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Abstract
This paper is devoted to an investigation of a kind of p-Laplacian generalized Liénard
equations with singularities of attractive and repulsive type, where the nonlinear term
g has a singularity at the origin. The novelty of the present article is that we show that
singularities of attractive and repulsive type enable the achievement of a new
existence criterion of a positive periodic solution through an application of the
Manásevich–Mawhin theorem on continuity of the topological degree, recent results
in the literature are generalized and significantly improved. Finally, some examples are
given to show applications of the theorems.
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1 Introduction
In this paper, we consider the following p-Laplacian generalized Liénard equation with
singularity:

(
φp

(
x′(t)

))′ + f
(
t, x(t)

)
x′(t) + g

(
t, x(t)

)
= e(t), (1.1)

where p ≥ 2, φp(x) = |x|p–2x for x �= 0 and φp(0) = 0, f : R×R→R is a continuous function
and it is T-periodic about t, e ∈ C(R,R) is a T-periodic function, g(t, x) = g1(t, x) + g0(x),
g1 : R×R →R is a continuous function and it is T-periodic about t, g0 : (0, +∞) → R is a
continuous function and has a singularity at the origin, i.e.,

lim
x→0+

g0(x) = +∞
(

or lim
x→0+

g0(x) = –∞
)

.

It is said that (1.1) is singularity of attractive type (resp. repulsive type) if g0(x) → +∞
(resp. g0(x) → –∞) as x → 0+.

The Liénard equation [10],

x′′ + f (x)x′ + g(x) = 0, (1.2)
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appears as a simplified model in many domains in science and engineering. It was inten-
sively studied during the first half of the 20th century as it can be used to model oscillating
circuits or simple pendulums. For example, the Van der Pol oscillator

x′′ – μ
(
1 – x2)x′ + x = 0

is a Liénard equation.
From then on, there has appeared some good amount of work on periodic solutions

for Liénard equations and the references cited therein. Some classical tools have been
used to study the Liénard equation in the literature, including topological degree methods
[12, 17], Mawhin’s coincidence degree theorem [1, 3, 4, 11], Massera’s theorem [21], the
Manásevich–Mawhin theorem on continuity of the topological degree [23, 26], Schauder’s
fixed point theorem [20], generalized polar coordinates [22], and the Poincaré map [27].

At the same time, the study of periodic solution of the Liénard equation with singu-
larity can be traced back to 1996. Zhang in [29] discussed the following singular Liénard
equation:

x′′ + f (x)x′ + g(t, x) = 0, (1.3)

where the nonlinear term g has a singularity of repulsive type. The author showed that
Eq. (1.3) has at least one periodic solution by applications of coincidence degree theory.
Zhang’s work has attracted the attention of many scholars in differential equations and
they have contributed to the research of Liénard equation with singularity of repulsive
type (see, e.g., [2, 5, 6, 8, 9, 13–16, 19, 24, 25, 28, 30]). For example, Jebelean and Mawhin
[6] in 2004 investigated the following quasi-linear equation of p-Laplacian type:

(
φp

(
x′(t)

))′ + f (x)x′(t) + g(x) = e(t), (1.4)

where the nonlinear term g satisfied a slightly stronger singularity, i.e.,

∫ 1

0
g(u) du = –∞.

The authors proven that the above problem has at least one positive periodic solution
through a basic application of the Manásevich–Mawhin theorem on continuity of the
topological degree. Afterwards, using the Manásevich–Mawhin theorem on continuity
of the topological degree again, Lu et al. [15] in 2017 obtained the existence of a positive
periodic solution of the following equation with singularity of repulsive type:

x′′ + f (x)x′ –
α(t)
xμ

= e(t). (1.5)

All the aforementioned results concern Liénard equations and Liénard equations with
singularity of repulsive type. Naturally, a new question arises: how does a generalized Lié-
nard equation work on singularities of attractive and repulsive type? Besides the practical
interests, the topic has obvious intrinsic theoretical significance. To answer this question,
in this paper, we try to fill this gap and establish the existence of positive periodic solutions
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of Eq. (1.1) with singularities of attractive and repulsive type. Applying the Manásevich–
Mawhin theorem on continuity of the topological degree, we obtain the following conclu-
sions.

Theorem 1.1 Suppose the following conditions hold:
(H1) There exist constants 0 < d1 < d2 such that g(t, x) – e(t) < 0 for (t, x) ∈ [0, T] × (0, d1)

and g(t, x) – e(t) > 0 for (t, x) ∈ [0, T] × (d2, +∞).
(H2) There exist positive constants m and n such that

∣∣f (t, x)
∣∣ ≤ m|x|p–2 + n, for all (t, x) ∈ [0, T] ×R.

(H3) There exist positive constants a and b such that

g(t, x) ≤ axp–1 + b, for all (t, x) ∈ [0, T] × (0, +∞).

(H4) (Repulsive condition) limx→0+
∫ 1

x g0(s) ds = –∞.
(H5) There exists a constant α > 0 such that infx∈R |f (t, x)| ≥ α > 0.
Then Eq. (1.1) has a positive T-periodic solution if the one of the following conditions is

satisfied:
(1) p = 2 and aT2

2 + (m + n)T < 1;
(2) p > 2 and 1

2p–2 ( aT
2 + m)T

p
q < 1, here q = p

p–1 .

Remark 1.2 It is worth mentioning that the friction term f (x)x′(t) in Eqs. (1.3), (1.4) and
(1.5) satisfy

∫ T
0 f (x(t))x′(t) dt = 0, which is crucial to estimate a priori bounds of a positive

periodic solution for these equations. However, in this paper, the friction term f (t, x)x′

may not satisfy
∫ T

0 f (t, x(t))x′(t) dt = 0. For example, let

f (t, x) =
1
π

(
cos2 4t + 3

)
x2(t) + 1.

Obviously,

∫ π
4

0

(
1
π

(
cos2 4t + 3

)
x2(t) + 1

)
x′(t) dt �= 0.

This implies that our methods to estimate a priori bounds of positive periodic solution for
Eq. (1.1) are more complex than Eqs. (1.3), (1.4) and (1.5).

