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Abstract
We consider a system of acoustic wave equation possessing lower-order perturbation
terms in a bounded domain in R

2. In this paper, we show the system is well-posed
and stable with energy decays introducing a local discontinuous Galerkin (LDG)
method. Also, we study an a priori L2-norm error estimate for the semi-discretized
LDG method for the system under additional regularity assumptions. Further,
numerical tests are presented to support the theoretical analysis.
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1 Introduction
Many phenomena of wave-type propagation with exponential decay of its amplitude can
be modeled by a hyperbolic system of damped wave equations. For example, damped lin-
ear hyperbolic systems are introduced to model the propagation of pressure waves in a
network of pipes or the vibrations of a network of strings [11], an electric transmission
lines for time-dependent evolution of voltage and current on networks [13], networks of
general elastic multi-structures [21], the simulation of electronic circuits [15], and sev-
eral types of transmission lines [17, 18, 24] by the telegrapher’s equations. Most perfectly
matched layers (PMLs) also appear as a hyperbolic system with a zeroth-order perturba-
tion for the intentional purpose of exponential decay of wave propagation in boundary
layers [3, 6, 16, 22]. In spite of many applications of damped wave systems, less attention
has been paid to its numerical and theoretical studies, in contrast to damped wave systems
which have been popularly researched [1, 10, 12, 14, 19, 23, and the references therein] by
recently developed numerical methods such as the discontinuous Galerkin (DG) methods.

In this paper, introducing a general formula of damped linear hyperbolic systems, we
show the well-posedness of the system and present a local discontinuous Galerkin (LDG)
method with its stability and a priori error estimates. A LDG method, which is developed
as a DG method for several advantages, satisfies certain properties of numerical fluxes
using jump and average functions on all edges of grid elements in order to have locally
conservative, stable, and also high-order accurate method [2, 4, 8, 9]. The stability of the
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LDG method is shown by the decay of the energy norm constructing proper numerical
fluxes on the edges of grid elements. Applying the broken Sobolev norm and seminorm in
the error equation obtained by the semi-discretized scheme of LDG method, we estimate a
priori L2-norm error estimates of the numerical solutions by using the bound of solution
on the edges of grid elements, the approximation properties of L2-projections, and the
dual property of ∇ and –∇·.

The paper is organized as follows: In Sect. 2.1, we introduce a general formula for
damped hyperbolic systems of the wave equation and recall couple existence theorems
to show the well-posedness. We develop the LDG method for the system using numerical
flux on interfaces of grid elements with discontinuity stabilization parameters in Sect. 2.2.
Section 3 presents an error estimate of the system based on the broken Sobolev norm and
seminorm with the approximation properties of projections. We provide numerical exper-
iments to support theoretical results with various different parameters and coefficients in
Sect. 4. Finally, Sect. 5 contains our conclusion and further discussions.

2 LDG method for a system
2.1 A system of damped wave equation
In this subsection, we introduce a general formula of the first-order linear hyperbolic sys-
tem of the acoustic wave equation equipped with additional lower-order damping terms
and show the well-posedness of the system.

The model problem we are dealing with is as follows: We provide two damping terms in
both solutions of the system of the two-dimensional acoustic wave equation. Let σp and
σ�q be the damping functions in L∞(Ω), Ω ⊂R

2 defined by

0 = σ∗ ≤ σp(x), σ�q(x) ≤ σ ∗ < ∞, x ∈ Ω .

Then, we have the following system of damped wave equations defined in Ω × I , I = (0, T]
for some T > 0:

1
c2(x)

pt(x, t) +
1

c2(x)
σp(x)p(x, t) + ∇ · �q(x, t) = 0 in Ω × I,

�qt(x, t) + σ�q(x)�q(x, t) + ∇p(x, t) = �0 in Ω × I
(2.1)

with the initial condition (p, �q)(x, 0) = (f , �0) and the zero Dirichlet boundary condition
p(x, ·) = 0 on ∂Ω . Let Ω ⊂ R

