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1 Introduction
Single-period mean-variance portfolio selection was first introduced and studied by
Markowitz [14]. Markowitz’s pioneer work [14] has laid down the foundation for modern
financial portfolio theory. In 2000, Li and Ng [11] extended the Markowitz model to the
dynamic setting. From then on, various continuous time Markowitz models were studied
in much of the literature (see, e.g., [1, 12, 13, 21]).

Generally, there are two approaches, i.e. the forward (primal) approach and the back-
ward (dual) approach, employed to solve the above problem in the continuous time case.
The first approach is inspired by indefinite stochastic linear quadratic control (see, e.g.,
[3, 20]) and builds the relationship between the mean-variance problem and a family of
indefinite stochastic linear quadratic optimal control problems (see, e.g., [12, 13, 21]). The
second approach is first studied by Bielecki et al. in [1], which is the generalization of the
well-known risk neutral computational approach in the discrete time case (see, e.g., [9, 17,
18]). The backward approach includes two steps: the first step is to compute the optimal
terminal wealth; the second step is to compute the replicating portfolio strategy corre-
sponding to the obtained optimal terminal wealth. As shown in [1], the optimal terminal
wealth is first obtained using the Lagrange multiplier method and then the optimal repli-
cating portfolio strategy is obtained by solving a backward stochastic differential equation
(BSDE for short). Along this line, in 2008, Ji and Peng [10] used Ekeland’s variational prin-
ciple to obtain a necessary condition for portfolio optimization problem by the backward
approach. In this paper, we study optimal investment problem by the method of non-
smooth analysis, which makes more general portfolio optimization problem be inside the
scopes of our consideration.
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Now the framework of optimal investment problem that we study are introduced. Let
(Ω ,F , P) be a probability space and (Wt)t≥0 be a d-dimensional standard Brownian motion
with respect to filtration (Ft)t≥0 generated by Brownian motion and all P-null subsets, i.e.,

Ft = σ {Ws; s ≤ t} ∨N ,

where N is the set of all P-null subsets. Fix a real number T > 0. Denote F := (Ft)t∈[0,T]

Here, let L2(FT ) denote the space of FT -measurable random variables ξ : Ω �→ R satis-
fying E[ξ 2] < ∞; H2

T (Rn) denote the space of F-predictable processes ϕ : Ω × [0, T] �→ Rn

satisfying E[
∫ T

0 |ϕt|2 dt] < ∞ and S2
T (R) denote the space of F-progressively measurable

RCLL processes ϕ : Ω × [0, T] �→ R satisfying E[sup0≤t≤T |ϕt|2] < ∞.
Given an initial capital x, the investment process can be modeled by the following one-

dimensional BSDE on [0, T]:

yt = ξ +
∫ T

t
g(s, ys, zs) ds –

∫ T

t
zs · dWs (1)

with y0 ≤ x, where ξ ∈ L2(FT ) and g(ω, t, y, z) : Ω × [0, T] × R × Rd �→ R is a function
uniformly satisfying the Lipschitz condition, i.e., there exists a positive constant M such
that for all (y1, z1), (y2, z2) ∈ R × Rd

∣
∣g(ω, t, y1, z1) – g(ω, t, y2, z2)

∣
∣ ≤ M

(|y1 – y2| + |z1 – z2|
)

(A.1)

and

g(·, 0, 0) ∈ H2
T (R). (A.2)

By Pardoux and Peng [15], we know that: Suppose that g satisfies (A.1) and (A.2). Then, for
any ξ ∈ L2(FT ), BSDE (1) has a unique pair of adapted processes (yt , zt) ∈ S2

T (R) × H2
T (Rd).

Usually, we call {yt} a wealth process and {zt} a portfolio process.
Assume that the investor has initial wealth x, he invests it in the financial market ac-

cording to BSDE (1). Denote E g
0,T (ξ ) := y0. Then his investment strategy is determined by

all available terminal values for him, i.e.,

A(x) :=
{
ξ ∈ L2(FT )|E g

0,T (ξ ) ≤ x
}

.