Remark 1.3 From [6, 15, 29], the condition imposed on the external force e(t) is
∫ T

0 e(t) dt =
0. But this is unnecessary. For example, let the external force e(t) = ecos2 4t . Obviously,
∫ T

0 ecos2 4t dt �= 0. Therefore, our result is more general.

Remark 1.4 If Eq. (1.1) satisfies singularity of attractive type, i.e., limx→0+
∫ 1

x g0(s) ds = +∞.
Obviously, attractive condition and (H1), (H3) are in contradiction. Therefore, the above
method is no long applicable to the proof of the existence of a positive periodic solution
for Eq. (1.1) with singularity of attractive type. Next, we give other conditions to prove the
existence of a positive periodic solution for Eq. (1.1) with singularity of attractive type.
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Theorem 1.5 Assume that conditions (H2) and (H5) hold. Furthermore, suppose the fol-
lowing conditions hold:

(H6) There exist constants 0 < d3 < d4 such that g(t, x) – e(t) > 0 for (t, x) ∈ [0, T] × (0, d3)
and g(t, x) – e(t) < 0 for (t, x) ∈ [0, T] × (d4, +∞).

(H7) (Attractive condition) limx→0+
∫ 1

x g0(s) ds = +∞.
(H8) There exist positive constants β and γ such that

–g(t, x) ≤ βxp–1 + γ , for all (t, x) ∈ [0, T] × (0, +∞). (1.6)

Then Eq. (1.1) has a positive T-periodic solution if one of the following conditions is sat-
isfied:

(1) p = 2 and βT2

2 + (m + n)T < 1;
(2) p > 2 and 1

2p–2 ( βT
2 + m)T

p
q < 1.

Besides, if the friction term f (t, x(t)) = f (x(t)), then Eq. (1.1) is rewritten as

(
φp(x)′

)′ + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= e(t). (1.7)

Note, if p = 2 and the external force e(t) ≡ 0, the quasi-linear operator x 
→ (φp(x′))′ re-
duces to the linear operator x 
→ x′′, then (1.7) is of the differential equation form (1.3).
Applying the Manásevich–Mawhin theorem on continuity of the topological degree, we
obtain the following conclusions.

Theorem 1.6 Assume that conditions (H1), (H3) and (H4) hold. Then Eq. (1.7) has positive
T-periodic solution if a

2p–1 T1+ p
q < 1.

Remark 1.7 If the external force
∫ T

0 e(t) dt = 0, the result in [24, 29] is included in Theo-
rem 1.6.

Theorem 1.8 Assume that conditions (H6), (H7) and (H8) hold. Then Eq. (1.7) has a pos-
itive T-periodic solution if a

2p–1 T1+ p
q < 1.

If the nonlinear term g(t, x(t)) = g(x(t)), then Eq. (1.1) is rewritten as

(
φp(x)′

)′ + f
(
t, x(t)

)
x′(t) + g

(
x(t)

)
= e(t). (1.8)

Applying the Manásevich–Mawhin theorem on continuity of the topological degree, we
obtain the following conclusions.

Theorem 1.9 Assume that condition (H5) holds. Furthermore, suppose the following con-
ditions hold:

(H∗
1 ) There exist constants 0 < d∗

1 < d∗
2 such that g(x) – e(t) < 0 for x ∈ (0, d∗

1) and g(x) –
e(t) > 0 for x ∈ (d∗

2, +∞).
(H∗

4 ) (Repulsive condition) limx→0+
∫ 1

x g(s) ds = –∞.
Then Eq. (1.8) has a positive T-periodic solution.

Remark 1.10 If the friction term f (t, x) ≡ f (x) and the external force
∫ T

0 e(t) dt = 0, Theo-
rem 4.1 in [25] is included in Theorem 1.9.
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Theorem 1.11 Assume that condition (H5) holds. Suppose the following conditions hold:
(H∗

6 ) There exist constants 0 < d∗
3 < d∗

4 such that g(x) – e(t) > 0 for x ∈ (0, d∗
3) and g(x) –

e(t) < 0 for x ∈ (d∗
4, +∞).

(H∗
7 ) (Attractive condition) limx→0+

∫ 1
x g(s) ds = +∞.

Then Eq. (1.8) has a positive T-periodic solution.

Remark 1.12 We would like to emphasize that the nonlinear term g satisfies the conditions
and the work on estimating a priori bounds of positive periodic solutions for Eq. (1.8) is
different [25]. In Theorem 3.1 in [25], the nonlinear term g satisfies condition (H3), i.e., the
semi-linearity condition. In this paper, for the nonlinear term g it has not been required
that condition (H3) holds, i.e., g may be under a sub-linearity condition, a semi-linearity
condition or a super-linearity condition. So, we extend and improve the results in [25].

2 Periodic solution of Eq. (1.1) with singularities of attractive and repulsive
type

Firstly, we embed (1.1) into the following equation family with a parameter λ ∈ (0, 1]:

(
φp

(
x′(t)

))′ + λf
(
t, x(t)

)
x′(t) + λg

(
t, x(t)

)
= λe(t). (2.1)

By applications of Theorem 3.1 in [18], we obtain the following result.

Lemma 2.1 Assume that there exist positive constants E1, E2, E3 and E1 < E2 such that the
following conditions hold:

(1) We have for each possible periodic solution x to Eq. (2.1) that E1 < x(t) < E2, for all
t ∈ [0, T] and ‖x′‖ < E3, here ‖x′‖ := maxt∈[0,T] |x′(t)|.

(2) Each possible solution C to the equation

g(t, C) –
1
T

∫ T

0
e(t) dt = 0

satisfies E1 < C < E2.
(3) We have

(
g(t, E1) –

1
T

∫ T

0
e(t) dt

)(
g(t, E2) –

1
T

∫ T

0
e(t) dt

)
< 0.

Then Eq. (1.1) has at least one T-periodic solution.

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Firstly, we claim that there exists a point ξ ∈ [0, T] such that

d1 ≤ x(ξ ) ≤ d2. (2.2)

In view of
∫ T

0 x′(t) dt = 0, we know that there exist two points t1, t2 ∈ [0, T] such that

x′(t1) ≥ 0 and x′(t2) ≤ 0.
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Hence, we have

φp
(
x′(t1)

) ≥ 0 and φp
(
x′(t2)

) ≤ 0.