2 be a bounded Lipschitz domain including a sub-domain
Ω0, that is, supp(f ) ⊆ Ω0 ⊆ Ω . Here the initial conditions are given by p0 = f ∈ H1

0 (Ω) and
�q0 = �0 and we assume that c(x) ∈ C1(Ω) is bounded below by c∗ and above by c∗, that is,

0 < c∗ ≤ c(x) ≤ c∗ < ∞ in Ω . (2.2)

Before we show well-posedness of the system, let us denote Vm and M are a Hilbert
space with scalar-product (·, ·)m and the corresponding Riesz map from Vm onto the dual
V ′

m, respectively, that is,

Mu(v) = (u, v)m ∀u, v ∈ Vm.

We use the following theorem to show the existence of a solution (p, �q) of (2.1).
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Theorem 2.1 ([27]) Let D be a subspace of Vm and assume a linear map L : D → V ′
m is

monotone andM+L : D → V ′
m is surjective. Then, for every g ∈ C1([0,∞); V ′

m) and u0 ∈ D,
there is a unique u ∈ C1([0,∞); Vm) such that u(0) = u0 and

Mu′(t) + Lu(t) = g(t), t ≥ 0.

We apply Theorem 2.1 to obtain the well-posedness of the system (2.1).

Theorem 2.2 For every (p0, �q0) ∈ H1
0 (Ω) × Hdiv(Ω), there exists a unique solution (p, �q) of

(2.1) such that (p, �q) ∈ C1(Ī; L2(Ω) × H2(Ω)) ∩ C(Ī; H1
0 (Ω) × Hdiv(Ω)) satisfying the initial

condition (p(0), �q(0)) = (p0, �q0), where Hdiv(Ω) := {�v ∈ L
2(Ω) : ∇ · �v ∈ L2(Ω)} and L

2(Ω) :=
[L2(Ω)]2.

Proof Let Vm := Hm(Ω) × L
2(Ω), where Hm(Ω) = 1

c2 L2(Ω) with c–2-weighted L2-inner
product, that is,

(p, r)m = (p, r)c–2 =
∫

Ω

1
c2 p(x)r(x) dx

and let D := H1
0 (Ω) × Hdiv(Ω). Then it can easily be checked that 1

c2 L2(Ω) ∼= L2(Ω). Let us
define M : Vm → V ′

m and L : D → V ′
m and by

M(p, �q)T(
(r, �v)T)

= (p, r)c–2 + (�q, �v) ∀(p, �q)T ∈ Vm, (r, �v)T ∈ Vm,

L(p, �q)T(
(r, �v)T)

= (σpp, r)c–2 + (σ�q�q, �v) + (∇p, �v) + (∇ · �q, r),

∀(p, �q)T ∈ D, (r, �v)T ∈ Vm,

where (·, ·) is the L2-inner product. One can check that L is monotone by the definition
and M + L is surjective from the elliptic form (see [20] for details). �

In the following subsection, we present a LDG method for the system (2.1) of the
damped wave equation.

2.2 LDG method of the system (2.1)
We assume that shape-regular meshes Th partition the domain Ω into disjoint elements
{K} such that Ω̄ =

⋃
K∈Th

K̄ . Thus, if K ∈ Th, then K is a simplex and the measure of K is
denoted by meas(K). It will always be assumed that meas(K) �= 0. The diameters of K and
that of the largest ball included in K are denoted by hK and ρK , respectively. The ratio of
these two quantities is denoted by ϕK and let us denote

ϕK =
hK

ρK
, hK = diam(K), ρK = sup

{
r : Br =

{
x : |x – a| ≤ r

} ⊂ K , a ∈ K
}

.