In this paper, we study the following problem: if there exists ξ ∗ ∈A(x), which is the optimal
objective of problem

min
ξ∈A(x)

ρ(ξ ), (2)

what is the necessary condition for ξ ∗? Here, ρ is a function defined on L2(FT ) and rep-
resents a risk measure. We also assume that ρ satisfies the Lipschitz condition.

This paper is organized as follows. In Sect. 2, we give some results about non-smooth
analysis that are used in this paper. In Sect. 3, we study the optimal investment problem
on wealth and portfolio processes. With the help of the method of non-smooth analysis,
a necessary condition for an optimal objective is obtained, which generalizes the result of
Ji and Peng [10]. In Sect. 4, we give some examples as the applications of our result.
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2 Some results about non-smooth analysis
In this section, we give some results about non-smooth analysis that are used in this paper.
The following definitions, lemmas and propositions can be found in [4, 5].

Suppose that X is a Banach space, and X∗ is its dual space. Obviously, L2(FT ) is a Banach
space with the norm ‖ξ‖ := (E[ξ 2]) 1

2 for any ξ ∈ L2(FT ), and L2(FT ) is also its dual space.

Definition 1 Suppose that f is a function defined on X, Given an x ∈ X, if
lim supy∈X,y→x,t↓0

f (y+tv)–f (y)
t ∈ R for any v ∈ X, denote

f o(x; v) := lim sup
y∈X,y→x,t↓0

f (y + tv) – f (y)
t

. (3)

We call f o(x; v) the generalized directional derivative of f at x.

Remark 1 Suppose that a function f : X �→ R satisfies Lipschitz condition, i.e., for any x1,
x2 ∈ X,

∣
∣f (x1) – f (x2)

∣
∣ ≤ M‖x1 – x2‖

holds for some M > 0, depending on f . By Definition 1, we have:
(i) Obviously, f o(x; v) is sub-linear on X, then, by the Hahn–Banach theorem, the gener-

alized directional derivative set of f at x

∂of (x) :=
{
ζ ∈ X∗|ζ (v) ≤ f o(x; v),∀v ∈ X

}
(4)

is nonempty and weak star compact in X∗.
(ii) If f (x) attains minimum value at some point x0 ∈ X, i.e.,

f (x) ≥ f (x0), ∀x ∈ X,

the Fermat condition

0 ∈ ∂of (x0)

holds.
Given a set C ⊂ X, the distance function dC : X �→ R is defined as

dC(x) := inf
y∈C

‖y – x‖,

for a given x ∈ X.

Lemma 1 (Exact penalization) Suppose that f is a Lipschitz function with coefficient M
defined on X, x∗ ∈ C ⊂ X and f takes its minimum value at x∗ on C. Then, for any M̂ ≥ M,
g(x) := f (x) + M̂dC(x) attains minimum value at x0 on X. On the contrary, if M̂ > M and C
is closed, then the minimum point of g , x0 must belong to C.



Wu et al. Advances in Difference Equations        (2018) 2018:460 Page 4 of 13

Remark 2 From Lemma 1, we know that, supposing that f is a Lipschitz function with
coefficient M defined on X and C is a closed subset of X and letting g(y) := f (y) + M̂dC(y),
for any y ∈ X, where M̂ > M, then, if there exists x∗ ∈ C such that

f
(
x∗) = min

x∈C
f (x), (5)

then we have

g
(
x∗) = min

x∈X
g(x) = f

(
x∗). (6)

Definition 2 Assume x ∈ C. Given v ∈ X, if do
C(x; v) = 0, then v is said to be a contingent

derivative at x. Denote

TC(x) :=
{

v ∈ X|do
C(x; v) = 0

}
.

TC(x) is the set of contingent derivatives at x. By polarity, the normal derivative set is
defined as

NC(x) :=
{
ζ ∈ X∗|ζ (v) ≤ 0,∀v ∈ TC(x)

}
.

