Y.: Numerical solution of differential equations by radial basis function neural networks. In:
Proc. Int. Jt Conf. Neural Netw, vol. 1, pp. 773-777 (2002)

Page 22 of 24

https://doi.org/10.1007/s00521-018-3490-5
https://doi.org/10.1007/s00521-018-3450-0

Yang et al. Advances in Difference Equations (2018) 2018:469

30.
31
32.
33
34
35.
36.
37.
38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

Moody, J.E, Darken, C.: Fast learning in networks of locally tuned processing units. Neural Comput. 1(2), 281-294
(1989)

Esposito, A, Marinaro, M., Oricchio, D,, Scarpetta, S.: Approximation of continuous and discontinuous mappings by a
growing neural RBF-based algorithm. Neural Netw. 13(6), 651-665 (2000)

Park, J.,, Sandberg, .W.: Approximation and radial basis function networks. Neural Comput. 5, 305-316 (1993)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Pearson Education, Singapore (2002)

Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181-200 (1982)

Mai-Duy, N., Tran-Cong, T.: Approximation of function and its derivatives using radial basis function networks. Neural
Netw. 27(3), 197-220 (2003)

Manganaro, G., Arena, P, Fortuna, L.: Cellular neural networks: chaos. In: Complexity and VLSI Processing, pp. 44-45.
Springer, Berlin (1999)

Chedhou, J.C, Kyamakya, K. Solving stiff ordinary and partial differential equations using analog computing based
on cellular neural networks. ISAST Trans. Comput. Intell. Syst. 4(2), 213-221 (2009)

Takeuchi, J,, Kosugi, Y.: Neural network representation of the finite element method. Neural Netw. 7(2), 389-395
(1994)

Beltzer, Al Sato, T.: Neural classification of finite elements. Comput. Struct. 81(24-25), 2331-2335 (2003)

Topping, BH.V, Khan, Al Bahreininejad, A.: Parallel training of neural networks for finite element mesh
decomposition. Comput. Struct. 63(4), 693-707 (1997)

Manevitz, L., Bitar, A, Givoli, D.: Neural network time series forecasting of finite-element mesh adaptation.
Neurocomputing 63, 447-463 (2005)

Jilani, H., Bahreininejad, A., Ahmadi, M.T.: Adaptive finite element mesh triangulation using self-organizing neural
networks. Adv. Eng. Softw. 40(11), 1097-1103 (2009)

Arndt, O, Barth, T, Freisleben, B., Grauer, M.: Approximating a finite element model by neural network prediction for
facility optimization in groundwater engineering. Eur. J. Oper. Res. 166(3), 769-781 (2005)

Koroglu, S, Sergeant, P, Umurkan, N.: Comparison of analytical, finite element and neural network methods to study
magnetic shielding. Simul. Model. Pract. Theory 18(2), 206-216 (2010)

Deng, J, Yue, ZQ, Tham, L.G.,, Zhu, H.H.: Pillar design by combining finite element methods, neural networks and
reliability: a case study of the Feng Huangshan copper mine, China. Int. J. Rock Mech. Min. Sci. 40(4), 585-599 (2003)
Ziemianski, L.: Hybrid neural network finite element modeling of wave propagation in infinite domains. Comput.
Struct. 81(8-11), 1099-1109 (2003)

Meade, AJ. Jr, Fernandez, A.A.: The numerical solution of linear ordinary differential equations by feedforward neural
networks. Math. Comput. Model. 19, 1-25 (1994)

Meade, AJ. Jr, Fernandez, A.A.: Solution of nonlinear ordinary differential equations by feedforward neural networks.
Math. Comput. Model. 20(9), 19-44 (1994)

Tsoulos, 1.G,, Gavrilis, D., Glavas, E.: Solving differential equations with constructed neural networks. Neurocomputing
72(10-12), 2385-2391 (2009)

Mall, S., Chakraverty, S.: Application of Legendre neural network for solving ordinary differential equations. Appl.
Comput. 43,347-356 (2016)

