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Abstract
In this paper, we investigate the global threshold dynamics of a stochastic SIS
epidemic model incorporating media coverage. We give the basic reproduction
numberRs

0 and establish a global threshold theorem by Feller’s test: ifRs
0 ≤ 1, the

disease will die out a.s.; ifRs
0 > 1, the disease will persist a.s. In the case ofRs

0 > 1, we
prove the existence, uniqueness, and global asymptotic stability of the invariant
density of the Fokker–Planck equations associated with the stochastic model. Via
numerical simulations, we find that the average extinction time decreases with the
increase of noise intensity σ , and also find that the increasing σ will be beneficial to
control the disease spread. Thus, in order to control the spread of the disease, we
must increase the intensity of noise σ .
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1 Introduction
It is now widely believed that environmental variations have a critical influence on the
spread of the disease [1–4], and stochastic noise plays an indispensable role in the trans-
mission of diseases, especially in a small population. Therefore, it seems more practical to
consider stochastic epidemic models [5–20].

In order to understand the role of media coverage towards the disease transmission
dynamics in a random environment, based on the results in [21], Cai et al. [22] studied
the following stochastic differential equations (SDE) SIS model with a standard incidence
rate:

⎧
⎨

⎩

dS(t) = (Λ – μS – (β1 – β2I
b+I ) SI

S+I + γ I) dt + σ1S dB1(t),

dI(t) = ((β1 – β2I
b+I ) SI

S+I – (μ + γ )I) dt + σ2I dB2(t),
(1)

where S(t) and I(t) are the number of susceptible and infective individuals at time t, respec-
tively. β1 – β2I

b+I is the effective contact rate, β1 is the usual contact rate without considering
the infective individuals, β2 is the maximum reduced contact rate due to the presence of
the infected individuals. σi (i = 1, 2) is a real constant and σ 2

i is known as the intensity of
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environmental fluctuations, Bi(t) (i = 1, 2) is the standard one-dimensional independent
Wiener process defined over the complete probability space (Ω ,F , {Ft}t≥0, Prob).

In [22], the authors defined Rs
0 := β1

μ+γ
– σ 2

2
2(μ+γ ) and obtained the following results by using

the method of stochastic stability [23]:
(A1) If one of the following conditions

Rs
0 < 1 and σ 2

2 < 2β1, or σ 2
2 ≥ 2β1,

holds, then the disease will die out with probability one (Theorem 3.1, [22]).
(A2) If Rs

0 > 1, then the disease will persist with probability one (Theorem 4.1, [22]).
Furthermore, based on the results in [22], by using the theory of Markov semigroup and

asymptotic properties [9, 24], Guo et al. [25] studied the following SDE SIS model with
bistable incidence rate:

⎧
⎨

⎩

dS(t) = [Λ – μS(t) – (β1 – β2I(t)
m+I(t) )S(t)I(t) + γ I(t)] dt + σS(t) dB(t),

dI(t) = [(β1 – β2I(t)
m+I(t) )S(t)I(t) – (μ + γ )I(t)] dt + σ I(t) dB(t),

(2)

and obtained that:
(B1) If

Rs
0 :=

Λβ1

μ(μ + γ )
–

σ 2

2(μ + γ )
< 1,

then the disease will die out with probability one (Theorem 3.4, [25]).
(B2) If

Rs
0 > 1 and σ 2 < 2μmin{1, A}

hold, then the stochastic process (S(t), I(t)) has a unique stationary distribution
(Theorem 3.7, [25]).

It is well known that epidemic threshold theorem holds for most deterministic com-
partmental epidemic models by the basic reproduction number R0 [26]: if R0 < 1, there
is a disease-free equilibrium which is globally asymptotically stable; if R0 > 1, there exists
an endemic equilibrium which is globally asymptotically stable. However, in [A1] for SDE
model (1), there is an extra condition σ 2

2 < 2β1, and in [B2] for SDE model (2), there is an
extra condition σ 2 < 2μmin{1, A}.

There naturally comes a question: Is there any global threshold theorem for a stochastic
epidemic model (e.g., SDE model (1) or (2)) incorporating media coverage?

Thanks to the insightful work of Xu [10], in this paper, we will focus on the global thresh-
old dynamics for the following SDE epidemic model incorporating media coverage:

⎧
⎨

⎩

dS(t) = (μN – μS – (β1 – β2I
b+I ) SI

S+I + γ I) dt – σSI
S+I dB(t),

dI(t) = ((β1 – β2I
b+I ) SI

S+I – (μ + γ )I) dt + σSI
S+I dB(t).