Proposition 1 Suppose that x ∈ C, then we have

NC(x) = cl
{⋃

λ≥0

λ∂odC(x)
}

,

where cl means the weak star closure.

Proposition 2 Given an x ∈ X, suppose that h is Lipschitz in a neighborhood of x and
0 /∈ ∂oh(x). Let

C :=
{

y ∈ X|h(y) ≤ h(x)
}

. (7)

Then we have

NC(x) ⊂
⋃

λ≥0

λ∂oh(x). (8)

Remark 3 Given an x ∈ X, suppose that h is Lipschitz in a neighborhood of x and 0 /∈
∂oh(x). Let C := {y ∈ X|h(y) ≤ h(x)}. We also assume that f is a Lipschitz function with
coefficient M defined on X, and f takes its minimum value at x on C. By Definition 1,
Remark 2, Definition 2 and Proposition 2, then the Fermat condition

0 ∈ ∂of (x) + NC(x) (9)

holds, i.e., there exist a non-negative constant λ, ζ ∈ ∂of (x) and η ∈ ∂oh(x) such that

ζ + λη = 0

holds.
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Definition 3 A function f defined on X is called strictly differentiable at x ∈ X, if there
exists x∗ ∈ X∗ such that

lim
y∈X,y→x,t→0+

f (y + tv) – f (y)
t

=
〈
x∗, v

〉
, (10)

for any v ∈ X.

Lemma 2 A function f defined on X is strictly differentiable at x ∈ X, then ∂of (x) = {x∗},
where x∗ can be obtained by (10).

Lemma 3 Suppose that {hi, i = 1, 2, . . . , n} is a set of Lipschitz functions on X. Define

h(x) := max
{

hi(x)|i = 1, 2, . . . , n
}

, ∀x ∈ X.

For each x ∈ X, let I(x) be the subset of {1, 2, . . . , n} satisfying that hi(x) = h(x), i ∈ I(x). Then
we have

∂oh(x) ⊂ co
{
∂ohi(x)|i ∈ I(x)

}
, (11)

where coA is the convex hull of A.

3 Maximum principle for optimal investment problem
In this section, our aim is to derive a necessary condition for optimal problem (2). Just as
usual, in order to use the method of non-smooth analysis, we need the following assump-
tion:

the risk measure ρ is Lipschitz. (A.3)

The following proposition shows that E g
0,T is Lipschitz in L2(FT ). For more details, see

[2, 22, 23].

Proposition 3 Suppose that g satisfies (A.1) and (A.2), ξi ∈ L2(FT ), i = 1, 2, and (yi
t , zi

t) are
the solutions of BSDE (1) with terminal values ξi, respectively, then there exists a constant
C > 0 such that

E
[

sup
t∈[0,T]

∣
∣y2

t – y1
t
∣
∣2

]
+ E

[∫ T

0

∣
∣z2

t – z1
t
∣
∣2 dt

]

≤ CE
[|ξ2 – ξ1|2

]
. (12)

Remark 4 From Proposition 3, we know that, supposing g satisfies (A.1) and (A.2), then,
for any ξ1, ξ2 ∈ L2(FT ),

∣
∣E g

0,T (ξ1) – E g
0,T (ξ2)

∣
∣ ≤ C

1
2 ‖ξ1 – ξ2‖

holds.

The following theorem is our main result.
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Theorem 1 Under the conditions (A.1)–(A.3), if ξ ∗ is an optimal objective of problem (2),
then there exist a non-negative constant λ, ζ ∈ ∂oρ(ξ ∗) and η ∈ ∂oE g

0,T (ξ ∗) such that

ζ + λη = 0 (13)

holds.

In order to prove Theorem 1, we need the following lemma.

Lemma 4 Suppose that g satisfies (A.1) and (A.2). Then, for any ξ ∈ L2(FT ), we have 0 /∈
∂oE g

0,T (ξ ).