Xu, LY, Hui, W, Zeng, Z.Z.: The algorithm of neural networks on the initial value problems in ordinary differential
equations. In: Industrial Electronics and Applications. 2007. Iciea 2007. IEEE Conference on, pp. 813-816 IEEE New
York (2007)

Reidmiller, M., Braun, H.: A direct adaptive method for faster back propagation learning: the RPROP algorithm. In:
Proceedings of the IEEE International Conference on Neural Networks, pp. 586-591 (1993)

Malek, A, Beidokhti, R.S.: Numerical solution for high order differential equations using a hybrid neural
network-optimization method. Appl. Math. Comput. 183(1), 260-271 (2006)

Rudd, K, Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial
neural networks. Neurocomputing 155, 277-285 (2015)

Aarts, L.P, Veer, PV.: Neural network method for partial differential equations. Neural Process. Lett. 14(3), 261-271
(2001)

Chaquet, JM,, Carmona, E.: Solving differential equations with Fourier series and evolution strategies. Appl. Soft
Comput. 12,3051-3062 (2012)

Huang, G.B, Zhu, QY. Siew, CK. Extreme learning machine: theory and applications. Neurocomputing 70(1),
489-501 (2006)

Dai, H., Matrix Theory. Science Press, Beijing (2001)

Mall, S., Chakraverty, S.: Application of Legendre neural network for solving ordinary differential equations. Appl. Soft
Comput. 43, 347-356 (2016)

Sun, H., Hou, M., Yang, Y, et al.: Solving partial differential equation based on Bernstein neural network and extreme
learning machine algorithm. Neural Process. Lett. (2018). https://doi.org/10.1007/511063-018-9911-8

Yazdi, H.S., Pakdaman, M., Modaghegh, H.: Unsupervised kernel least mean square algorithm for solving ordinary
differential equations. Neurocomputing 74, 2062-2071 (2011)

Chowdhury, M.S.H,, Hashim, |.: Solutions of Emden—-Fowler equations by homotopy-perturbation method. Nonlinear
Anal, Real World Appl. 10, 104-115 (2009)

Zuniga-Aguilar, CJ,, Coronel-Escamilla, A., Gomez-Aguilar, J.F, et al.. New numerical approximation for solving
fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J. Plus 133(2), 75
(2018)

Zuniga-Aguilar, CJ, Romero-Ugalde, H.M., Gomez-Aguilar, J.F, et al.: Solving fractional differential equations of
variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fractals
103, 382-403 (2017)

Rostami, F, Jafarian, A.: A new artificial neural network structure for solving high-order linear fractional differential
equations. Int. J. Comput. Math. 95(3), 528-539 (2018)

Pakdaman, M., Ahmadian, A, Effati, S., et al.: Solving differential equations of fractional order using an optimization
technique based on training artificial neural network. Appl. Math. Comput. 293, 81-95 (2017)

Page 23 of 24

https://doi.org/10.1007/s11063-018-9911-8

Yang et al. Advances in Difference Equations (2018) 2018:469 Page 24 of 24

67. Mall, S, Chakraverty, S.: Chebyshev neural network based model for solving Lane-Emden type equations. Appl. Math.
Comput. 247, 100-114 (2014)

68. Chaharborj, .S, Chaharborj, S.S., Mahmoudi, Y.: Study of fractional order integro-differential equations by using
Chebyshev neural network. J. Math. Stat. 13(1), 1-13 (2017)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods
	Abstract
	Keywords

	Introduction
	Description of the problem
	Second-order ordinary differential equations
	First-order system of ordinary differential equations
	Higher-order ODEs and higher-order SODE problem

	Legendre basis function neural network for approximating and solving ODEs
	Legendre basis function neural networks and approximation
	Legendre basis function neural networks for solving ODEs

	IELM algorithm for training the Legendre neural networks
	Convergence analysis
	Numerical results and comparative study
	Experimental results
	Comparative study
	Classic Emden-Fowler equation

	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