(3)

Since S(t) + I(t) = N , which is a constant, SDE model (3) can degenerate into the following
one-dimensional model:

dI(t) = IF(I) dt + σ I
(

1 –
I
N

)

dB(t), (4)
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where

F(I) :=
(

β1 –
β2I

b + I

)(

1 –
I
N

)

– (μ + γ ). (5)

Particularly, if σ = 0 in (4), i.e., without environmental noise, we can obtain

dI(t) = IF(I) dt. (6)

For simplicity, we call model (6) a deterministic model corresponding to SDE model (4).
One goal of this paper is to establish a global threshold theorem for SDE model (4). We

will prove that the basic reproduction number Rs
0 can be used to govern the stochastic

dynamics of SDE model (4).
The other goal is to further study the invariant density of process I(t). Many long-

term asymptotic properties of dynamical systems or random dynamical systems can be
described in terms of invariant measure [27] and the density function with respect to
Lebesgue measure of the marginals of an invariant measure that can be called an invariant
density [28]. If invariant density is L1 on a set Ω , it satisfies the Fokker–Planck equations
(FPE) in the interior of Ω [29]. Hence, we will investigate the FPE associated with (4) and
solve the invariant density.

This paper is organized as follows. In Sect. 2, we present the global stochastic threshold
theorem. In Sect. 3, in the case of disease persistence, we derive the existence, unique-
ness, global stability, and an explicit formula of an invariant density of the Fokker–Planck
equation associated with (4). In Sect. 4, we give some numerical examples to show the
complicated stochastic dynamics of the model. And in the last section, Sect. 5, we provide
a brief discussion and the summary of our main results.

2 Stochastic threshold theorem
In this section, we will focus on the stochastic threshold theorem for model (4). First of all,
we state the global existence of the uniqueness and boundedness of the positive solution
of model (4).

Theorem 2.1 For any given initial value I0 ∈ (0, N), SDE (4) has a unique global positive
solution I(t) ∈ (0, N) for all t ≥ 0 with probability one, namely

P
{

I(t) ∈ (0, N) : ∀t ≥ 0
}

= 1.

The proof of Theorem 2.1 is similar to that in [22] or [25]. So we omit it here.
Next, similar to [22, 25] and [8], we define the basic reproduction number Rs

0 for SDE
model (4) as follows:

Rs
0 :=

β1

μ + γ
–

σ 2

2(μ + γ )
= R0 –

σ 2

2(μ + γ )
, (7)

where R0 := β1
μ+γ

is the basic reproduction number of the deterministic model (6).
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Theorem 2.2
(i) If Rs

0 ≤ 1, for any given initial value I0 ∈ (0, N),

P

{
lim

t→∞ I(t) = 0
}

= 1.

Namely, the disease will go extinct with probability one.
(ii) If Rs

0 > 1, for any given initial value I0 ∈ (0, N),

P

{
sup

0≤t<∞
I(t) = N

}
= P

{
inf

0≤t<∞ I(t) = 0
}

= 1.

In particular, the process I(t) is recurrent: for every θ ∈ (0, N), we have

P
{

I(t) = θ : ∃t ∈ [0,∞)
}

= 1.

Namely, the disease will persist with probability one.

Proof Define

Y (t) = log
I(t)

N – I(t)
,

then

I(t) =
NeY (t)

1 + eY (t) , (8)

hence

lim
Y→–∞ I(t) = 0, lim

Y→+∞ I(t) = N . (9)

Using Itô’s formula for Y (t), we have

dY (t) =
(

NF(I)
N – I

+
1
2

(
1

(N – I)2 –
1
I2

)

σ 2(N – I)2I2
)

dt + σ dB(t)

=
(

β1 – (μ + γ ) –
σ 2

2
–

β2I
b + I

–
(μ + γ )I

N – I
+

σ 2

N
I
)

dt + σ dB(t). (10)

Substituting (8) into (10), we obtain

dY (t) = (μ + γ )
(

Rs
0 – 1 –

β2NeY

(μ + γ )(b + beY + NeY )
– eY +

σ 2eY

(μ + γ )(1 + eY )

)

dt

+ σ dB(t). (11)

Following [30, 31], the scale function defined for (11) is given by

ψ(x) =
∫ x

0
φ(ξ ) dξ ,
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with

φ(ξ ) = exp

{

–
2(μ + γ )

σ 2

∫ ξ

0

(

Rs
0 – 1 –

β2Nes

(μ + γ )(b + bes + Nes)
– es

+
σ 2es

(μ + γ )(1 + es)

)

ds
}

= exp

{

–
2(μ + γ )

σ 2

(
Rs

0 – 1
)
ξ +

2(μ + γ )
σ 2

(
eξ – 1

)
+ 2 log 2 – 2 log

(
1 + eξ

)

+
2β2N

σ 2(b + N)
(
log

(
b + (b + N)eξ

)
– log(2b + N)

)
}

.