Proof For notational simplicity, we only consider the case d = 1. We assume that there
exists ξ ∗ ∈ L2(FT ) such that 0 ∈ ∂oE g

0,T (ξ ∗). For any ξ ∈ L2(FT ), let h(ξ ) := E g
0,T (ξ ), then

ho(ξ ∗;η
) ≥ 0

holds, for any η ∈ L2(FT ). For each ξ ∈ L2(FT ), suppose that (yt , zt) and (yr
t , zr

t ) are the
solutions of the following BSDEs on [0, T]:

yt = ξ +
∫ T

t
g(s, ys, zs) ds –

∫ T

t
zs dWs,

yr
t = ξ + rη +

∫ T

t
g
(
s, yr

s , zr
s
)

ds –
∫ T

t
zr

s dWs,

respectively. Thus, we have

yr
t – yt = rη +

∫ T

t

[
g
(
s, yr

s , zr
s
)

– g(s, ys, zs)
]

ds –
∫ T

t

(
zr

s – zs
)

dWs

= rη +
∫ T

t

[
αs

(
yr

s – ys
)

+ βs
(
zr

s – zs
)]

ds –
∫ T

t

(
zr

s – zs
)

dWs,

where

αs =
g(s, yr

s , zs) – g(s, ys, zs)
yr

s – ys
1{yr

s –ys �=0},

βs =
g(s, yr

s , zr
s ) – g(s, yr

s , zs)
zr

s – zs
1{zr

s –zs �=0},

which imply sups∈[0,T] |αs| ≤ M and sups∈[0,T] |βs| ≤ M from the Lipschitz condition (A.1).
Applying Itô’s formula, we have

E g
0,T (ξ + rη) – E g

0,T (ξ ) = E
[

rη · exp

{∫ T

0

[

αs –
1
2
|βs|2

]

ds +
∫ T

0
βs dWs

}]

.

Let η = –1, then, by Definition 1, we can deduce that

ho(ξ ∗;η
)

= lim sup
ξ→ξ∗ ,r↓0

E g
0,T (ξ + rη) – E g

0,T (ξ )
r

< 0.

We get a contradiction with ho(ξ ∗;η) ≥ 0. The proof of Lemma 4 is complete. �
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Proof of Theorem 1 By Lemma 4, we have 0 /∈ ∂oE g
0,T (ξ ), for any ξ ∈ L2(FT ). Hence by

Definition 1, Remark 2, Definition 2 and Proposition 1, we can see that, if ξ ∗ is an optimal
objective of problem (2), then the Fermat condition

0 ∈ ∂oρ
(
ξ ∗) + NA(x)

(
ξ ∗) (14)

holds.
Case 1: E g

0,T (ξ ∗) = x. In this case, A(x) = {ξ ∈ L2(FT )|E g
0,T (ξ ) ≤ E g

0,T (ξ ∗)}. Thus, by Propo-
sition 2, there exist a non-negative constant λ, ζ ∈ ∂oρ(ξ ∗) and η ∈ ∂oE g

0,T (ξ ∗) such that

ζ + λη = 0 (15)

holds.
Case 2: E g

0,T (ξ ∗) = x0 < x. In this case, denote

C̃ :=
{
ξ ∈ L2(FT )|E g

0,T (ξ ) ≤ x0
}

.

Since ξ ∗ is an optimal objective of problem (2), ξ ∗ is also an optimal objective of problem

min
ξ∈C̃

ρ(ξ ). (16)

Thus, by Definition 1, Remark 2, Definition 2 and Proposition 2 again, Equation (15) also
holds. The proof of Theorem 1 is complete. �

From Remark 4, we know that E g
0,T is Lipschitz in L2(FT ). By Definition 1, we can see

that ∂oE g
0,T (ξ ) is not empty for any ξ ∈ L2(FT ). Indeed, we have following result.