Then it is noted that ϕK > 1 and the parameter h refers to h := maxK∈Th hK . We also assume
that the local mesh sizes are of bounded variation; that is, there is a positive constant κ

depending only on the shape-regularity of the mesh such that

κhK ≤ hK ′ ≤ κ–1hK
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for all neighboring elements K and K ′. From each adjacent element K+ and K– in Th, we
denote the set of all faces by E which consists of both E I the set of all interior faces of
∂K+ ∩ ∂K– ∈ E(K+) ∪ E(K–) and EB the set of all boundary faces of ∂K ∩ ∂Ω , that is,
E = E I ∪ EB, where E(K) is denoted by the set of all edges of the element K . For the error
estimation, we define the discontinuity stabilization parameters α11,α12,α22 on each e ∈ E
by

C11 = α11h
α , C22 = α22h

α , �C22 = [α12 α12]T , (2.3)

where the parameters αij (i, j = 1, 2) independent of local mesh size and the function h ∈
L∞(E) is given by

h =

⎧⎨
⎩

min{hK+ , hK–}, e = ∂K+ ∩ ∂K–, e ∈ E I ,

hK , e = ∂K ∩ ∂Ω , e ∈ EB.

The accuracy of the method relies on the choice of α and we assume α = 0 in this study.
For a piecewise smooth scalar-valued function p, define the trace operators on all faces.
Let e ∈ E I be an interior face shared by elements K+ and K–; let �n± by the unit outward
normal vectors on the boundaries ∂K±, respectively. Denote by p± the trace of p taken
from within K± and define the jump and average of p at x ∈ e by

{{p}} :=
1
2
(
p+ + p–)

and [[p]] := p+�n+ + p–�n–. (2.4)

Let {{p}} := p and [[p]] := p�n, where �n is the unit outward normal vector on ∂Ω in all bound-
ary faces e ∈ EB. For a vector-valued function �q, we set

{{�q}} :=
1
2
(�q+ + �q–)

and [[�q]] := �q+ · �n+ + �q– · �n–.

In a similar way, we set {{�q}} := �q and [[�q]] := �q · �n in all boundary faces e ∈ EB. Notice that
the jump [[p]] of the scalar function p is a vector parallel to �n and that [[�q]] is the jump of
the normal component of the vector function �q, which is a scalar quantity. We also note
that there is a trace identity for a scalar-valued function p and a vector-valued function
�q with continuous normal components across a face e ∈ E I ; by applying the definitions
directly one has

p+(�q+ · �n+)
+ p–(�q– · �n–)

= [[p]] · {{�q}} + {{p}}[[�q]]. (2.5)

For a given partition Th such as triangulation of Ω and an approximation order k ≥ 1, we
seek an approximate (continuous or possibly discontinuous) solution (ph, �qh) in the finite
element space

Ph(Ω) ×Qh(Ω) =
⋃

K∈Th

Ph(K) ×Qh(K),

where

Ph(K) ×Qh(K) :=
{(

ph, �qh) ∈ L2(Ω) ×L
2(Ω) :

(
ph, �qh)|K ∈ P

k(K) × [
P

k′
(K)

]2}



Kim Advances in Difference Equations        (2018) 2018:464 Page 5 of 20

and P
k(K) and P

k′ (K) are the space of polynomials of total degree at most k and k′ on K ,
respectively. This approximation is said to be non-conformal since Ph(Ω) �⊂ H1

0 (Ω); it is
said to be conformal otherwise, e.g., continuous Galerkin methods.

Next, following [8], we define LDG methods for the system (2.1) considering only the
spatial discretization of this equation as above. First, we assume that (ph, �qh) : I →Ph(Ω)×
Qh(Ω) is absolutely continuous. A LDG numerical method is obtained as follows. We
discretize the domain Ω , then seek a discontinuous approximate solution (ph, �qh) on the
element K taken in the space Ph(K) ×Qh(K) and determined by requiring that

∫
K

1
c2 ph

t rh dx +
∫

K

σp

c2 phrh dx –
∫

K
�qh · ∇hrh dx +

∫
∂K

(�̂qh · �n)
rh ds = 0,

∫
K

�qh
t · �vh dx +

∫
K

σ�q�qh · �vh dx –
∫

K
ph∇h · �vhh dx +

∫
∂K

p̂h(�vh · �n)
ds = 0

(2.6)

for all (rh, �vh) ∈ Ph(K) ×Qh(K), where ∇h and ∇h· are the functions whose restriction to
each element K ∈ Th are equal to ∇ and ∇·, respectively. To complete the definition of the
DG method, it remains to define the two numerical traces, p̂h and �̂qh. We first begin by
finding a stability result for the solution in the original system (2.1). To do that, we multiply
the first and second equation of the system (2.1) by p and �q, respectively, and integrate over
Ω × I to obtain

