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Abstract
In this paper, we consider the flocking problem for a discrete Cucker–Smale model
with packet loss. For describing the packet loss process, a more general condition
including four different cases is adopted in this paper. Then a sufficient condition for
achieving flocking under this condition is obtained.
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1 Introduction
Flocking of birds, schooling of fish and swarming of bacteria are three common phenom-
ena that we can observe in nature. The scientific reason behind flocking behavior is amaz-
ing and interests a lot of scientists from different research communities such as mathe-
matics, physics, computer science, and so on. In a flocking group, there are many agents,
organized in a coordinated motion by using information from their neighbors and simple
rules [1]. The study of flocking behavior has motivate many applications in engineering
such as the design of sensor network, the formation flight of unmanned aerial vehicle
(UAV) [2] and the team control of a multi-robot [3].

Research on flocking has continued throughout many decades. In 1980s, Reyolds pro-
posed the classical flocking model [4]. Then in 1995, T. Vicsek et al. [5] made a break-
through and established the famous Vicsek model to study flocking behavior of self-driven
particles by computer simulation. The theoretic analysis of Vicsek model for achieving
flocking is given by A. Jadbabaie, J. Lin and A. S. Morse [6]. In 2007, F. Cucker and S. Smale
established a new kind of model, the so-called Cucker–Smale (C–S, for short) model [7, 8],
on the basis of Vicsek model. This model reflects many more reality factors. In this model,
all agents determine their next velocity by calculating the weighted average of the speed
difference of their neighbors, while the weight is determined by the distance between the
agent and its neighbors. The study of the C–S model has received much attention, and
the model has been generalized by considering more factors such as time lag [9, 10] and
noise [11, 12]. Besides these factors, the connecting structure among the agents is yet an-
other important factor affecting the dynamics of the C–S system. For example, in [13, 14]
the authors considered the C–S model with switching topology. In [15, 16], the authors
considered the C–S model with hierarchies. C–S models with or without a leader were
considered in [17, 18].
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As we all know, the information structure is important in the study of collective dynam-
ics of a group of agents. In the original C–S model, it is assumed that each agent can sense
the distance between other agents and itself. Based on this assumption, the weights can be
determined. However, in a practical environment, this assumption is irrational. For exam-
ple, flocking flying birds may encounter a natural enemy. Thus, in this case, information
transmission between them gets broken. We called this phenomenon information packet-
loss. In [16, 19], the authors investigated the flocking behavior when the connections fail to
some degree. A binary-valued random process satisfying some additional condition was
usually applied to describe the uncertainty in the transmission of information. For exam-
ple, a Bernoulli random process was used in [19], while a random graph model was used
in [16]. Thus studying the information structure in Cucker–Smale model is an important
and valuable topic both from the theoretical and practical point of view.

In a recent paper by A. Cetinkaya, H. Ishii and T. Hayakawa [20], an interesting method
describing packet-loss was proposed and was used to study the cyber-security issues in
networked control of linear dynamical systems. The new method describing packet-loss
included many afore mentioned methods as special cases. The details will be shown in
Sect. 2. Motivated by the work by A. Cetinkaya et al., we investigate the flocking behavior
of the discrete Cucker–Smale model with a packet-loss process, which is described by a
new condition similar to that of A. Cetinkaya et al.

The contribution of this paper is that we give a sufficient condition to assure flocking
for the Cucker–Smale model with more general information packet-loss. An outline of this
paper is as follows. Section 2 introduces the discrete Cucker– Smale model with packet
loss, while Sect. 3 proposes a condition to describe the information packet-loss process
and gives the main results. Finally, we give some simulation examples to verify conclusions.

2 Problem formulation
We consider the following a discrete time Cucker–Smale model:

⎧
⎨

⎩

xi(k + 1) = xi(k) + hvi(k),

vi(k + 1) = vi(k) + h
∑n

j=1 aij(k)(vj(k) – vi(k)).
(1)

Here xi(k) ∈ R
3 and vi(k) ∈ R

3, with i = 1, . . . , n and k ∈ N0, are the position and velocity
of agent i at time kh, respectively; h > 0 is the time step, aij(k) is the weighted function
defined as follows:

aij(k) = ξij(k) · K
(1 + ‖xi(k) – xj(k)‖)α

, (2)

where α is the decay rate and K is the coupling strength between agents i and j. For each k,
ξij(k) is a random variable taking values 0 and 1, it characterizes the result of information
transmission attempts in each step. When ξij(k) = 1, the information transmission attempt
between agent j and i is successful at time kh, while ξij(k) = 0 indicates that agent i fails
to receive the information from agent j at time kh, in other words, a packet loss takes
place. Since the topology structure of the system is an undirected complete graph, we
have ξij(k) = ξji(k).

When ξij(k) = 1, in other words, no packed loss occurs, according to [7, 8], we have the
following definition.
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Definition 1 System (1) with connectivity coefficients (2) achieves flocking when all
agents’ velocities converge to a common one and the distance between each pair of
agents converges to a constant, i.e., for all i, j = 1, . . . , n, we have ‖vi(k) – vj(k)‖ → 0 and
‖xi(k) – xj(k)‖ → x∞ for some x∞ ∈R

3 when k → ∞.