Let t3, t4 ∈ [0, T] be, respectively, a global maximum and minimum point of φp(x′(t));
clearly, we deduce

φp
(
x′(t3)

) ≥ 0,
(
φp

(
x′(t3)

))′ = 0. (2.3)

φp
(
x′(t4)

) ≤ 0,
(
φp

(
x′(t4)

))′ = 0. (2.4)

From condition (H5), we can see that the friction term f will not change sign for (t, x) ∈
[0, T] × (0, +∞). Without loss of generality, suppose f (t, x) > 0 for (t, x) ∈ [0, T] × (0, +∞)
and upon substitution of Eq. (2.3) into Eq. (2.1), we obtain

–λg
(
t3, x(t3)

)
+ λe(t3) = λf

(
t3, x(t3)

)
x′(t3).

Since φp(x′(t3)) = |x′(t3)|p–2x′(t3) ≥ 0, we know x′(t3) ≥ 0. So we get

g
(
t3, x(t3)

)
– e(t3) ≤ 0.

From condition (H1), we know that

x(t3) ≤ d2. (2.5)

Similarly, from Eq. (2.4), we see that

g
(
t4, x(t4)

)
– e(t4) ≥ 0,

and again by condition (H1),

x(t4) ≥ d1. (2.6)

x(t) is a continuous function in (0, +∞), from Eqs. (2.5) and (2.6), we get Eq. (2.2). Then
we have

‖x‖ = max
t∈[0,T]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+T]

∣
∣x(t)

∣
∣

= max
t∈[ξ ,ξ+T]

∣∣
∣∣
1
2
(
x(t) + x(t – T)

)
∣∣
∣∣

= max
t∈[ξ ,ξ+T]

∣∣
∣∣
1
2

((
x(ξ ) +

∫ t

ξ

x′(s) ds
)

+
(

x(ξ ) –
∫ ξ

t–T
x′(s) ds

))∣∣
∣∣

≤ max
t∈[ξ ,ξ+T]

{
d2 +

1
2

(∫ t

ξ

∣∣x′(s)
∣∣ds +

∫ ξ

t–T

∣∣x′(s)
∣∣ds

)}

≤ d2 +
1
2

∫ T

0

∣∣x′(s)
∣∣ds. (2.7)
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Multiplying both sides of Eq. (2.1) by x(t) and integrating over the interval [0, T], it is
clear that

∫ T

0

(
φp

(
x′(t)

))′x(t) dt + λ

∫ T

0
f
(
t, x(t)

)
x′(t)x(t) dt + λ

∫ T

0
g
(
t, x(t)

)
x(t) dt

= λ

∫ T

0
e(t)x(t) dt. (2.8)

Substituting
∫ T

0 (φp(x′(t)))′x(t) dt = –
∫ T

0 |x′(t)|p dt into Eq. (2.8), we arrive at

∫ T

0

∣
∣x′(t)

∣
∣p dt

= λ

∫ T

0
f
(
t, x(t)

)
x′(t)x(t) dt + λ

∫ T

0
g
(
t, x(t)

)
x(t) dt + λ

∫ T

0
e(t)x(t) dt

≤
∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣∣∣x(t)

∣∣dt +
∫ T

0

∣∣g
(
t, x(t)

)∣∣∣∣x(t)
∣∣dt +

∫ T

0

∣∣e(t)
∣∣∣∣x(t)

∣∣dt

≤ ‖x‖
∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt + ‖x‖

∫ T

0

∣
∣g

(
t, x(t)

)∣∣dt + ‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt. (2.9)

From condition (H2), Eq. (2.9) and the Hölder inequality, we can observe that

∫ T

0

∣
∣x′(t)

∣
∣p dt

≤ m‖x‖
∫ T

0

∣∣x(t)
∣∣p–2∣∣x′(t)

∣∣dt + n‖x‖
∫ T

0

∣∣x′(t)
∣∣dt + ‖x‖

∫ T

0

∣∣g
(
t, x(t)

)∣∣dt

+ ‖x‖T
1
2

(∫ T

0

∣
∣e(t)

∣
∣2 dt

) 1
2

≤ m‖x‖p–1
∫ T

0

∣∣x′(t)
∣∣dt + n‖x‖

∫ T

0

∣∣x′(t)
∣∣dt

+ ‖x‖
∫ T

0

∣∣g
(
t, x(t)

)∣∣dt + T
1
2 ‖x‖‖e‖2, (2.10)

where ‖e‖ := (
∫ T

0 |e(t)|2 dt) 1
2 .

Integrating over the interval [0, T] for Eq. (2.1), we conclude that

∫ T

0
f
(
t, x(t)

)
x′(t) dt +

∫ T

0
g
(
t, x(t)

)
dt =

∫ T

0
e(t) dt, (2.11)

From Eq. (2.11), conditions (H2) and (H3), we have

∫ T

0

∣∣g
(
t, x(t)

)∣∣dt =
∫

g(t,x(t))≥0
g
(
t, x(t)

)
dt –

∫

g(t,x(t))≤0
g
(
t, x(t)

)
dt

= 2
∫

g(t,x(t))≥0
g+(

t, x(t)
)

dt +
∫ T

0
f
(
t, x(t)

)
x′(t) dt –

∫ T

0
e(t) dt

≤ 2a
∫ T

0
xp–1(t) dt + 2bT +

∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt
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≤ 2a‖x‖p–1T + 2bT + m‖x‖p–2
∫ T

0

∣∣x′(t)
∣∣dt + n

∫ T

0

∣∣x′(t)
∣∣dt

+ T
1
2

(∫ T

0

∣∣e(t)
∣∣2 dt

) 1
2

, (2.12)

where g+(t, x) := max{0, g(t, x)}. Substituting Eqs. (2.12) and (2.7) into (2.10), we deduce

∫ T

0

∣∣x′(t)
∣∣p dt

≤ 2m‖x‖p–1
∫ T

0

∣
∣x′(t)

∣
∣dt + 2n‖x‖

∫ T

0

∣
∣x′(t)

∣
∣dt + 2a‖x‖pT + 2bT‖x‖ + 2T

1
2 ‖x‖‖e‖2

≤ 2m
(

d2 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt

)p–1 ∫ T

0

∣∣x′(t)
∣∣dt

+ 2n
(

d2 +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)∫ T

0

∣
∣x′(t)