It is easy to see that ψ(∞) = ∞. While if Rs
0 > 1, then ψ(–∞) = –

∫ ∞
0 φ(–ξ ) dξ = –∞.

On the other hand, if ξ > 0 and Rs
0 ≤ 1, then

φ(–ξ ) = exp

{
2(μ + γ )

σ 2

(
Rs

0 – 1
)
ξ +

2(μ + γ )
σ 2

(
e–ξ – 1

)
+ 2 log 2 – 2 log

(
1 + e–ξ

)

+
2β2N

σ 2(b + N)
(
log

(
b + (b + N)e–ξ

)
– log(2b + N)

)
}

< 4.

Hence, if Rs
0 ≤ 1, ψ(–∞) = –

∫ ∞
0 φ(–ξ ) dξ ≥ –4

∫ ∞
0 dξ = –∞.

It follows from [31, Propositions 5.22] and [10, Lemma A.2] that we end the proof. �

3 The properties of invariant density
In this section, in the case of Rs

0 > 1, we will focus on the properties of the invariant den-
sity of the process I(t) of SDE model (4). Instead of studying SDE model (4) directly, we
investigate the associated Fokker–Planck equation (FPE) with (4), which is given by

∂p(t, x)
∂t

= –
∂

∂x
{

xF(x)p(t, x)
}

+
1
2
σ 2 ∂2

∂x2

(

x2
(

1 –
x
N

)2

p(t, x)
)

. (12)

From (12), we denote by {P(t)}t≥0 the Markov semigroup. And the following theorem gives
the existence, uniqueness, and asymptotic stability of an invariant density of the Markov
semigroup {P(t)}.

Theorem 3.1 If Rs
0 > 1, then there exists a unique invariant probability measure νs

σ for
(12) which has the density ps

σ with respect to the Lebesgue measure. Moreover,
(i) the process I(t) has the ergodic properties, i.e., for any νs

σ -integrable function G,

PI0

(

lim
t→∞

1
t

∫ t

0
G(Iτ ) dτ =

∫ K

0
G(y)νs

σ (dy)
)

= 1

for all I0 ∈ (0, N);
(ii) the invariant density ps

σ is globally asymptotically stable in the sense that

lim
t→∞

∫ K

0

∣
∣P(t)g(x) – ps

σ (x)
∣
∣dx = 0, ∀g ∈ L1

+(0, N),
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and

L1
+
(
(0, N)

)
:=

{

w ∈ L1(R) :
∫ N

0
w(x) dx = 1, w(x) = 0 for x ≥ N or x ≤ 0,

and w(x) ≥ 0 for x ∈R
}

.

(iii) the unique invariant density ps
σ is given by

ps
σ (x) := CN3– 2β2N

σ2(b+N)
xc0(Rs

0–1)–1(x + b)– 2β2N
σ2(b+N)

(N – x)c0(Rs
0–1)+3– 2β2N

σ2(b+N)

e– c0x
N–x (13)

with

C–1 =
∫ ∞

0

(
b + (b + N)eξ

)– 2Nβ2
σ2(b+N)

(
eξ + 1

)2ec0(Rs
0–1)ξ–c0eξ

dξ , (14)

and c0 = 2(μ+γ )
σ 2 .

Proof First of all, we need to study the following FPE associated with SDE (11):

∂u(t, ξ )
∂t

= –
∂

∂ξ

{

(μ + γ )
(

Rs
0 – 1 –

β2Neξ

(μ + γ )(b + beξ + Neξ )

– eξ +
σ 2eξ

(μ + γ )(1 + eξ )

)

u(t, ξ )
}

+
1
2
σ 2 ∂2u(t, ξ )

∂ξ 2 . (15)

We next prove assertions (i) and (ii). Since Y (t) of (11) is conservative and non-degenerate
(i.e., 1

2σ 2 > 0), by [32, p. 153], there exists a unique classical fundamental solution to (15).
Thus it follows from [33, p. 365 and p. 368] that there exists a generalized solution u(t, ξ ) ∈
L1

+(R) for all t > 0, ξ ∈R provided that the initial density u0 ∈ L1
+(R).