Lemma 5 Suppose that ξ ∈ L2(FT ) and g satisfies (A.1) and (A.2). Let (yt , zt) be the solu-
tion of BSDE (1) with terminal value ξ , then for any η ∈ ∂oE g

0,T (ξ ) and ζ ∈ L2(FT ), there
exists (ϕt ,ψt) ∈ ∂og(t, yt , zt) such that

〈η, ζ 〉 = ỹ0

holds, where (ỹt , z̃t) is the solution of the following BSDE on [0, T]:

ỹt = ζ +
∫ T

t
(ϕsỹs + ψsz̃s) ds –

∫ T

t
z̃s · dWs. (17)

Proof For any given ω ∈ Ω and t ∈ [0, T], let ĝ(t, ŷ, ẑ) = go(t, yt , zt ; ŷ, ẑ), ∀(ŷ, ẑ) ∈ R × Rd . By
Definition 1, we can see that ĝ(t, ŷ, ẑ) is Lipschitz, positively homogeneous and convex in
(ŷ, ẑ), and hence

ĝ(t, ŷ, ẑ) = max
(ϕt ,ψt )∈∂og(t,yt ,zt )

〈
(ϕt ,ψt), (ŷ, ẑ)

〉
. (18)

For any ζ ∈ L2(FT ), we consider the following BSDE on [0, T]:

ŷt = ζ +
∫ T

t
ĝ(s, ŷs, ẑs) ds –

∫ T

t
ẑs · dWs. (19)
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Let f̂ (ζ ) := ŷ0. Denote

D :=
{
η ∈ L2(FT )|〈η, ζ 〉 = ỹ0,∀(ϕt ,ψt) ∈ ∂og(t, yt , zt)

}
, (20)

where (ỹt , z̃t) is the solution of the following BSDE on [0, T]:

ỹt = ζ +
∫ T

t
(ϕsỹs + ψsz̃s) ds –

∫ T

t
z̃s · dWs.

By the comparison theorem of BSDE (for example, see El Karoui et al. [7]), we have
f̂ (ζ ) ≥ 〈η, ζ 〉, for any η ∈ D. Since ĝ is positively homogeneous and convex in (ŷ, ẑ), by
Propositions 3.3 and 3.4 in Peng [16], we know that f̂ is positively homogeneous and con-
vex in L2(FT ), and hence

f̂ (ζ ) = max
η∈D

〈η, ζ 〉. (21)

By Definition 1, we can obtain that

(
E g

0,T
)o(ξ ; ζ ) = f̂ (ζ ) = max

η∈D
〈η, ζ 〉.

This means that ∂oE g
0,T (ξ ) = D. The proof of Lemma 5 is complete. �

In Ji and Peng [10], the authors assume that g is continuously differentiable in (y, z). In
this special case, we can get an explicit form of ∂oE g

0,T .

Lemma 6 Suppose that ξ ∈ L2(FT ) and g satisfies (A.1) and (A.2). Let (yt , zt) be the solu-
tion of BSDE (1) with terminal value ξ . If g is continuously differentiable in (y, z) ∈ R × Rd ,
then we have

∂oE g
0,T (ξ ) = {qT }

and for any η ∈ L2(FT ),

〈qT ,η〉 = ỹ0, (22)

where (ỹt , z̃t) is the solution of the following BSDE on [0, T]:

ỹt = η +
∫ T

t

[
g ′

y(s, ys, zs)ỹs + g ′
z(s, ys, zs)z̃s

]
ds –

∫ T

t
z̃s · dWs.

Proof For any given ω ∈ Ω and t ∈ [0, T], let g̃(t, ỹ, z̃) = go(t, yt , zt ; ỹ, z̃), ∀(ỹ, z̃) ∈ R × Rd .
Since g satisfies (A.1), (A.2), and is continuously differentiable in (y, z) ∈ R × Rd , we know
that g is strictly differentiable in (y, z) ∈ R × Rd and

g̃(t, ỹ, z̃) = g ′
y(t, yt , zt)ỹ + g ′

z(t, yt , zt)z̃
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holds. For any η ∈ L2(FT ), let (ỹt , z̃t) be the solution of the following BSDE on [0, T]:

ỹt = η +
∫ T

t
g̃(s, ỹs, z̃s) ds –

∫ T

t
z̃s · dWs.