∣
∣dt

+ 2aT
(

d2 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt

)p

+
(
2bT + 2T

1
2
)(

d2 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt

)

≤ 1
2p–2 m

(
1 +

2d2
∫ T

0 |x′(t)|dt

)p–1(∫ T

0

∣∣x′(t)
∣∣dt

)p

+
1

2p–1 aT
(

1 +
2d2

∫ T
0 |x′(t)|dt

)p(∫ T

0

∣
∣x′(t)

∣
∣dt

)p

+ n
(∫ T

0

∣∣x′(t)
∣∣dt

)2

+
(
bT + T

1
2
)∫ T

0

∣∣x′(t)
∣∣dt + 2d2

(
n + bT + T

1
2
)
. (2.13)

Next, we introduce classical elementary inequality (see (3.10) in [7]), there exists a δ(p) >
0 which is dependent on p only,

(1 + x)p ≤ 1 + (1 + p)x, for x ∈ [
0, δ(p)

]
. (2.14)

Then we consider the following two cases:
Case 1. If 2d2∫ T

0 |x′
1(t)|dt

> δ(p), then it is obvious that

∫ T

0

∣
∣x′

1(t)
∣
∣dt <

2d2

δ(p)
.

From Eq. (2.7), we deduce

‖x‖ ≤ d2 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt (2.15)

≤ d2 +
2d2

δ(p)
:= M′′

1 . (2.16)

Case 2. If 2d2∫ T
0 |x′

1(t)|dt
≤ δ(p), from Eq. (2.14), we obtain

(
1 +

2d2
∫ T

0 |x′(t)|dt

)p–1

≤ 1 +
2d2p

∫ T
0 |x′(t)|dt

(2.17)
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and

(
1 +

2d2
∫ T

0 |x′(t)|dt

)p

≤ 1 +
2d2(p + 1)
∫ T

0 |x′(t)|dt
. (2.18)

Substituting Eqs. (2.17) and (2.18) into (2.13), we have

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 1

2p–2 m
(

1 +
2d2p

∫ T
0 |x′(t)|dt

)(∫ T

0

∣∣x′(t)
∣∣dt

)p

+
1

2p–1 aT
(

1 +
2d2(p + 1)
∫ T

0 |x′(t)|dt

)(∫ T

0

∣∣x′(t)
∣∣dt

)p

+ n
(∫ T

0

∣
∣x′(t)

∣
∣dt

)2

+
(
bT + T

1
2
)∫ T

0

∣
∣x′(t)

∣
∣dt + N1

=
m

2p–2

(∫ T

0

∣
∣x′(t)

∣
∣dt

)p

+
md2p
2p–3

(∫ T

0

∣
∣x′(t)

∣
∣dt

)p–1

+
aT

2p–1

(∫ T

0

∣∣x′(t)
∣∣dt

)p

+
aTd2(p + 1)

2p–2

(∫ T

0

∣∣x′(t)
∣∣dt

)p–1

+ n
(∫ T

0

∣∣x′(t)
∣∣dt

)2

+
(
bT + T

1
2
)∫ T

0

∣
∣x′(t)

∣
∣dt + N11

=
1

2p–2 (2aT + m)
(∫ T

0

∣∣x′(t)
∣∣dt

)p

+
1

2p–3

(
2aTd2(p + 1) + md2p

)(∫ T

0

∣∣x′(t)
∣∣dt

)p–1

+ n
(∫ T

0

∣
∣x′(t)

∣
∣dt

)2

+
(
bT + T

1
2
)∫ T

0

∣
∣x′(t)

∣
∣dt + N1, (2.19)

where N1 := 2d2(n + bT + T 1
2 ). Applying the Hölder inequality, it is easy to verify that

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 1

2p–2 (2aT + m)T
p
q

∫ T

0

∣∣x′(t)
∣∣p dt

+
1

2p–3

(
2aTd2(p + 1) + md2p

)
T

p–1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

+ nT
2
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 2
p

+
(
bT + T

1
2
)
T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

+ N1.

Case (I). If p > 2 and 1
2p–2 ( aT

2 + m)T
p
q < 1, it is easy to see that there exists a positive M′

1

(independent of λ) such that

∫ T

0

∣
∣x′(t)

∣
∣p dt ≤ M′

1. (2.20)
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Substituting Eq. (2.20) into (2.7), and using the Hölder inequality, we see that

‖x‖ ≤ d2 +
1
2

T
1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p

≤ d2 +
1
2

T
1
q
(
M′

1
) 1

p := M′′′
1 .

Take M := max{M′′
1 , M′′′

1 }, we arrive at

‖x‖ ≤ M1. (2.21)

In view of x(0) = x(T), there exists a point t0 ∈ [0, T] such that x′(t0) = 0, while φp(0) = 0.
Therefore, from Eqs. (2.12), (2.20), (2.21) and condition (H2), we have

∣∣φp
(
x′(t)

)∣∣ =
∣
∣∣
∣

∫ t

t0

(
φp

(
x′(s)

))′ ds
∣
∣∣
∣

≤ λ

(∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T

0

∣
∣g

(
t, x(t)

)∣∣dt +
∫ T

0

∣
∣e(t)

∣
∣dt

)

≤ 2m‖x‖p–2
∫ T

0

∣∣x′(t)
∣∣dt + 2n

∫ T

0

∣∣x′(t)
∣∣dt + 2a‖x‖p–1T + 2bT + 2T

1
2 ‖e‖2

≤ 2mMp–2
1 T

1
q
(
M′

1
) 1

p + 2nT
1
q
(
M′

1
) 1

p + 2aMp–1
1 T + 2bT + 2T

1
2 ‖e‖2

:= M′
2. (2.22)

Besides, we claim that there exists a positive constant M2 > M′
2 + 1 such that, for all t ∈R

∥∥x′∥∥ ≤ M2. (2.23)

In fact, if x′ is not bounded, there exists a positive constant M′′
2 such that

∥
∥x′∥∥ > M′′

2 .

Then we can get

∥
∥φp

(
x′)∥∥ =

∥
∥x′∥∥p–1 ≥ (

M′′
2
)p–1,

which is a contradiction. So Eq. (2.23) holds.
Case (II). If p = 2 and aT2

2 + (m + n)T < 1, it is easy to see that there exists a positive M′
1

(independent of λ) such that

∫ T

0

∣∣x′(t)
∣∣2 dt ≤ M′

1.