Motivated by [10], we define a Lyapunov function V :

V (ξ ) = e–αξ + ξ 2,

where α = μ+γ

σ 2 (Rs
0 – 1) > 0. Hence by [33, Theorem 11.9.1], we have the uniqueness and

global asymptotic stability of the invariant density us
σ . From [10, Theorem A.7], we have

assertions (i) and (ii).
We now prove assertion (iii). The stationary FPE associated with SDE (11) is given by

1
2
σ 2 ∂2us

σ (ξ )
∂ξ 2 =

∂

∂ξ

{

(μ + γ )
(

Rs
0 – 1 –

β2Neξ

(μ + γ )(b + beξ + Neξ )

– eξ +
σ 2eξ

(μ + γ )(1 + eξ )

)

us
σ (ξ )

}

. (16)

Rewrite system (16) in the following simpler form:

dy(ξ )
dξ

– a(ξ )y(ξ ) = –c, (17)
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where y(ξ ) = us
σ (ξ ), c is a constant and

a(ξ ) =
2(μ + γ )

σ 2

(

Rs
0 – 1 –

β2Neξ

(μ + γ )(b + beξ + Neξ )
– eξ +

σ 2eξ

(μ + γ )(1 + eξ )

)

= c0

(

Rs
0 – 1 –

2β2Neξ

c0σ 2(b + beξ + Neξ )
– eξ +

2eξ

c0(1 + eξ )

)

.

The solution of (17) is

y(ξ ) = us
σ (ξ ) = A(ξ )

(

K – c
∫ ξ

1

1
A(z)

dz
)

with

A(ξ ) =
(
b + (b + N)eξ

)– 2Nβ2
σ2(b+N)

(
eξ + 1

)2ec0(Rs
0–1)ξ–c0eξ

,

where c0 = 2(μ+γ )
σ 2 .

It follows from the conditions us
σ (ξ ) ≥ 0,

∫ ∞
0 us

σ (ξ ) dξ = 1 that c = 0 and

K–1 =
∫ ∞

0

(
b + (b + N)eξ

)– 2Nβ2
σ2(b+N)

(
eξ + 1

)2ec0(Rs
0–1)ξ–c0eξ

dξ .

Simple computations reveal that

K–1 < b– 2Nβ2
σ2(b+N)

(
c–(c0(Rs

0–1)
0 Γ

(
c0

(
Rs

0 – 1
)

+ 2
)

+ 2c–(c0(Rs
0–1)+1)

0

· Γ (
c0

(
Rs

0 – 1
)

+ 1
)

+ c–c0(Rs
0–1)

0 Γ
(
c0

(
Rs

0 – 1
)))

= b– 2Nβ2
σ2(b+N) c–c0(Rs

0–1)
0

(
Rs

0
2 + c–1

0
(
Rs

0 – 1
))

Γ
(
c0

(
Rs

0 – 1
))

.

Note that Γ (c0(Rs
0 – 1)) > 0 for Rs

0 > 1, and thus C defined in (14) is finite. We can
conclude that us

σ is an invariant which has the form

us
σ (ξ ) := C

(
b + (b + N)eξ

)– 2Nβ2
σ2(b+N)

(
eξ + 1

)2ec0(Rs
0–1)ξ–c0eξ

. (18)

In the same way as in the proof of [10, Theorem A.6], we have

ps
σ (x) =

N
x(N – x)

us
σ

(

log
x

N – x

)

.

This, together with (18), implies assertion (iii). �

4 Numerical results via disease dynamics
In this section, we give some numerical results to show complex disease dynamic out-
comes of SDE model (4) by using Milstein’s method [34], and the numerical scheme for
model (4) under consideration is given by

Ik+1 = Ik + Ik

[(

β1 –
β2Ik

b + Ik

)

(1 – Ik/N) – (μ + γ )
]

�t + σ Ik(1 – Ik/N)ηk
√

�t

+
σ 2

2
(
Ik(1 – Ik/N)

)2(
η2

k – 1
)
�t,
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where ηk (k = 1, 2, . . . , n) are independent Gaussian random variables N(0, 1), �t is the
time step size.