Let the adjacency matrix be Ak = (aij(k))n×n. The Laplacian Lk of Ak is defined as Lk =
Dk – Ak , where Dk = diag(d1, d2, . . . , dn) and di =

∑n
j=1 aij. Assume that λi (i = 1, . . . , n) are

the eigenvalues of Lk and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. The second eigenvalue λ2 is called the
Fieder number of Ak and denoted by φk .

In the light of [7], let � be the diagonal of R3n, i.e., � = {(e, e, . . . , e)|e ∈ R
3} and �⊥ be

the orthogonal complement of � in R
3n. Then we consider positions and velocities in the

quotient spaces X � R
3n/� � �⊥ and V � R

3n/� � �⊥, respectively. And system (1) is
rewritten as a compact form as follows:

⎧
⎨

⎩

x(k + 1) = x(k) + hv(k),

v(k + 1) = (Id – hLk)v(k),
(3)

where x = (x1, . . . , xn)T , v = (v1, . . . , vn)T , Id is an identity matrix of appropriate dimension.
Taking the randomness into consideration, we say that system (3) achieves flocking al-

most surely when the following two conditions are almost surely fulfilled: v(k) → 0 and
x(k) → x∞, when k → ∞ for some x∞ ∈ X.

3 Main results
In recent works concerning flocking problems with packet losses, a random process {ξij(k)}
is used to describe the result of information transmission attempts. The random process
{ξij(k)} is commonly assumed to be a collection of independent and identically distributed
Bernoulli random variables [16, 19]. Most recently in a study about the cyber-security
issues in the networked control of a linear dynamical system in [20], A. Cetinkaya et al.
proposed a new assumption about the random process {ξ (k)} to describe the packet-loss
as follows:

∞∑

k=1

P

[ k–1∑

θ=0

(
1 – ξ (θ )

)
> ρ∗k

]

< ∞, (4)

for some constant ρ∗ ∈ [0, 1]. This condition on {ξ (k)} is a generalization of the earlier
simple assumption on {ξ (k)}, it includes the Bernoulli random process as a special case.
Moreover, it covers more cases such as random or malicious information packet loss, even
a combination of the two, which may be encountered in reality. It is worthwhile to note
that this condition only concerns a single channel in [20]. Motivated by this, we propose
the following assumption in a complex network composed of multi-agents.

Assumption 1 There exists a scalar ρ ∈ [0, 1) such that

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

< ∞. (5)
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As in [20], Assumption 1 proposed here reveals the probabilistic characterization of the
packet loss process in our setting, which also includes (i) random packet loss, (ii) mali-
cious packet loss, (iii) dependent combination of random and malicious packet loss, and
(iv) independent combination of random and malicious packet loss as four special cases.
A detailed proof will be given in the Appendix.

Remark 1 Inequality (4) reveals the probabilistic characterization of packet losses by
counting the number of observed packet losses. It indicates that the limit of the proba-
bility of the rate of packet losses greater than ρ∗ is zero. In other words, when the time is
long enough, the rate of packet loss should have an upper bound with probability one.

Remark 2 Similar to inequality (4), inequality (5) implies that the rate of all the channels
without packet losses at same time has a lower bound as time tends to infinity with prob-
ability one. This will also be used to ensure that the system achieves flocking in this paper.

Next, we introduce four lemmas, which are useful for verifying the main theorem.

Lemma 1 ([19]) For all x ∈ X, we have maxi	=j ‖xi – xj‖ ≤ √
2‖x‖.

Lemma 2 ([19]) For all x ∈ X, we have ‖Lk‖ ≤ 2(n – 1)
√

3nK . Particularly, when h <
1

2(n–1)
√

3nK , we have h‖Lk‖ ∈ [0, 1).

Lemma 3 ([11]) Let A be an n × n nonnegative, symmetric matrix, let L = D – A be the
Laplacian of A and φ the Fiedler number of L. Then φ ≥ na∗, where a∗ = mini	=j aij.

Lemma 4 ([7]) Assume c1, c2 > 0, s > q > 0. Then the equation f (z) = zs – c1zq – c2 = 0 has a
unique positive root z∗. In addition, z∗ ≤ max{(2c1)

1
s–q , (2c2) 1

s } and f (z) ≤ 0 for 0 ≤ z ≤ z∗.

Then, the main theorem of the paper is given below.

Theorem 1 Assume that the random process {ξij(k)}k∈N0 takes values 0 and 1 and satisfies
Assumption 1. If h < 1

2(n–1)
√

3nK and one of the following three conditions holds:
(i) α < 1;

(ii) α = 1 and
√

2‖v(0)‖ < K(1 – ρ);
(iii) α > 1 and

(
1
c1

) 1
α–1
[(

1
α

) 1
α–1

–
(

1
α

) α
α–1
]

– c2 >
√

2h
∥
∥v(0)

∥
∥, (6)

where c1 =
√

2‖v(0)‖
K (1–ρ) and c2 = 1 +

√
2‖x(0)‖ +

√
2hθ1‖v(0)‖,

then system (3) with weight functions (2) achieves flocking almost surely. More precisely,
v(k) → 0 a.s. and there exists x∞ ∈ X such that x(k) → x∞ a.s. when k → ∞.