Denote E g̃
0,T (η) := ỹ0. By Definition 1, we obtain

(
E g

0,T
)o(ξ ;η) = E g̃

0,T (η). (23)

Since g̃ is linear in (ỹ, z̃), by Propositions 3.3 and 3.4 in Peng [16], we know that E g̃
0,T is

linear in L2(FT ). By Proposition 3, we can see that E g̃
0,T is continuous in L2(FT ). Thus, by

the Riesz representation theorem, there exists qT ∈ L2(FT ) such that

E g̃
0,T (η) = 〈qT ,η〉 (24)

holds for any η ∈ L2(FT ). From (23) and (24), we have ∂oE g
0,T (ξ ) = {qT }. The proof of

Lemma 6 is complete. �

By Theorem 1 and Lemma 6, we immediately obtain the following theorem.

Theorem 2 Suppose that ρ satisfies (A.3), and g satisfies (A.1), (A.2), and is continuously
differentiable in (y, z). Assume that ξ ∗ is an optimal objective of problem (2), let (y∗

t , z∗
t ) be

the solution of BSDE (1) with terminal value ξ ∗. Then there exist a non-negative constant
λ and ζ ∈ ∂oρ(ξ ∗) such that

ζ + λq∗
T = 0

holds, where q∗
T can be obtained by (22).

4 Some examples
In this section, we give three examples for our obtained result. In the sequel, suppose that
g satisfies (A.1), (A.2), and is continuously differentiable in (y, z).

Problem A. Minimize

E
[
ϕ(ξ )

]
– c

subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E[u(ξ )] = c,

E g
0,T (ξ ) = x,

E g
0,T (ξ ) ≥ 0,

ξ ∈ L2(FT ),

where ϕ : R �→ R is Lipschitz and continuously differentiable, and u : R �→ R has bounded
continuous derivative u′.

We can extend Problem A to a more general framework.
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Problem B. Minimize

E
[
ϕ(ξ )

]
– c

subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E[u(ξ )] ≤ c,

E g
0,T (ξ ) ≤ x,

E g
0,T (ξ ) ≥ 0,

ξ ∈ L2(FT ),

where ϕ : R �→ R is Lipschitz and continuously differentiable, and u : R �→ R has bounded
continuous derivative u′.

In order to study the optimization problems A and B, we need the following lemma.

Lemma 7 If u : R �→ R has bounded continuous derivative u′, then the function ρ(ξ ) =
E[u(ξ )] for any ξ ∈ L2(FT ) is strictly differentiable, and ∂oρ(ξ ) = {u′(ξ )}.

By the Fubini theorem and the dominated convergence theorem, we can easily prove
Lemma 7. So we omit it.

Theorem 3 If the optimal objective ξ ∗ of Problem A exists, there exist two constants λ1

and λ2 such that

ϕ′(ξ ∗) + λ1u′(ξ ∗) + λ2q∗
T = 0

holds, where ∂oE g
0,T (ξ ∗) = {q∗

T }.

Proof Denote ρ(ξ ) := E[ϕ(ξ )] – c, for any ξ ∈ L2(FT ) and

U :=
{
ξ ∈ L2(FT )|h(ξ ) ≤ 0

}
,

where h(ξ ) := max{E[u(ξ )] – c, c – E[u(ξ )],E g
0,T (ξ ) – x, x – E g

0,T (ξ ), –E g
0,T (ξ )}. If the optimal

objective ξ ∗ of Problem A exists, then, by Lemmas 6 and 7, we have ∂oρ(ξ ∗) = {ϕ′(ξ ∗)},
∂oE[u(ξ ∗)] = {u′(ξ ∗)} and ∂oE g

0,T (ξ ∗) = {q∗
T }.