From (7), we note that Rs
0 = R0 – σ 2

2(μ+γ ) < R0, if R0 < 1, then Rs
0 < 1. We can know that if

R0 < 1, I(t) goes to extinction for the deterministic model (4) (see [21]); and from Theo-
rem 2.1, I(t) almost surely tends to zero exponentially with probability one for the stochas-
tic model (4). Therefore we only consider the case of R0 > 1.

Following [22, 25], the choice for the following parameters remains unaltered:

β1 = 0.15, β2 = 0.1, μ = 0.05, γ = 0.02, b = 10, N = 1000 (19)

and the initial value is I0 = 10. In this case, R0 = 2.143 > 1, and the deterministic model
(6) has an unstable disease-free equilibrium E0 = 0 and a unique globally stable endemic
equilibrium E∗ = 34.4494.

Next we will focus on the role of noise intensity σ on the resulting dynamics for SDE
model (4).

4.1 Stochastic disease-free dynamics
First of all, we adopt σ = 0.405, in this case, Rs

0 = 0.97125 < 1. From Theorem 2.1(i), we
know that the disease I(t) will go extinct with probability one.

In Fig. 1, we show the stochastic disease dynamics of the evolution of the single path of
I(t) obtained from two different numerical simulations run with the same parameters. One
can see that I(t) is strongly oscillatory at the beginning and finally dies out with probability
one. Easy to know that, in these cases above, I(t) tends to the disease-free equilibrium
E0 = 0 of the deterministic model (6) almost surely at last. It should be noted that, for
model (6), R0 = 2.143 > 1, E0 = 0 is unstable. Hence we can conclude that, in this case,
environmental noise can make unstable E0 to a stable one.

Figure 1 The evolution of a single path of I(t) for
model (4) with σ = 0.405 and its corresponding
deterministic model (6), and all other parameters are
taken in (19). The initial value is I0 = 10. The time unit
is day
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Figure 2 The average extinction time T of I(t) for
model (4) with σ

Furthermore, we repeat 10,000 simulations with the same parameters as in Fig. 1, we
can calculate the average extinction time for I(t), and the results are shown in Fig. 2. For
example, when σ = 0.405, the average extinction time for I(t); when σ = 0.45, it is 278.3943.
We can conclude that the average extinction time decreases with the increase of noise
intensity σ .

4.2 Stochastic endemic dynamics
In this subsection, we will focus on the stochastic endemic dynamics of (4) in the case of
Rs

0 > 1. For this reason, we choose σ = 0.01, 0.05, 0.10, 0.15 implies that Rs
0 = 2.142, 2.125,

2.071, 1.982, respectively. From Theorem 2.1(ii), we can conclude that the disease will
persist almost surely. In Fig. 3, we show the single path of I(t) for model (4) and its cor-
responding deterministic model (6) with σ = 0.01, 0.05, 0.10, 0.15, 0.25, 0.35, respectively,
and we can see that the solutions I(t) of SDE model (4) fluctuate around the endemic equi-
librium E∗ = 34.4494 of the deterministic model (6), respectively. In addition, we can find
that the bigger noise intensity σ , the stronger oscillatory I(t).

For the sake of learning the effects of the intensity of noise σ on the stochastic disease
dynamics of SDE model (4), we have repeated the simulation 10,000 times, keeping the
same parameters as in Fig. 3 and never observing any extinction scenario up to t = 500.
These results are respectively confirmed by the histograms and the probability density
functions in Fig. 4, showing the stationary distributions of I(t) at t = 500 for model (4).
And the numerical method for them can be found in [9].

From Fig. 4, one can see that the solution to SDE model (4) in the persistent case also
suggests for lower σ (e.g., σ = 0.01 and 0.05), the amplitude of fluctuation is slightly and
the oscillations to be more symmetrically distributed (cf. Figs. 4(a) and 4(b)), and the fluc-
tuations are reflected at the stationary distributions. While for higher σ (e.g., σ = 0.1 and
0.15), the amplitude of fluctuation is remarkable and the distributions of the solutions
are skewed (cf. Figs. 4(c) and 4(d)) and the fluctuations are also reflected at the stationary
distributions.