Before proving Theorem 1, we present two propositions.

Proposition 1 Assume ρ ∈ [0, 1) and let the random process {ξij(k,ω)}, taking values 0
and 1, satisfy Assumption 1. Then there exists an integer-valued random variable θ0(ω),
independent of k, such that for all k ≥ θ0, we have

∑k–1
θ=0
∏

i<j ξij(θ ) ≥ (1 – ρ)k with proba-
bility one. Moreover, Eθ0 < +∞.
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Proof From Assumption 1, there exists ρ ∈ [0, 1), such that
∑∞

k=1 kP[
∑k–1

θ=0(1–
∏

i<j ξij(θ )) >
ρk] < ∞. Then, we have

∞∑

k=1

P

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

≤
∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

< ∞.

It follows from Borel–Cantelli Lemma that

P

[

lim sup
k→∞

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]]

= P

[ ∞⋂

n=1

∞⋃

k=n

AC
k

]

= 0, (7)

where Ak(ω) = {ω :
∑k–1

θ=0
∏

i<j ξij(θ ) ≥ (1 – ρ)k}. Then, we can deduce that

P

[
lim inf

k→∞
Ak

]
= P

[ ∞⋃

n=1

∞⋂

k=n

Ak

]

= P

[ ∞⋃

n=1

( ∞⋃

k=n

AC
k

)C]

= P

[( ∞⋂

n=1

∞⋃

k=n

AC
k

)C]

= 1 – P

[ ∞⋂

n=1

∞⋃

k=n

AC
k

]

= 1. (8)

Let Bn =
⋂∞

k=n Ak , Ω0 =
⋃∞

n=1 Bn, and define θ0(ω) = n ⇐⇒ ω ∈ Bn – Bn–1, with B0 = ∅.
Obviously, for all ω ∈ Ω0, we have ω ∈ Ak whenever k ≥ θ0(ω). Next, let us prove Eθ0 < +∞.
It follows from the definition of θ0(ω) that

{ω : θ0 > n} =
∞⋃

k=n

{ω : θ0 = k + 1} =
∞⋃

k=n

{Bk+1 – Bk} = Ω0 – Bn

= Ω0 ∩ BC
n ⊂ BC

n =
∞⋃

k=n

AC
n =

∞⋃

k=n

{

ω :
k–1∑

θ=0

∏

i<j

ξij(θ ) < (1 – ρ)k

}

. (9)

Thus we have

P[θ0 > n] ≤
∞∑

k=n

P

[ k–1∑

θ=0

∏

i<j

ξij(θ ) < (1 – ρ)k

]

.

Summing both sides of the above inequality over n from 1 to infinity, we obtain

∞∑

n=1

P[θ0 > n] ≤
∞∑

n=1

∞∑

k=n

P

[ k–1∑

θ=0

∏

i<j

ξij(θ ) < (1 – ρ)k

]

=
∞∑

k=1

k · P
[ k–1∑

θ=0

∏

i<j

ξij(θ ) < (1 – ρ)k

]

=
∞∑

k=1

k · P
[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

< +∞. (10)

Thus Eθ0 ≤∑∞
n=1 P[θ0 > n] < +∞. �
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Proposition 2 For system (3) with weight functions (2), if h < 1
2(n–1)

√
3nK , ρ ∈ [0, 1) and the

random process {ξij(k)}k∈N0 satisfies Assumption 1, then there exists a random variable F(k)
such that F(k) ∈ (0, 1) and

∥
∥v(k)

∥
∥≤ F

∑k–1
θ=0

∏
i<j ξij(θ )(k)

∥
∥v(0)

∥
∥ a.s. (11)

Furthermore, denoting ‖x(k∗)‖ = max0≤θ≤k ‖x(θ )‖, there exists a positive variable θ1 inde-
pendent of k such that

∥
∥x(k∗)

∥
∥≤ ∥∥x(0)

∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
(1 +

√
2‖x(k∗)‖)α

hnK(1 – ρ)

)

a.s. (12)

Proof We have ‖Lk‖ ≤ 2(n – 1)
√

3nK by Lemma 2. Therefore hφk ∈ [0, 1) and the corre-
sponding network graph is not connected when φk = 0. Since the linear map Id – hLk is
self-adjoint, its eigenvalues are in the interval (0, 1] and the largest eigenvalue is 1 – hφk .
It follows from system (3) that

∥
∥v(k)

∥
∥ ≤ ‖Id – hLk–1‖ · ∥∥v(k – 1)

∥
∥≤ (1 – hφk–1)

∥
∥v(k – 1)

∥
∥

≤ (1 – hna∗(k – 1)
)∏

i<j ξij(k–1) · ∥∥v(k – 1)
∥
∥

=
(

1 – min
i	=j

hnK
(1 + ‖xi(k – 1) – xj(k – 1)‖)α

)∏
i<j ξij(k–1)

· ∥∥v(k – 1)
∥
∥

≤
(

1 –
hnK

(1 +
√

2‖x((k – 1)∗)‖)α

)∏
i<j ξij(k–1)