By Theorem 2 and Lemma 3, there exist two constants λ1 and λ2 such that

ϕ′(ξ ∗) + λ1u′(ξ ∗) + λ2q∗
T = 0

holds. The proof of Theorem 3 is complete. �
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Theorem 4 If the optimal objective ξ ∗ of Problem B exists, then there exist three constants
λ ≥ 0 and a,β ∈ [0, 1] satisfying α + β ≤ 1, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′(ξ ∗) + λq∗
T = 0, E g

0,T (ξ ∗) – x > max{E[u(ξ ∗)] – c, –E g
0,T (ξ ∗)},

ϕ′(ξ ∗) – λq∗
T = 0, –E g

0,T (ξ ∗) > max{E[u(ξ ∗)] – c,E g
0,T (ξ ∗) – x},

ϕ′(ξ ∗) + λu′(ξ ∗) = 0, E[u(ξ ∗)] – c > max{E g
0,T (ξ ∗) – x, –E g

0,T (ξ ∗)},
ϕ′(ξ ∗) + λ[αu′(ξ ∗) + (1 – α)q∗

T ] = 0, E[u(ξ ∗)] – c = E g
0,T (ξ ∗) – x > –E g

0,T (ξ ∗),

ϕ′(ξ ∗) + λ[αu′(ξ ∗) + (α – 1)q∗
T ] = 0, E[u(ξ ∗)] – c = –E g

0,T (ξ ∗) > E g
0,T (ξ ∗) – x,

ϕ′(ξ ∗) + λ(2α – 1)q∗
T = 0, E g

0,T (ξ ∗) – x = –E g
0,T (ξ ∗) > E[u(ξ ∗)] – c,

ϕ′(ξ ∗) + λ[(α – β)q∗
T + (1 – α – β)u′(ξ ∗)] = 0,

E g
0,T (ξ ∗) – x = –E g

0,T (ξ ∗) = E[u(ξ ∗)] – c,

holds, where ∂oE g
0,T (ξ ∗) = {q∗

T }.

Proof Denote ρ(ξ ) := E[ϕ(ξ )] – c, for any ξ ∈ L2(FT ) and

U :=
{
ξ ∈ L2(FT )|h(ξ ) ≤ 0

}
,

where h(ξ ) := max{E[u(ξ )] – c,E g
0,T (ξ ) – x, –E g

0,T (ξ )}. If the optimal objective ξ ∗ of Prob-
lem B exists, then, by Lemmas 6 and 7, we have ∂oρ(ξ ∗) = {ϕ′(ξ ∗)}, ∂oE[u(ξ ∗)] = {u′(ξ ∗)}
and ∂oE g

0,T (ξ ∗) = {q∗
T }.

Case 1: E g
0,T (ξ ∗) – x > max{E[u(ξ ∗)] – c, –E g

0,T (ξ ∗)}. By Theorem 2, there exists a non-
negative constant λ such that ϕ′(ξ ∗) + λq∗

T = 0 holds.
Case 2: –E g

0,T (ξ ∗) > max{E[u(ξ ∗)] – c,E g
0,T (ξ ∗) – x}. By Theorem 2, there exists a non-

negative constant λ such that ϕ′(ξ ∗) – λq∗
T = 0 holds.

Case 3: E[u(ξ ∗)] – c > max{E g
0,T (ξ ∗) – x, –E g

0,T (ξ ∗)}. By Theorem 2, there exists a non-
negative constant λ such that ϕ′(ξ ∗) + λu′(ξ ∗) = 0 holds.

Case 4: E[u(ξ ∗)] – c = E g
0,T (ξ ∗) – x > –E g

0,T (ξ ∗). By Theorem 2 and Lemma 3, there exist
two constants λ ≥ 0 and α ∈ [0, 1] such that ϕ′(ξ ∗) + λ[αu′(ξ ∗) + (1 – α)q∗

T ] = 0 holds.
Case 5: E[u(ξ ∗)] – c = –E g

0,T (ξ ∗) > E g
0,T (ξ ∗) – x. By Theorem 2 and Lemma 3, there exist

two constants λ ≥ 0 and α ∈ [0, 1] such that ϕ′(ξ ∗) + λ[αu′(ξ ∗) + (α – 1)q∗
T ] = 0 holds.