Furthermore, in the case of σ = 0.01 and 0.05, the distribution of I(t) appears closer to
a normal distribution (see Figs. 4(a) and 4(b)). Simple computations show that, when σ =
0.01, the distribution of I(t) closely obeys the normal distribution N(34.4577, 1.69952), and
the values less than one standard deviation away from the mean account (32.7582, 36.1572)
for 67.94% of the set; while two standard deviations from the mean account (31.1530,
37.7624) for 94.92%; and three standard deviations account (30.0517, 38.8637) for 98.99%
(see Fig. 5(a)). Simple calculations show that the skewness (i.e., the measure of the asym-
metry of the probability distribution of a real-valued random variable about its mean) in
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Figure 3 The evolution of a single path of I(t) for
model (4) and its corresponding deterministic
model (i.e., σ = 0 in (4)) with σ = 0.01, 0.05, 0.10, 0.15,
respectively. All other parameters are taken in (19).
The initial value is I(0) = 10. The time unit is day

this case is 0.1662598, which is a positive skew. And in the case of σ = 0.05, the distri-
bution of I(t) closely obeys N(33.7969, 8.86642), and the values less than three standard
deviations away from the mean account (8.0924, 59.5015) for 98.75% (see Fig. 5(b)), the
positive skewness is 1.045055.
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Figure 4 Histogram for I(t) at t = 500 for four
different values of σ = 0.01, 0.05, 0.1, 0.15, the
smoothed curves are the probability density
functions of I(t). Other parameters are taken as (19)

In order to understand the effect of the intensity of noise σ on the skewness of the dis-
tribution of I(t), we show the four probability density functions with σ = 0.01, 0.05, 0.1,
and 0.15 in Fig. 6. Easy to see that, as σ increases, the means of I(t) become smaller and
smaller, and the positive skewness of the distributions of I(t) becomes bigger and bigger.

5 Concluding remarks
In this paper, we investigate the global threshold dynamics of the SDE SIS epidemic model
(4) incorporating media coverage. After defining the basic reproduction number Rs

0, we
establish a stochastic threshold theorem by using Feller’s test for explosions of solutions to
one-dimensional SDE model (4) (see Theorem 2.2). It is worthy to note that in the proof of
this main result, we employ Feller’s test [10, 30, 31]. This is very different from the previous
results by constructing Lyapunov function to prove the threshold theorem (see, [8, 22, 25]).
And in the case of Rs

0, i.e., the disease persists with probability one, by studying the FPE
associated with SDE model (4), we prove the existence, uniqueness, and global asymptotic
stability of the invariant density of the FPE (see Theorem 3.1), which can be useful for us
to understand the profile of the distribution of the process I(t).

Via numerical simulations, in the case of Rs
0 ≤ 1, we find that the average extinction

time decreases with the increase of noise intensity σ . And in the case of Rs
0 > 1, we find

that the solutions I(t) of SDE model (4) fluctuate around the endemic equilibrium E∗ =
34.4494 of the deterministic model (6), and finally the distribution of I(t) seems like a
normal stationary distribution. More precisely, for lower σ (e.g., σ = 0.01 and 0.05), the
distribution of I(t) appears closer to a normal distribution (see Figs. 5(a) and 5(b)); while
for higher σ (e.g., σ = 0.1 and 0.15), the amplitude of fluctuation is remarkable and the
distribution of the solutions is positively skewed (cf. Figs. 4(c), 4(d), and 6). Obviously,
variance increases with the increase of noise intensity σ , this is the main cause of positive
skew distribution (see Figs. 5, 6 and also Figs. 4(c) and 4(d)). In this sense, we can claim
that bigger noise σ will be beneficial to make I(t) stay away from the endemic equilibrium
E∗ of the deterministic model (6). In other words, increasing σ will be beneficial to control
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Figure 5 Probability density function for I(t) at t = 500 with σ = 0.01 (a), σ = 0.05 (b), the dotted red curves
are the normal distributions N(34.4577, 1.69952) (a) and N(33.7969, 8.86642) (b), respectively. Other
parameters are taken as (19)

Figure 6 The probability density functions of I(t)
with σ = 0.01, 0.05, 0.1, and 0.15, respectively. The
skewness of them are 0.1662598, 1.045055, 5.896545,
and 13.19953, respectively

the disease spread. Thus, in order to control the spread of the disease, we must increase
the intensity of noise σ .

On the other hand, in Theorem 2.2, we give the global threshold dynamics by Feller’s
test for the explosions of solutions to one-dimensional SDE model (4). Unfortunately, this
method cannot be used to study a two-dimensional SDE model (e.g., (1) or (2)). And the
global threshold dynamics of a high-dimensional SDE model, e.g., (1) or (2), is desirable
in the future study.
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