· ∥∥v(k – 1)
∥
∥

= F(k – 1)
∏

i<j ξij(k–1) · ∥∥v(k – 1)
∥
∥

≤ F(k)
∏

i<j ξij(k–1) · ∥∥v(k – 1)
∥
∥

≤ F(k)
∑k–1

θ=0
∏

i<j ξij(θ ) · ∥∥v(0)
∥
∥ a.s., (13)

where we denote F(k) = 1 – hnK
(1+

√
2‖x(k∗)‖)α . Here, in the second step, we consider the fol-

lowing two facts: (i) when
∏

i<j ξij(k – 1) = 1, according to Lemma 3, we have 1 – hφk–1 ≤
1 – hna∗(k – 1); (ii) when

∏
i<j ξij(k – 1) = 0, obviously, we have 1 – hφk–1 ≤ 1. The fourth

step follows from Lemma 1.
Next, we prove inequality (12). Due to (11), the definition of ‖x(k∗)‖ and Proposition 2,

we obtain

∥
∥x(k)

∥
∥ ≤ ∥∥x(0)

∥
∥ +

k–1∑

θ=0

∥
∥x(θ + 1) – x(θ )

∥
∥ =
∥
∥x(0)

∥
∥ + h

k–1∑

θ=0

∥
∥v(θ )

∥
∥

≤ ∥∥x(0)
∥
∥ + h

∥
∥v(0)

∥
∥

(

1 +
θ1–1∑

θ=1

F(k)
∑θ–1

t=0
∏

i<j ξij(t) +
k–1∑

θ=θ1

F(k)
∑θ–1

t=0
∏

i<j ξij(t)

)

≤ ∥∥x(0)
∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
∞∑

θ=θ1

F(k)(1–ρ)θ

)

=
∥
∥x(0)

∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
F(k)(1–ρ)θ1

1 – F(k)1–ρ

)
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≤ ∥∥x(0)
∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
1

1 – F(k)1–ρ

)

≤ ∥∥x(0)
∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
(1 +

√
2‖x(k∗)‖)α

hnK(1 – ρ)

)

a.s. (14)

Here, the last inequality can be deduced from following inequality:

F(k∗)1–ρ =
(

1 –
hnK

(1 +
√

2‖x(k∗)‖)α

)1–ρ

≤ 1 –
hnK(1 – ρ)

(1 +
√

2‖x(k∗)‖)α
. (15)

Then, for k = k∗, we obtain

∥
∥x(k∗)

∥
∥≤ ∥∥x(0)

∥
∥ + h

∥
∥v(0)

∥
∥

(

θ1 +
(1 +

√
2‖x(k∗)‖)α

hnK(1 – ρ)

)

a.s. (16)�

Let us now prove Theorem 1.

Proof (of Theorem 1) Denote z = 1 +
√

2‖x(k∗)‖, then inequality (12) in Proposition 2 can
be rewritten as f (z) = z – c1zα – c2 ≤ 0.

Case (i). α < 1. From Lemma 4, we obtain z ≤ U0 = max{(2c1) 1
1–α , 2c2}. By the definition

of F(k), we have F(k) = 1 – hnK
zα ≤ 1 – hnK

Uα
0
� F∗.

Then, for all k > θ1, it follows from (11) and Proposition 1 that

∥
∥v(k)

∥
∥ ≤ F(k)

∑k–1
θ=0

∏
i<j ξij(θ ) · ∥∥v(0)

∥
∥≤

(

1 –
hnK
Uα

0

)∑k–1
θ=0

∏
i<j ξij(θ )

· ∥∥v(0)
∥
∥

≤
(

1 –
hnK
Uα

0

)(1–ρ)k∥
∥v(0)

∥
∥→ 0, k → ∞, a.s. (17)

And for all k2 > k1 > θ1, we have

∥
∥x(k2) – x(k1)

∥
∥ ≤

k2–1∑

k=k1

∥
∥x(k + 1) – x(k)

∥
∥≤ h

k2–1∑

k=k1

∥
∥v(k)

∥
∥

≤ h
∥
∥v(0)

∥
∥

k2–1∑

k=k1

(
F∗)

∑k–1
θ=0

∏
i<j ξij(θ )

≤ h
∥
∥v(0)

∥
∥

∞∑

k=k1

(
F∗)(1–ρ)k

= h
∥
∥v(0)

∥
∥ (F∗)(1–ρ)k1

1 – (F∗)1–ρ
→ 0, k1 → ∞, a.s. (18)

According to the Cauchy convergence criterion, there exists an x∞ ∈ X such that x(k) →
x∞ a.s.

Case (ii). α = 1. We have f (z) = (1 – c1)z – c2 ≤ 0. And the assumptions imply that
1 – c1 > 0. Thus z ≤ c2

1–c1
. Then we proceed as in Case (i).

Case (iii). α > 1. We have f (z) = z – c1zα – c2 ≤ 0. The derivative f ′(z) = 1 – c1αzα–1 has
a unique zero at z∗ = ( 1

c1α
) 1

α–1 and f (z∗) = ( 1
c1α

) 1
α–1 – c1( 1

c1α
) α

α–1 – c2 > 0 by hypothesis (6).