Case 6: E g
0,T (ξ ∗) – x = –E g

0,T (ξ ∗) > E[u(ξ ∗)] – c. By Theorem 2 and Lemma 3, there exist
two constants λ ≥ 0 and α ∈ [0, 1] such that ϕ′(ξ ∗) + λ(2α – 1)q∗

T = 0 holds.
Case 7: E g

0,T (ξ ∗) – x = –E g
0,T (ξ ∗) = E[u(ξ ∗)] – c. By Theorem 2 and Lemma 3, there exist

three constants λ ≥ 0 and a,β ∈ [0, 1] satisfying α + β ≤ 1, such that ϕ′(ξ ∗) + λ[(α – β)q∗
T +

(1 – α – β)u′(ξ ∗)] = 0 holds. The proof of Theorem 4 is complete. �

In the classic investment problem, one often takes the variance as a risk measure and the
mean-variance method is used in much of the literature. But by Delbaen [6], and Föllmer
and Schied [8], such a kind of risk measure is not perfect. We often take ρ(·) as a coherent
or convex risk measure in (2). In Rosazza Gianin [19], the author proved that if g is a sub-
additive and positively homogeneous function satisfying (A.1) and (A.2), define ρ(ξ ) :=
E g

0,T (–ξ ), for any ξ ∈ L2(FT ), then ρ(·) is a convex risk measure.
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Problem C. Suppose f is sub-additive and homogeneous function satisfying (A.1) and
(A.2) and independent of y, and f ′

z is continuous in z. Minimize

E f
0,T (–ξ )

subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E[ξ ] ≥ c,

E g
0,T (ξ ) ≤ x,

E g
0,T (ξ ) ≥ 0,

ξ ∈ L2(FT ).

Theorem 5 If the optimal objective ξ ∗ of Problem C exists, then there exist three constants
λ ≥ 0 and a,β ∈ [0, 1] satisfying α + β ≤ 1, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∗
T + λq∗

T = 0, E g
0,T (ξ ∗) – x > max{c – E[ξ ∗], –E g

0,T (ξ ∗)},
k∗

T – λq∗
T = 0, –E g

0,T (ξ ∗) > max{c – E[ξ ∗],E g
0,T (ξ ∗) – x},

k∗
T – λ = 0, c – E[ξ ∗] > max{E g

0,T (ξ ∗) – x, –E g
0,T (ξ ∗)},

k∗
T + λ[–α + (1 – α)q∗

T ] = 0, c – E[ξ ∗] = E g
0,T (ξ ∗) – x > –E g

0,T (ξ ∗),

k∗
T + λ[–α + (α – 1)q∗

T ] = 0, c – E[ξ ∗] = –E g
0,T (ξ ∗) > E g

0,T (ξ ∗) – x,

k∗
T + λ(2α – 1)q∗

T = 0, E g
0,T (ξ ∗) – x = –E g

0,T (ξ ∗) > c – E[ξ ∗],

k∗
T + λ[(α – β)q∗

T + (α + β – 1)] = 0, E g
0,T (ξ ∗) – x = –E g

0,T (ξ ∗) = c – E[ξ ∗],

holds, where ∂oE g
0,T (ξ ∗) = {q∗

T } and ∂oE f
0,T (–ξ ∗) = {k∗

T }. Let (y∗
t , z∗

t ) be the solution of BSDE
(1) with terminal value –ξ ∗. For any η ∈ L2(FT ), 〈k∗

T , –η〉 = ȳ0. (ȳt , z̄t) is the solution of the
following BSDE on [0, T]:

ȳt = –η +
∫ T

t
f ′
z
(
s, z∗

s
)
z̄s ds –

∫ T

t
z̄s · dWs.

The proof of Theorem 5 is very similar to that of Theorem 4. So we omit the proof.
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