Similarly, we get ‖x‖ ≤ M1, ‖x′‖ ≤ M2.
On the other hand, it follows from Eq. (2.1) and g(t, x) = g0(x) + g1(t, x) that

(
φp

(
x′(t)

))′ + λf
(
t, x(t)

)
x′(t)) + λ

(
g0

(
x(t)

)
+ g1

(
t, x(t)

))
= λe(t). (2.24)
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Let t ∈ [0, ξ ] be as in Eq. (2.7), for any ξ ≤ t ≤ T . From Eqs. (2.7) and (2.23), we conclude
that

x(ξ ) ≥ d1.

Next, we will show that for any t ∈ [ξ , T], there exists a constant D1 ∈ (0, d1), such that
each positive periodic solution of (1.1) satisfies

x(t) > D1.

In fact, multiplying both sides of Eq. (2.24) by x′(t) and integrating on [ξ , t], we get

λ

∫ x(t)

x(ξ )
g0(u) du = λ

∫ t

ξ

g0
(
x(s)

)
x′(s) ds

= –
∫ t

ξ

(
φ
(
x′(s)

))′x′(s) ds – λ

∫ t

ξ

f
(
s, x(s)

)(
x′(s)

)2 ds

– λ

∫ t

ξ

g1
(
s, x(s)

)
x′(s) ds + λ

∫ t

ξ

e(s)x′(s) ds.

Furthermore, we get

λ

∣∣∣
∣

∫ x(t)

x(ξ )
g0(u) du

∣∣∣
∣ ≤

∣∣∣
∣

∫ t

ξ

(
φ
(
x′(s)

))′x′(s) ds
∣∣∣
∣ + λ

∣∣∣
∣

∫ t

ξ

f
(
s, x(s)

)(
x′(s)

)2 ds
∣∣∣
∣

+ λ

∣∣
∣∣

∫ t

ξ

g1
(
s, x(s)

)
x′(s) ds

∣∣
∣∣ + λ

∣∣
∣∣

∫ t

ξ

e(s)x′(s) ds
∣∣
∣∣. (2.25)

By Eqs. (2.1), (2.22) and (2.23), we arrive at

∣∣
∣∣

∫ t

ξ

(
φp

(
x′(t)

))′x′(s) ds
∣∣
∣∣ ≤ ∥

∥x′∥∥
∫ T

0

∣
∣(φ

(
x′(s)

))′∣∣ds

≤ λ
∥
∥x′∥∥

(∫ T

0

∣
∣f

(
s, x′(s)

)∣∣ds +
∫ T

0

∣
∣g

(
s, x(s)

)∣∣ds +
∫ T

0

∣
∣e(s)

∣
∣ds

)

≤ 2λM2M′
2.

Moreover, from Eq. (2.25), we deduce
∣∣
∣∣

∫ t

ξ

f
(
s, x(s)

)(
x′(s)

)2
∣∣
∣∣ ≤ ∥

∥x′∥∥2T
(
m‖x‖p–2 + n

) ≤ M2
2T

(
mMp–2

1 + n
)
,

∣∣
∣∣

∫ t

ξ

g1
(
s, x(s)

)
x′(s) ds

∣∣
∣∣ ≤ ‖x‖

∫ T

0

∣
∣g1

(
s, x(s)

)∣∣ds ≤ M2
√

T‖gM1‖2,

∣∣
∣∣

∫ t

ξ

e(s)x′(s) dt
∣∣
∣∣ ≤ M2

√
T‖e‖2,

where ‖gM1‖ := max0<x≤M1 |g1(t, x)| ∈ L2(0, T). Form these inequalities we can derive from
equation (2.25) that

∣
∣∣
∣

∫ x(t)

x(ξ )
g0(u) du

∣
∣∣
∣ ≤ M2

(
2M′

2 + M2T
(
mMp–2

1 + n
)

+
√

T‖gM1‖2 +
√

T‖e‖2
)

:= M3. (2.26)
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In view of the repulsive condition (H4) and x(ξ ) ≥ d1, there exists D1 ∈ (0, d1) such that

∣∣
∣∣

∫ D1

d1

g0(u) du
∣∣
∣∣ > M3.

Thus, there exists a point η ∈ [ξ , T] such that x(η) ≤ D1, then

∣
∣∣∣

∫ x(η)

x(ξ )
g0(u) du

∣
∣∣∣ ≥

∣
∣∣∣

∫ D1

d1

g0(u) du
∣
∣∣∣ > M3,

which contradicts Eq. (2.26). Therefore, we can obtain that

x(t) ≥ D1, for all t ∈ [ξ , T].

Similarly, we can consider t ∈ [0, ξ ].
Let E1 < min{D1, M3}, E2 > max{d2, M1}, E3 > M2 are constants, from Eqs. (2.7), (2.21)

and (2.23), we see that periodic solution x to Eq. (2.1) satisfies

E1 < x(t) < E2,
∥
∥x′∥∥ < E3.

Then condition (1) of Lemma 2.1 is satisfied. For a possible solution C in the equation

g(t, C) –
1
T

∫ T

0
e(t) dt = 0,

satisfies E1 < C < E2. Therefore, condition (2) of Lemma 2.1 holds. Finally, we consider that
condition (3) of Lemma 2.1 is also satisfied. In fact, from (H1), we have

g(t, E1) –
1
T

∫ T

0
e(t) dt < 0,

and

g(t, E2) –
1
T

∫ T

0
e(t) dt > 0,

So condition (3) is also satisfied. Applying Lemma 2.1, we see that Eq. (1.1) has at least one
positive periodic solution. �

2.2 Proof of Theorem 1.5

Proof of Theorem 1.5 Let t, t, respectively, the global minimum and maximum points x(t)
on [0, T]; then x′(t) = 0 and x′(t) = 0, and we claim that

(
φp

(
x′(t)

))′ ≤ 0. (2.27)

In fact, if Eq. (2.27) does not hold, then (φp(x′(t)))′ > 0 and there exists ε > 0 such that
(φp(x′(t)))′ > 0 for t ∈ (t –ε, t +ε). Therefore φp(x′(t)) is strictly increasing for t ∈ (t –ε, t +ε).
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Then we know that x′(t) is strictly increasing for t ∈ (t – ε, t + ε). This contradicts the
definition of t. Thus, equation (2.27) is true. From Eqs. (2.1) and (2.27), we get

g
(
t + x(t)

)
– e(t) ≤ 0. (2.28)

Similarly, we deduce

g
(
t + x(t)

)
– e(t) ≥ 0. (2.29)

By condition (H6), Eqs. (2.28) and (2.29), we see that

x(t) ≥ d3, and x(t) ≤ d4.