Wang et al. Advances in Difference Equations         (2019) 2019:71 Page 8 of 20

Figure 1 The shape of f

Since f (0) = –c2 < 0 and f (z) → –∞, z → +∞, we obtain the shape of function f shown in
Fig. 1.

For k = 0, we have k∗ = 0 and z(0) = 1 +
√

2‖x(0)‖ ≤ c2 ≤ z∗. It follows from f (z) ≤ 0 and
the shape of function f that z(0) ≤ zl .

Next, we prove that z(k) ≤ z∗ holds for all k ∈ N. Assume that there exists a k ∈ N such
that z(k) ≥ zu and let T be the first such k. For all k < T , we have z(k) ≤ zl , i.e., ‖x(k)‖ ≤ zl–1√

2 .
In particular, ‖x(T – 1)‖ ≤ zl–1√

2 . For k = T , we have z(k) ≥ z∗, i.e., ‖x(T)‖ ≥ z∗–1√
2 . Thus

∥
∥x(T) – x(T – 1)

∥
∥≥ ∥∥x(T)

∥
∥ –
∥
∥x(T – 1)

∥
∥≥ z∗ – zl√

2
≥ f (z∗)√

2
. (19)

Here, in the last inequality, we used the intermediate value theorem, which assures the
existence of ξ ∈ [zl, z∗] such that f (z∗) – f (zl) = f (ξ )′(z∗ – zl) with f (ξ )′ ≤ 1. From system
(3), we obtain ‖x(T) – x(T – 1)‖ = h‖v(T – 1)‖ ≤ h‖v(0)‖. Combining this inequality with
(19) shows that f (z∗) ≤ √

2h‖v(0)‖, which contradicts hypothesis (6). Therefore, for all
k ∈N, we have z(k) ≤ z∗. Again we proceed as in Case (i). �

4 An example
We consider a system consisting of four agents with a coupling strength K = 30. Let the
time step be h = 0.001, which satisfies h < 1

2(n–1)
√

3nK . According to the values of α, the
following three initial conditions are given. For α < 1, let α = 0.5 and take initial conditions

X(0) =

⎛

⎜
⎜
⎜
⎝

25 25 20
1 0 0
5 6 10

30 33 30

⎞

⎟
⎟
⎟
⎠

, V (0) =

⎛

⎜
⎜
⎜
⎝

13 4 20
7 10 8
2 6 16

25 5 9

⎞

⎟
⎟
⎟
⎠

. (20)

For α = 1, the initial conditions are

X(0) =

⎛

⎜
⎜
⎜
⎝

2 1 1
1 3 1
1 1 1
1 0 1

⎞

⎟
⎟
⎟
⎠

, V (0) =

⎛

⎜
⎜
⎜
⎝

0.3 0 0
1 0 0
0 1.5 0
0 0 0.5

⎞

⎟
⎟
⎟
⎠

, (21)
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which make condition
√

2‖v(0)‖ < K(1 – ρ) true for all ρ ∈ [0, 0.9]. Then, for α > 1, let
α = 1.2 and assume initial conditions

X(0) =

⎛

⎜
⎜
⎜
⎝

0 0 0.5
0 1 0
1 0 1
0 0 0

⎞

⎟
⎟
⎟
⎠

, V (0) =

⎛

⎜
⎜
⎜
⎝

0 0 0.4
0.5 0.5 0
0 0 0

0.3 0 0

⎞

⎟
⎟
⎟
⎠

, (22)

which make condition (6) hold with θ1 = 1000. Next, we give four different packet loss
example cases to illustrate Theorem 1.

Case 1. Random packet losses. The random packet losses are assumed to be character-
ized by the Markov chain {1 – ξR

ij (k)}k∈N0 with transition probabilities and initial distri-
butions as follows: P0,1(i) � 0.1 + 0.03 sin2(0.1i), P1,1 � 0.1 + 0.03 cos2(0.1i), Pq,0 = 1 – Pq,1,
ν0 = 0, ν1 = 1. Note that the upper bounds of Pq,1 and Pq,0 are p∗

1 = 0.13 and p∗
0 = 0.88, re-

spectively. Thus, for the Markov chain {1 –
∏

i<j ξ
R
ij (k)}k∈N0 , the upper bounds are p1 = 0.6

and p0 = 0.5. According to Proposition 4, Assumption 1 holds with ρ = 0.7 ∈ (0.6, 1). Fig-
ures 2–4 show the norms of position and velocity trajectories under random packet losses
with α = 0.5, α = 1, and α = 1.2, respectively.

Case 2. Malicious packet losses. Assume the system is subject to jamming attacks and
satisfies (31) with κ = 0, λ = 6. Then, let ρM = 0.17 so that ρM > 1

λ
. It follows from Propo-

sition 5 that Assumption 1 holds with ρ = 0.17. Figure 5–7 show the norms of position
and velocity trajectories under malicious packet losses with α = 0.5, α = 1, and α = 1.2,
respectively.