1
2

∫
Ω

1
c2

∣∣p(·, T)
∣∣2 dx +

∫ T

0

∫
Ω

σp

c2 |p|2 dx dt +
∫ T

0

∫
Ω

p∇ · �q dx dt

=
1
2

∫
Ω

1
c2

∣∣p(·, 0)
∣∣2 dx,

1
2

∫
Ω

∣∣�q(·, T)
∣∣2 dx +

∫ T

0

∫
Ω

σ�q|�q|2 dx dt +
∫ T

0

∫
Ω

∇p · �q dx dt =
1
2

∫
Ω

∣∣�q(·, 0)
∣∣2 dx.

Adding these two equations, we have

1
2

∫
Ω

(
1
c2

∣∣p(·, T)
∣∣2 +

∣∣�q(·, T)
∣∣2

)
dx +

∫ T

0

∫
Ω

(
σp

c2 |p|2 + σ�q|�q|2
)

dx dt

=
1
2

∫
Ω

(
1
c2

∣∣p(·, 0)
∣∣2 +

∣∣�q(·, 0)
∣∣2

)
dx.

We note that a stability result immediately follows from this equation.
Next, we imitate this procedure for the LDG method under consideration. We begin by

taking rh = ph and �vh = �qh in the first and second equation in (2.6), respectively, defining the
LDG method, adding over the elements K ∈ Th, and summing the two equations together
to get

1
2

∫
Ω

(
1
c2

∣∣ph(·, T)
∣∣2 +

∣∣�qh(·, T)
∣∣2

)
dx +

∫ T

0

∫
Ω

(
σp

c2

∣∣ph∣∣2 + σ�q
∣∣�qh∣∣2

)
dx dt

+
∫ T

0
Θh(t) dt

=
1
2

∫
Ω

(∣∣ph(·, 0)
∣∣2 +

∣∣�qh(·, 0)
∣∣2)dx,
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where

Θh(t) :=
∑

K∈Th

∫
∂K

(
ph �̂qh · �n +

(
p̂h – ph)�qh · �n)

ds.

Now, we can define consistent numerical traces p̂h and �̂qh that provide the quantity Θh(t)
non-negative. Dropping the argument t, we obtain

Θh =
∑
e∈E I

∫
e

([[
ph]] · (�̂qh –

{{�qh}}) +
[[�qh]](p̂h –

{{
ph}}))ds + ∂Υh(t),

where ∂Υh(t) :=
∫
∂Ω

(ph(�̂qh – �qh) · �n + p̂h�qh · �n) ds. To get non-negative Θh on E I , that is,
inside the domain Ω , it is enough to take that

p̂h =
{{

ph}} + C22
[[�qh]] – �C12 · [[ph]], �̂qh =

{{�qh}} + C11
[[

ph]] + �C12
[[�qh]]

for some positive quantities,

C11 > 0, C22 > 0, C1
12 > 0, C2

12 > 0, �C12 =
[
C1

12 C
2
12

]T

and its boundary p̂h = 0 and �̂qh = �qh + C11ph�n to finally obtain

Θh =
∑
e∈E I

∫
e

(
C11

[[
ph]]2 + C22

[[�qh]]2)dx +
∑
e∈EB

∫
e
C11

(
ph)2 ds ≥ 0.