In view of x being a continuous function, we see that there exists a point ξ ∗ ∈ (0, T) such
that

d3 ≤ x
(
ξ ∗) ≤ d4. (2.30)

From Eq. (2.7), we have

x(t) ≤ d4 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt.

We follow the same strategy and notation as in the proof of Theorem 1.1. From
Eqs. (2.11), (2.12), condition (H2) and (H8), we obtain

∫ T

0

∣
∣g

(
t, x(t)

)∣∣dt

=
∫

g(t,x(t))≥0
g
(
t, x(t)

)
dt –

∫

g(t,x(t))≤0
g
(
t, x(t)

)
dt

= –2
∫

g(t,x(t))≤0
g–(

t, x(t)
)

dt –
∫ T

0
f
(
t, x(t)

)
x′(t) dt +

∫ T

0
e(t) dt

≤ 2β

∫ T

0
xp–1(t) dt + 2γ T +

∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T

0

∣∣e(t)
∣∣dt

≤ 2βT‖x‖p–1 + 2γ T +
∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt, (2.31)

where g–(t, x) := min{g(t, x), 0}. The remaining part of the proof is the same as that of The-
orem 1.1. �

3 Periodic solution of Eq. (1.7) with singularities of attractive and repulsive
type

3.1 Proof of Theorem 1.6

Proof of Theorem 1.6 Consider the homotopic equation

(
φp

(
x′(t)

))′ + λf
(
x(t)

)
x′(t) + λg

(
t, x(t)

)
= e(t). (3.1)
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We follow the same strategy and notation as in the proof of Theorem 1.1. From Eq. (2.7),
we have

∫ T

0

(
φp

(
x′(t)

))′x(t) dt + λ

∫ T

0
g
(
t, x(t)

)
x(t) dt = λ

∫ T

0
e(t)x(t) dt, (3.2)

since
∫ T

0 f (x(t))x′(t)x(t) dt = 0. Substituting
∫ T

0 (φp(x′(t)))′x(t) dt = –
∫ T

0 |x′(t)|p dt into
equation (3.2), we get

∫ T

0

∣
∣x′(t)

∣
∣p dt ≤ ‖x‖

∫ T

0

∣
∣g

(
t, x(t)

)∣∣dt + ‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt. (3.3)

Integrating over the interval [0, T] for Eq. (3.1), we obtain

∫ T

0
g
(
t, x(t)

)
dt =

∫ T

0
e(t) dt. (3.4)

From Eq. (3.4) and condition (H3), we see that

∫ T

0

∣∣g
(
t, x(t)

)∣∣dt =
∫

g(t,x(t))≥0
g
(
t, x(t)

)
dt –

∫

g(t,x(t))≤0
g
(
t, x(t)

)
dt

= 2
∫

g(t,x(t))≥0
g+(

t, x(t)
)

dt –
∫ T

0
e(t) dt

≤ 2a
∫ T

0
xp–1(t) dt + 2bT +

∫ T

0

∣∣e(t)
∣∣dt

≤ 2a‖x‖p–1T + 2bT + T
1
2

(∫ T

0

∣∣e(t)
∣∣2 dt

) 1
2

. (3.5)

Substituting Eqs. (3.5) into (3.3), and from Eq. (2.19), we conclude that

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 2aT1+ p

q

2p–2

∫ T

0

∣∣x′(t)
∣∣p dt +

ad2(p + 1)T1+ p–1
q

2p–2

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

+
(
bT + T

1
2
)
T

1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p

+ N1.

Since 2aT1+ p
q

2p–2 < 1, it is easy to see that there exists a positive M′
1 (independent of λ) such

that

∫ T

0

∣∣x′(t)
∣∣dt ≤ M′

1.

The remaining part of the proof is the same as that of Theorem 1.1. �

3.2 Proof of Theorem 1.8

Proof of Theorem 1.8 We follow the same strategy and notation as in the proof of Theo-
rem 1.5 and 1.6. We only consider

∫ T
0 |g(t, x(t))|dt.
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From Eqs. (2.31), (3.4) and condition (H8), we have

∫ T

0

∣∣g
(
t, x(t)

)∣∣dt =
∫

g(t,x(t))≥0
g
(
t, x(t)

)
dt –

∫

g(t,x(t))≤0
g
(
t, x(t)

)
dt

= –2
∫

g(t,x(t))≤0
g–(

t, x(t)
)

dt +
∫ T

0
e(t) dt

≤ 2β

∫ T

0
xp–1(t) dt + 2γ T +

∫ T

0

∣∣e(t)
∣∣dt

≤ 2βT‖x‖p–1 + 2γ T +
∫ T

0

∣
∣e(t)

∣
∣dt. (3.6)

The remaining part of the proof is the same as that of Theorem 1.1. �

4 Periodic solution of Eq. (1.8) with singularities of attractive and repulsive
type

4.1 Proof of Theorem 1.9

Proof of Theorem 1.9 Consider the homotopic equation

(
φp

(
x′(t)

))′ + λf
(
t, x(t)

)
x′(t) + λg

(
x(t)

)
= e(t). (4.1)

We follow the same strategy and notation as in the proof of Theorem 1.1. From Eq. (2.7),
we deduce

x(t) ≤ d∗
2 +

1
2

∫ T

0

∣∣x′(t)
∣∣dt. (4.2)

Multiplying both sides of Eq. (4.1) by x′(t) and integration over the interval [0, T], we get

∫ T

0

(
φp

(
x′(t)

))′x′(t) dt + λ

∫ T

0
f
(
t, x(t)

)(
x′(t)

)2 dt + λ

∫ T

0
g
(
x(t)

)
x′(t) dt

= λ

∫ T

0
e(t)x′(t) dt.