Case 3. Combination of random and malicious packet losses (independent case). We con-
sider the random packet losses in Case 1 and malicious packet losses in Case 2 as indepen-
dent. Noting that p1 + ρM + p1ρM < 0.9, Assumption 1 holds with ρ = 0.9 by Proposition 6.
Figure 8–10 show the norms of position and velocity trajectories under random and ma-
licious packet losses (independent case) with α = 0.5, α = 1, and α = 1.2, respectively.

Figure 2 The norms of position and velocity trajectories with α = 0.5 in Case 1
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Figure 3 The norms of position and velocity trajectories with α = 1 in Case 1

Figure 4 The norms of position and velocity trajectories with α = 1.2 in Case 1

Case 4. Combination of random and malicious packet losses (dependent case). We con-
sider the above random and malicious packet losses as dependent. Since p1 + ρM < 0.8,
Assumption 1 holds with ρ = 0.8 by Proposition 7. Figures 11–13 show the norms of posi-
tion and velocity trajectories under random and malicious packet losses (dependent case)
with α = 0.5, α = 1, and α = 1.2, respectively.

5 Concluding remarks
In the present paper, we first proposed a more general condition to describe the character
of information packet loss process in the famous Cucker–Smale model. Then we obtained
a sufficient condition to assure the flocking behavior for the discrete Cucker–Smale model.

In this paper, we assumed that the networks of the agents are symmetric. In the future,
we will investigate the topic under more complex topological structure, such as in net-
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Figure 5 The norms of position and velocity trajectories with α = 0.5 in Case 2

Figure 6 The norms of position and velocity trajectories with α = 1 in Case 2

works with hierarchical leadership or networks with one or more rooted leaders. More-
over, we plan to investigate the flocking behavior of continuous Cucker–Smale models
under information packet loss, especially those described by stochastic difference or dif-
ferential equations.

Appendix
Assumption 1 says that there exists a ρ ∈ [0, 1) such that

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

< ∞. (23)
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Figure 7 The norms of position and velocity trajectories with α = 1.2 in Case 2

Figure 8 The norms of position and velocity trajectories with α = 0.5 in Case 3

It provides a probabilistic characterization of packet loss process. It includes some ordi-
nary packet loss processes as special cases. In the following, we will show that the prob-
abilistic characteristics of random packet loss, malicious packet loss and their dependent
or independent combinations all satisfy condition (23) in Assumption 1.

1. Random packet losses.
During the process of information transmission among agents, the random packet losses

caused by nonmalicious transmission such as information congestion or communication
errors, are described by a time-inhomogeneous Markov chain. For each interaction chan-
nel (i, j), let {1 – ξR

ij (k)}k∈N0 be a time-inhomogeneous Markov chain taking values 0 and 1,
which is characterized by an initial distribution νq, q = {0, 1}, and by transition probabili-
ties Pq,1 ≤ p∗

1, Pq,0 ≤ p∗
0, where p∗

1, p∗
0 ∈ [0, 1] are constants.
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Figure 9 The norms of position and velocity trajectories with α = 1 in Case 3

Figure 10 The norms of position and velocity trajectories with α = 1.2 in Case 3

Then the initial distributions of the time-inhomogeneous Markov chains {1 –
∏

i<j ξ
R
ij (k)}k∈N0 are P[1 –

∏
i<j ξ

R
ij (0) = 1] = min{∑ε

i=1 Ci
εν

i
1ν

ε–i
0 , 1}, P[1 –

∏
i<j ξ

R
ij (0) = 0] = νε

0 ,
the transition probabilities are Pq,1 ≤ min{∑ε

i=1 Ci
εp∗i

1 p∗ε–i
0 , 1} � p1, Pq,0 ≤ p∗ε

0 � p0, where
ε = n(n–1)

2 .
We obtain two conclusions, before proving that Assumption 1 includes random packet

losses as a special case.

Proposition 3 ([20]) Let {ξ (k)}k∈N0 , taking values 0 and 1, be a time-inhomogeneous
Markov chain with transition probabilities Pq,r : N0 → [0, 1], q, r ∈ {0, 1}. And let {χ (k)}k∈N0
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Figure 11 The norms of position and velocity trajectories with α = 0.5 in Case 4

Figure 12 The norms of position and velocity trajectories with α = 1 in Case 4

be a binary-valued process that is independent of {ξ (k)}k∈N0 . Assume

Pq,1 ≤ p̃, (24)

∞∑

k=1

P

[ k–1∑

θ=0

χ (θ ) > ω̃k

]

< ∞, (25)

where p̃ ∈ (0, 1), ω̃ ∈ (0, 1). Then for ρ ∈ (p̃ω̃, ω̃), we have

P

[ k–1∑

θ=0

ξ (k)χ (k) > ρk

]

< σ̃k + ψk , (26)
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Figure 13 The norms of position and velocity trajectories with α = 1.2 in Case 4

where

σ̃k = P

[ k–1∑

θ=0

χ (k) > ω̃k

]

, ψk = φ–ρk+1 ((φ – 1)p̃ + 1)ω̃k – 1
(φ – 1)p̃

,

φ =
ρ

ω̃
(1 – p̃)

p̃(1 – ρ

ω̃
)
.