Note that the vector parameter �C12 does not have any stabilizing effect; it is not necessary
for stability, but could be used to enhance the accuracy of the method (for details, see [9]).
Note that the zero Dirichlet boundary condition is imposed weakly through the definition
of the numerical trace. Applying the numerical flux p̂h and �̂qh, we have the LDG system

∑
K∈Th

∫
K

(
1
c2

(
ph

t + σpph)rh – �qh · ∇rh
)

dx +
∑
e∈E I

∫
e

({{�qh}}

+ C11
[[

ph]] + �C12
[[�qh]]) · [[rh]]ds

+
∫

∂Ω

rh�qh · �n ds = 0

and

∑
K∈Th

∫
K

(
�qh

t + σ�q�qh –
∫

K
ph∇

)
· �vh dx

+
∑
e∈E I

∫
e

({{
ph}} + C22

[[�qh]] – �C12 · [[ph]])[[�vh]]ds = 0

for all (rh, �vh) ∈Ph(Ω) ×Qh(Ω), which completes the definition of LDG method.
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Remark 2.3 We show that the LDG method is in fact a mixed formulation. To see this, let
us begin by noting that the LDG approximate solution (ph, �qh) can be characterized as the
solution of

(
1
c2 ph

t , rh
)

+ ah
(
ph, rh) – b′

h
(�qh, rh) = 0,

(�qh
t , �vh) + bh

(
ph, �vh) + ch

(�qh, �vh) = 0 (2.7)

for all (rh, �vh) ∈Ph(Ω) ×Qh(Ω), where

ah
(
ph, rh) :=

∑
K∈Th

∫
K

σp

c2 phrh dx +
∑
e∈E I

∫
e
C11

[[
ph]] · [[rh]]ds,

bh
(
ph, �vh) := –

∑
K∈Th

∫
K

ph∇ · �vh dx –
∑
e∈E I

∫
e

(�C12 · [[ph]] –
{{

ph}})[[�vh]]ds,

b′
h
(�qh, rh) :=

∑
K∈Th

∫
K

�qh · ∇rh dx –
∑
e∈E I

∫
e

(�C12
[[�qh]] +

{{�qh}}) · [[rh]]ds,

ch
(�qh, �vh) :=

∑
K∈Th

∫
K

σ�q�qh · �vh dx +
∑
e∈E I

∫
e
C22

[[�qh]][[�vh]]ds.

(2.8)

Remark 2.4 We have the equality by the trace identity (2.5)

bh
(
ph, �qh) = b′

h
(�qh, ph) ∀(

ph, �qh) ∈Ph(Ω) ×Qh(Ω).

Note that the second terms on the right hand side of the equations in (2.8) correspond to
jump and average terms on element boundaries; they vanish when p, r ∈ H1

0 (Ω) and �q, �v ∈
Hdiv(Ω). Therefore, the above semi-discrete LDG formulation (2.7) is consistent with the
original continuous problem (2.1).

3 A-priori error estimate of LDG method
In order to establish an error estimate, we introduce the following properties. There is
an important inequality in the finite element spaces Ph(Ω) × Qh(Ω), which allows the
H1-norm to be bounded above by the L2-norm. Such an inequality is called an inverse
inequality. Let us introduce the broken Sobolev space of Th of the domain Ω ,

Hs(Th) :=
{

p ∈ L2(Ω) : p|K ∈ Hs(K) ∀K ∈ Th
}

with the broken Sobolev norm and seminorm, respectively,

‖p‖Hs(Th) :=
( ∑

K∈Th

‖p‖Hs(K )

) 1
2

, |p|Hs(Th) :=
( ∑

K∈Th

|p|Hs(K )

) 1
2

.

Then, the following result can be proved.

Lemma 3.1 (Trace theorem) Let p ∈Ph(Ω) with shape-regularity mesh. Then there exists
a constant Cinv > 0 such that

‖p‖L2(∂K ) ≤ Cinv
(‖p‖L2(K )

(
h–1

K ‖p‖L2(K ) + ‖∇p‖L2(K )
)) 1

2 .
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Proof See Lemma A.3 in [26] for the proof and further details. �

We now consider the following semi-discrete DG approximation for the spatial dis-
cretization of (2.1): Find (ph, �qh) : Ī × Ī →Ph(Ω) ×Qh(Ω) such that

(
1
c2 ph

t , rh
)

+ ah
(
ph, rh) – b′

h
(�qh, rh) = 0 ∀rh ∈Ph(Ω), t ∈ I,

(�qh
t , �vh) + bh

(
ph, �vh) + ch

(�qh, �vh) = 0 ∀�vh ∈Qh(Ω), t ∈ I,
(3.1)

with

ph(·, 0) = Πhp0, �qh(·, 0) = Πh�q0, ph(x, ·) = 0 ∀x ∈ ∂Ω .