Since
∫ T

0 (φp(x′(t)))′x′(t) dt = 0 and
∫ T

0 g(x(t))x′(t) dt = 0, we obtain

∫ T

0
f
(
t, x(t)

)∣∣x′(t)
∣
∣2 dt =

∫ T

0
e(t)x′(t) dt. (4.3)

From Eq. (4.3), we have

∣∣
∣∣

∫ T

0
f
(
t, x(t)

)∣∣x′(t)
∣
∣2 dt

∣∣
∣∣ =

∣∣
∣∣

∫ T

0
e(t)x′(t) dt

∣∣
∣∣. (4.4)

From condition (H5), we see that

∣∣
∣∣

∫ T

0
f
(
t, x(t)

)∣∣x′(t)
∣
∣2 dt

∣∣
∣∣ =

∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣2 dt ≥ α

∫ T

0

∣
∣x′(t)

∣
∣2 dt. (4.5)
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Substituting Eqs. (4.5) into (4.4), and using the Hölder inequality, we arrive at

α

∫ T

0

∣
∣x′(t)

∣
∣2 dt ≤

∫ T

0

∣
∣e(t)

∣
∣
∣
∣x(t)

∣
∣dt

≤
(∫ T

0

∣∣e(t)
∣∣2 dt

) 1
2
(∫ T

0

∣∣x(t)
∣∣2 dt

) 1
2

= ‖e‖2

(∫ T

0

∣
∣x(t)

∣
∣2 dt

) 1
2

.

It is easy to see that there exists a positive constant M′
1 (independent of λ) such that

∫ T

0

∣
∣x′(t)

∣
∣2 dt ≤ M′

1.

From Eq. (2.21), it is obvious that

x(t) ≤ M1.

Integrating both sides of Eq. (4.1) over [0, T], it is clear that

∫ T

0

[
f
(
t, x(t)

)
x′(t) + g

(
x(t)

)
– e(t)

]
dt = 0. (4.6)

From Eq. (4.6), we have

∫ T

0

∣∣g
(
x(t)

)∣∣dt =
∫

g(x(t))≥0
g
(
x(t)

)
dt –

∫

g(x(t))≤0
g
(
x(t)

)
dt

= 2
∫

g(x(t))≥0
g+(

x(t)
)

dt +
∫ T

0
f
(
t, x(t)

)
x′(t) dt –

∫ T

0
e(t) dt. (4.7)

Case (I). If e := 1
T

∫ T
0 e(t) dt ≤ 0, from (4.7), we get

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ 2
∫ T

0

(
g+(

x(t)
)

– e(t)
)

dt +
∫ T

0
f
(
t, x(t)

)
x′(t) dt.

Since g+(x(t)) – e(t) ≥ 0, from condition (H∗
1 ), we know x(t) ≥ d∗

2 . Then we deduce

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ 2
∫ T

0
g+(

x(t)
)

dt +
∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣ +

∫ T

0

∣∣e(t)
∣∣dt

≤ 2T
∥
∥g+

M1

∥
∥ +

∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣ +

∫ T

0

∣
∣e(t)

∣
∣dt, (4.8)

where ‖g+
M1

‖ := maxd∗
2≤x≤M1 g+(x). From Eqs. (2.22) and (4.8), we have

∥∥φp
(
x′)∥∥ ≤

∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T

0

∣∣g
(
x(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

≤ 2
(

T
∥
∥g+

M1

∥
∥ +

∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt

)
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≤ 2
(
T

∥∥g+
M1

∥∥ + ‖fM1‖2
(
M′

1
) 1

2 + T
1
2 ‖e‖2

)

:= M′
2, (4.9)

where fM1 := max0<x(t)≤M1 |f (t, x(t))|, ‖fM1‖2 := (
∫ T

0 |f (t, x(t))|2 dt) 1
2 .

Case (II). If e > 0, from (4.7), we have

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ 2
∫ T

0
g+(

x(t)
)

dt +
∫ T

0
f
(
t, x(t)

)
x′(t) dt.

Since g+(x(t)) ≥ 0, from condition (H∗
1 ), we know that there exists a positive constant d∗∗

2

such that x(t) ≥ d∗∗
2 . Therefore, we have

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ 2
∫ T

0
g+(

x(t)
)

dt +
∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt

≤ 2T
∥∥g+

M
∥∥ +

∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt,

where ‖g+
M‖ := maxd∗∗

2 ≤x≤M1 g+(x). Similarly, we can get |φp(x′(t))| ≤ M′
2.

The remaining part of the proof is the same as that of Theorem 1.1. �

4.2 Proof of Theorem 1.11

Proof of Theorem 1.11 We follow the same strategy and notation as in the proof of Theo-
rem 1.5 and 1.6. We can get

x(t) ≤ M1.

From Eq. (4.6), we deduce

∫ T

0

∣∣g
(
x(t)

)∣∣dt =
∫

g(x(t))≥0
g
(
x(t)

)
dt –

∫

g(x(t))≤0
g
(
x(t)

)
dt

= –2
∫

g(x(t))≤0
g–(

x(t)
)

dt –
∫ T

0
f
(
t, x(t)

)
x′(t) dt +

∫ T

0
e(t) dt. (4.10)

Case (I). If e := 1
T

∫ T
0 e(t) dt ≥ 0, from Eq. (4.10), we have

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ –2
∫ T

0

(
g–(

x(t)
)

– e(t)
)

dt –
∫ T

0
f
(
t, x(t)

)
x′(t) dt.

Since g–(x(t)) – e(t) ≤ 0, from condition (H∗
6 ), we know x(t) ≥ d∗

4 . Then we get

∫ T

0

∣∣g
(
x(t)

)∣∣dt ≤ –2
∫ T

0
g–(

x(t)
)

dt +
∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣ +

∫ T

0

∣∣e(t)
∣∣dt

≤ 2T
∥∥g–

M1

∥∥ +
∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣ +

∫ T

0

∣∣e(t)
∣∣dt, (4.11)
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where ‖g–
M1

‖ := maxd∗
4≤x≤M1 (–g–(x)). From Eqs. (2.22) and (4.11), we see that

∥∥φp
(
x′)∥∥ ≤

∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T

0

∣∣g
(
x(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

≤ 2
(

T
∥
∥g–

M1

∥
∥ +

∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt

)

≤ 2
(
T

∥
∥g–

M1

∥
∥ + ‖fM1‖2

(
M′

1
) 1

2 + T
1
2 ‖e‖2

)
:= M′

2. (4.12)

Case (II). If e < 0, from Eq. (4.10), we arrive at

∫ T

0

∣
∣g

(
x(t)

)∣∣dt ≤ –2
∫ T

0
g–(

x(t)
)

dt –
∫ T

0
f
(
t, x(t)

)
x′(t) dt.