(27)

Furthermore, we can deduce the following corollary from the this proposition.

Corollary 1 In the setting of Proposition 3, we have
∑∞

k=1 kψk < ∞.

Proof Function ψk can be rewritten as

ψk =
φ

(φ – 1)p̃
[(

φ– ρ
ω̃

(
(φ – 1)p̃ + 1

))ω̃k – φ–ρk]. (28)

From the proof of Proposition 3, we have φ– ρ
ω̃ ((φ – 1)p̃ + 1) < 1 and φ > 1. Thus let N ≥

φ

(φ–1)p̃ , 0 < m ≤ –ω̃ logφ φ– ρ
ω̃ ((φ – 1)p̃ + 1) and μ = φ. Then we have ψk ≤ Nμ–mk . Hence,

∑∞
k=1 kψk ≤∑∞

k=1 kNμ–mk < ∞, which completes the proof. �

Proposition 4 Consider the time-inhomogeneous Markov chains {1 –
∏

i<j ξ
R
ij (k)}k∈N0 , tak-

ing values 0 and 1, with transmission probability upper-bound Pq,1 ≤ p1. Then for all
ρR ∈ (p1, 1), we have

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξR
ij (θ )

)

> ρRk

]

< ∞. (29)

Proof Let p̃ = p1, ω̃ = 1, and take the processes {ξ (k)} = {1 –
∏

i<j ξ
R
ij (k)} and {χ (k)} = {1},

where 1 –
∏

i<j ξ
R
ij (k) takes value 0 or 1. Since conditions (24) and (25) are satisfied, the

conclusion follows from Proposition 3 and Corollary 1. �
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2. Malicious packet losses.
As we all know, the process of information transmission may be interrupted by malicious

activities from exotic attacks. For example, jamming attacks of interaction channels may
cause packet losses.

According to the model of attack strategy proposed in [21], let ξM
ij (k), taking values 0

and 1, denote the state of attacks. The state ξM
ij (k) = 0 means that the channel (i, j) faces

an attack at time kh. Assume that the number of packet transmission attempts that face
attacks are upper-bounded almost surely by a certain ratio of the total number of packet
transmission attempts, i.e.,

P

[ k–1∑

θ=0

(
1 – ξM

ij (θ )
)≤ κ +

k
λ

]

= 1, k ∈N0, (30)

where κ ≥ 0, λ > 1. It indicates that among k packet transmission attempts, at most κ + k
λ

of
them face attacks. Specifically, parameter κ can ensure that there are no attacks during the
first few packet transmission attempts almost surely and the ratio 1

λ
expresses the jamming

rate of packet transmission attempts that meet attacks, both of them are discussed in [21].
Now, consider all of the channels (i, j) where i < j. If we use the following to characterize

malicious packet losses with attack

P

[ k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

≤ κ +
k
λ

]

= 1, k ∈N0, (31)

where κ ≥ 0, λ > 1, then we can say that Assumption 1 includes malicious packet losses
with attack strategy given by (31) as a special case.

Proposition 5 Consider a binary-valued process {ξM
ij (k)}k∈N0 satisfying equation (31).

Then for all ρM ∈ ( 1
λ

, 1), we have

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

> ρMk

]

< ∞. (32)

Proof

P

[ k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

> ρMk

]

≤ P

[ k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

≥ ρMk

]

= P
[
e
∑k–1

θ=0(1–
∏

i<j ξ
M
ij (θ )) ≥ eρMk]

≤ e–ρMk ·E[e
∑k–1

θ=0(1–
∏

i<j ξ
M
ij (θ ))]

≤ e–ρMk · eκ+ k
λ = eκ–(ρM– 1

λ
)k . (33)

Here, the second inequality is deduced from Markov’ inequality. It follows from equation
(31) that

E
[
e
∑k–1

θ=0(1–
∏

i<j ξ
M
ij (θ ))]≤ E

[
eκ+ k

λ
]

= eκ+ k
λ , (34)
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and then the third inequality is obtained. Thus,

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

> ρMk

]

≤
∞∑

k=1

keκ–(ρM– 1
λ

)k < ∞. (35)

�

3. A combination of random and malicious packet losses (independent case).
Consider a situation when random and malicious packet losses happened together, while

being independent. At this moment, the packet transmission is succeed at time kh if and
only if there are all successes, this means

∏

i<j

ξij(k) =

⎧
⎨

⎩

1,
∏

i<j ξ
R
ij (k) = 1 and

∏
i<j ξ

M
ij (k) = 1,

0, otherwise.
(36)

The next proposition illustrates that Assumption 1 also includes this type of packet
losses as a special case.

Proposition 6 Consider the state indicator process of packet transmission {∏i<j ξij(k)}k∈N0

given by (36), where {∏i<j ξ
R
ij (k)}k∈N0 and {∏i<j ξ

M
ij (k)}k∈N0 are mutually independent. If

p1 + ρM + p1ρM < 1, (37)

Then inequality (5) holds for all ρ ∈ (p1 + ρM + p1ρM, 1).