Here Πh and Πh denote the L2-projections of p and �q in L2(Ω) and L
2(Ω) onto Ph(Ω)

and Qh(Ω), respectively, that is, for any p ∈ L2(Ω), �q ∈ L
2(Ω)

(
Πhp, rh) =

(
p, rh) and

(
Πh�q, �vh) =

(�q, �vh) ∀rh ∈Ph(Ω), �vh ∈Qh(Ω), (3.2)

and the discrete forms ah, bh, and ch are given by (2.8). For the simplicity of notations,
we let 1

c2 Rp + Ah : Ph(Ω) → [Ph(Ω)]′, Bh : Ph(Ω) → [Qh(Ω)]′, and R�q + Ch : Qh(Ω) →
[Qh(Ω)]′ given by

1
c2 Rpph(rh) =

(
1
c2 ph, rh

)
, R�q�qh(�vh) =

(�qh, �vh),

Ahph(rh) = ah
(
ph, rh), Bhph(�vh) = bh

(
ph, �vh), Ch�qh(�vh) = ch

(�qh, �vh).

Then it can be seen that the dual operator of Bh, B′
h : Qh(Ω) → [Ph(Ω)]′ satisfies

B′
h�qh(rh) = Bhrh(�qh) = b′

h
(�qh, rh),

which follows from the trace identity (2.5).

Lemma 3.2 There is a unique semi-discrete solution (ph, �qh) of (3.1) satisfying

(
ph, �qh) ∈ C1(I;Ph(Ω) ×Qh(Ω)

)
.

Proof Theorem 2.1 is used for the proof. We use the operator notations of (3.1) to obtain

Mh

(
ph

�qh

)
+ Lh

(
ph

�qh

)
= 0 in

[
Ph(Ω) ×Qh(Ω)

]′,

where

Mh =

[
1
c2 Rp 0

0 R�q

]
, Lh =

[
Ah –B′

h
Bh Ch

]
.
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Then we show that Lh is monotone by the definition and the trace identity (2.5),

Lh
(
ph, �qh)T((

ph, �qh)T)
=

(
Ahph – B′

h�qh

Bhph + Ch�qh

)(
ph

�qh

)
≥ 0.

To obtain Rg(Mh + Lh) = [Ph(Ω) ×Qh(Ω)]′, it is sufficient to show that Ker(Mh + Lh) =
{(0, �0)}. Since

Mh
(
ph, �qh)T((

ph, �qh)T)
=

∫
Ω

(
1
c2

(
ph)2 +

(�qh)2
)

dx ≥ C
∫

Ω

((
ph)2 +

(�qh)2)dx

for some C = min{ 1
c∗2 , 1}, we can have the surjection, which provides the conclusion. �

To estimate of the difference of the semi-discrete LDG solution (ph, �qh) in (3.1) with
analytical solutions (p, �q) in (2.1), we want to extend to a larger space which contains both
solutions. In the next section we show the error estimates.

Extension of LDG form. We define the spaces

P(h) := H1
0 (Ω) + Ph(Ω) and Q(h) := Hdiv(Ω) + Qh(Ω)

with the DG energy norm on P(h) ×Q(h),

∥∥(p, �q)
∥∥2

h := ‖p‖2
P(h) + ‖�q‖2

Q(h),

where

‖p‖2
P(h) :=

∑
K∈Th

‖p‖2
H1(K ) +

∑
e∈E

∥∥C11[[p]]
∥∥2

L2(e),‖�q‖2
Q(h)