Since g–(x(t)) ≤ 0, from condition (H∗
6 ), we know that there exists a positive constant d∗∗

4

such that x(t) ≥ d∗∗
4 . Therefore, we conclude that

∫ T

0

∣
∣g

(
x(t)

)∣∣dt ≤ –2
∫ T

0
g–(

x(t)
)

dt +
∫ T

0

∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt

≤ 2T
∥∥g+

M
∥∥ +

∫ T

0

∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt,

where ‖g–
M‖ := maxd∗∗

4 ≤x≤M1 (–g–(x)). Similarly, we can get |φp(x′(t))| ≤ M′
2. �

5 Examples
Example 5.1 Consider the following p-Laplacian generalized Liénard equation with sin-
gularity of attractive type:

(
φp

(
x′(t)

))′ +
(

1
π

(
cos2 4t + 3

)
x2 + 1

)
x′(t) –

1
3π2 (sin 8t + 2)x3 +

1
xκ

= ecos2 4t , (5.1)

where p = 4, κ is a constant and κ ≥ 1.
Comparing Eq. (5.1) to (1.1), it is easy to see that f (t, x) = 1

π
(cos2 4t + 3)x2 + 1, g(t, x) =

– 1
3π2 (sin 8t + 2)x3 + 1

xκ , e(t) = ecos2 4t , T = π
4 . Obviously, there exist constants d3 = 0.1 and

d4 = 1 such that (H6) holds. 1 ≤ |f (t, x)| ≤ 4
π

x2 +1, α = 1, m = 4
π

, n = 1, then conditions (H2)
and (H5) hold. –g(t, x) ≤ 1

π2 x3 + 1, β = 1
π2 , γ = 1. limx→0+

∫ 1
x g0(s) ds = limx→0+

∫ 1
x

–1
sκ ds =

+∞, thus, conditions (H7) and (H8) hold. Next, it is verified that

1
2p–2

(
βT
2

+ m
)

T
p
q =

1
22 ×

(
1

2π
+

4
π

)
×

(
π

4

)3

=
9π2

29 < 1.

Therefore, by Theorem 1.5, we know that Eq. (5.1) has at least one positive π
4 -periodic

solution.

Example 5.2 Consider the following Liénard equation with singularity of repulsive type:

x′′(t) + 6x10x′(t) +
1

6π

(
sin2 2t + 5

)
x –

1
xκ

= ecos2 2t , (5.2)

where p = 2, κ is a constant and κ ≥ 1.
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Comparing Eq. (5.2) to (1.7), it is easy to see that f (x) = 6x10(t), g(t, x) = 1
6π

(sin2 2t +
5)x – 1

xκ , e(t) = ecos2 2t , T = π
2 . Obviously, there exist constants d1 = 0.1 and d2 = 1 such that

(H1) holds. g(t, x) ≤ 1
π

x + 1, a = 1
π

, b = 1. limx→0+
∫ 1

x g0(s) ds = limx→0+
∫ 1

x
1
sκ ds = –∞, thus,

conditions (H3) and (H4) hold. Next, it is verified that

1
2p–1 T1+ p

q =
1
2

× 1
π

×
(

π

2

)2

=
π

8
< 1.

Therefore, by Theorem 1.6, we know that Eq. (5.2) has at least one positive π
2 -periodic

solution.

Example 5.3 Consider the following p-Laplacian generalized Liénard equation with sin-
gularity of repulsive type:

(
φp

(
x′(t)

))′ +
(
(cos t + 2)x6 + 3

)
x′(t) +

n∑

i=1

x2i(t) –
1

xμ
= esin t , (5.3)

where p = 10, μ is a constant and μ ≥ 1, n is a integer.
Comparing Eqs. (5.3) to (1.8), it is easy to see that f (t, x) = (cos t + 2)x6 + 3, g(x) =

∑n
i=1 x2i(t) – 1

xμ , e(t) = ecos t , T = 2π . Obviously, there exist constants d∗
1 = 0.1 and d∗

2 = 1
such that (H∗

1 ) holds. |f (t, x)| ≥ 3, α = 3, then condition (H2) holds. Next, we prove that
condition (H∗

4 ) holds. In fact,

lim
x→0+

∫ 1

x
g(s) ds = lim

t→0+

∫ 1

x

( n∑

i=1

s2i –
1
sμ

)

ds = –∞.

Therefore, by Theorem 1.9, we know that Eq. (5.3) has at least one positive 2π-periodic
solution.

6 Conclusions
In this article we introduce the existence of periodic solution for p-Laplacian generalized
Liénard equation with singularity of attractive and repulsive type. Due to the friction term
f (t, x)x′(t) may not satisfy

∫ T
0 f (t, x(t))x′(t) dt = 0. This implies that the work on estimating

a priori bounds of periodic solutions for generalized Liénard Eq. (1.1) is more difficult
than the corresponding work on Liénard equation in [6, 15, 24, 25, 29]. Secondly, attractive
conditions (H7) and (H8) are contradicted with the repulsive conditions (H3) and (H4), the
methods of [6, 15, 24, 25, 29] are no longer applicable to the proof of periodic solution
for Eq. (1.1) with singularity of attractive singularity. In this paper, using the Manásevich–
Mawhin theorem on continuity of the topological degree and conditions (H1)–(H5), we
prove the existence of a periodic solution for equation (1.1) with singularity of repulsive
type; by conditions (H2), (H5) (H6)–(H8), we obtain the existence of a periodic solution
for Eq. (1.1) with singularity of attractive type. Moreover, we investigate the existence of a
periodic solution for Eqs. (1.7) and (1.8) with singularities of attractive and repulsive type.
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