Proof The function in (36) can be rewritten as
∏

i<j ξij(k) =
∏

i<j ξ
R
ij (k) ·∏i<j ξ

M
ij (k), and then

we have

1 –
∏

i<j

ξij(k) =
(

1 –
∏

i<j

ξR
ij (k)

)

+
(

1 –
∏

i<j

ξM
ij (k)

)

–
(

1 –
∏

i<j

ξR
ij (k)

)(

1 –
∏

i<j

ξM
ij (k)

)

. (38)

By summing over θ from 0 to k – 1 both sides and denoting L(k) =
∑k–1

θ=0(1 –
∏

i<j ξij(θ )),
L1(k) =

∑k–1
θ=0(1–

∏
i<j ξ

R
ij (θ )), L2(k) =

∑k–1
θ=0(1–

∏
i<j ξ

M
ij (θ )), L3(k) =

∑k–1
θ=0(1–

∏
i<j ξ

R
ij (θ ))(1–

∏
i<j ξ

M
ij (θ )), we have L(k) = L1(k) + L1(k) + L1(k). Let ρ1 = p1 + η1, ρ2 = ρM , ρ3 = p1ρM + η2,

η = η1 + η2 = ρ – p1 – ρM – p1ρM , η2 = min{ η

2 , ρM–p1ρM
2 }. Then

∞∑

k=1

kP
[
L(k) > ρk

]
=

∞∑

k=1

kP
[
L1(k) + L2(k) + L3(k) > ρ1k + ρ2k + ρ3k

]

≤
∞∑

k=1

kP
[
L1(k) > ρ1k

]
+

∞∑

k=1

kP
[
L2(k) > ρ2k

]

+
∞∑

k=1

kP
[
L3(k) > ρ3k

]
. (39)
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First,

ρ1 = p1 + η – η2 = max

{

p1 +
η

2
, p1 + η –

ρM – p1ρM

2

}

= max

{
p1 + ρ – ρM – p1ρM

2
,

2ρ – ρM(p1 + 3)
2

}

. (40)

It is easy to see that 2ρ–ρM(p1+3)
2 < 1, and it follows from the assumption that

p1+ρ–ρM–p1ρM
2 < 1. Thus we have ρ1 ∈ (p1, 1). Therefore, it can be deduced from Proposi-

tion 4 that
∑∞

k=1 kP[L1(k) > ρ1k] < ∞. Second, let ρ2 = ρM . According to Proposition 5,
we have

∑∞
k=1 kP[L2(k) > ρ2k] < ∞. Finally, since ρ3 = p1ρM + η2 ≤ p1ρM + ρM–p1ρM

2 <
p1ρM + ρM – p1ρM = ρM , we obtain ρ3 ∈ (p1ρM,ρM). Let {ξ (k)} = {1 –

∏
i<j ξ

R
ij (k)} and

{χ (k)} = {1 –
∏

i<j ξ
M
ij (k)} with p̃ = p1 and ω̃ = ρM which make (24) and (25) hold. By Propo-

sition 3, Corollary 1 and Proposition 5, we obtain
∑∞

k=1 kP[L3(k) > ρ3k] < ∞. Therefore,
the conclusion is proved. �

4. A combination of random and malicious packet losses (dependent case).
In this case, the attacker can decide to attack or not on the basis of the information

about the random packet losses in the channel. Obviously, in this case, the number of
transmission failures does not exceed the sum of the number of random and malicious
failures, i.e.,

k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

≤
k–1∑

θ=0

(

1 –
∏

i<j

ξR
ij (θ )

)

+
k–1∑

θ=0

(

1 –
∏

i<j

ξM
ij (θ )

)

. (41)

For simplicity, we denote (41) as L ≤ L1 + L2. Proposition 7 below shows that this is also a
special case included in Assumption 1.

Proposition 7 Consider the state indicator process of packet transmission {∏i<j ξij(k)}k∈N0

given by (41). Assume

p1 + ρM < 1. (42)

Then, for all ρ ∈ (p1 + ρM, 1), we have

∞∑

k=1

kP

[ k–1∑

θ=0

(

1 –
∏

i<j

ξij(θ )
)

> ρk

]

< ∞. (43)

Proof Let ρ1 = p1 + η

2 , ρ2 = ρM + η

2 and ρ = p1 + ρM + η. Then we have

∞∑

k=1

kP
[
L(k) > ρk

]
=

∞∑

k=1

kP
[
L1(k) + L2(k) > ρ1k + ρ2k

]

≤
∞∑

k=1

kP
[
L1(k) > ρ1k

]
+

∞∑

k=1

kP
[
L2(k) > ρ2k

]
. (44)
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It follows from ρ1 = p1 + ρ–p1–ρM
2 = ρ+p1–ρM

2 < 1 that ρ1 ∈ (p1, 1). From Proposition 4, we
have

∞∑

k=1

kP
[
L1(k) > ρ1k

]
< ∞. (45)

Due to ρ2 = ρM + ρ–p1–ρM
2 = ρ–p1+ρM

2 < 1, we get ρ2 ∈ (ρM, 1). From Proposition 5, we obtain

∞∑

k=1

kP
[
L2(k) > ρ2k

]
< ∞. (46)

Thus, the proof is complete. �
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