:=
∑

K∈Th

‖�q‖2
Hdiv(K ) +

∑
e∈E

∥∥C22[[�q]]
∥∥2

L2(e),

and the norm ‖�q‖2
Hdiv(K ) := ‖�q‖2

L2(K ) + ‖∇ · �q‖2
L2(K ). For the convenience of notation, let us

denote

‖ · ‖0,E :=
∑
e∈E

‖ · ‖L2(e), ‖ · ‖s,K := ‖ · ‖Hs(K ), ‖ · ‖s,Ω := ‖ · ‖Hs(Ω),

and the same as Hs(K) and H
s(Ω), respectively. Furthermore, for 1 ≤ p ≤ ∞ we use the

Bochner space Lp(I;P(h) ×Q(h))

∥∥(p, �q)
∥∥

Lp(I;P(h)×Q(h)) :=

⎧⎨
⎩

(
∫

I ‖p‖p
P(h) + ‖�q‖p

Q(h) dt)1/p if 1 ≤ p < ∞,

ess supt∈I(‖p‖P(h) + ‖�q‖Q(h)) if p = ∞,

and we denote

‖ · ‖L
p
s,Ω

:= ‖ · ‖Lp(I;Hs(Ω)), ‖ · ‖L∞
s,Ω

:= ‖ · ‖L∞(I;Hs(Ω)),

‖ · ‖L
p
s,E

:= ‖ · ‖Lp(I;Hs(E)), ‖ · ‖L∞
s,E

:= ‖ · ‖L∞(I;Hs(E)).
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The main result of this section is to establish the L2(Ω)-norm error estimate. It also gives
a bound in the L2(Ω)-norm of the first time derivative.

Theorem 3.3 Let the analytical solution (p, �q) of (2.1) satisfies

(p, �q) ∈ L∞(
I; H1+s

0 (Ω) ×H
1+s(Ω)

)
, (pt , �qt) ∈ L1(I; Hs(Ω) ×H

s(Ω)
)

(3.3)

for a regularity exponent s > 1
2 , and let (ph, �qh) be the semi-discrete DG approximation

obtained by (3.1). Then we have the estimate for the error ep = p – ph and e�q = �q – �qh

sup
t∈I

(∥∥ep∥∥
0,Ω +

∥∥e�q∥∥
0,Ω

)
+ sup

t∈I

(∥∥[[
ep]]∥∥

0,E +
∥∥[[

e�q]]∥∥
0,E

)

≤ C0
(∥∥ep(0)

∥∥
0,Ω +

∥∥e�q(0)
∥∥

0,Ω

)

+ Cphmin{s,k+ 1
2 }(‖p‖L∞

1+s,Ω
+ ‖pt‖L1

s,Ω

)
+ C�qhmin{s,k′+ 1

2 }(‖�q‖L∞
1+s,Ω

+ ‖�qt‖L1
s,Ω

)

with positive constants C0, Cp, C�q depending on the bounds c∗, c∗, and σ ∗, which are in-
dependent of the mesh size h, where k and k′ are the order of approximation polynomials
(ph, �qh), respectively.

Remark 3.4 The condition (3.3) implies that (p, �q) ∈ C(Ī; Hs(Ω) × H
s(Ω)), thus it is re-

quired to have the initial condition (p0, �q0) ∈ Hs(Ω) ×H
s(Ω) and also

∥∥ep(0)
∥∥

0,Ω =
∥∥(p – Πhp)(0)

∥∥
0,Ω ≤ Chmin{s,k+1}‖p‖s,Ω ,

∥∥e�q(0)
∥∥

0,Ω =
∥∥(�q – Πh�q)(0)

∥∥
0,Ω ≤ Chmin{s,k′+1}‖�q‖s,Ω .

Therefore, Theorem 3.3 implies

sup
t∈I

(∥∥ep∥∥
0,Ω +

∥∥e�q∥∥
0,Ω

)
+ sup

t∈I

(∥∥[[
ep]]∥∥

0,E +
∥∥[[

e�q]]∥∥
0,E

) ≤ Chmin{s,k+ 1
2 ,k′+ 1

2 }.

It can be noted that, for smooth solutions, Theorem 3.3 yields the convergence rates in
the L2-norm:

sup
t∈I

(∥∥ep∥∥
0,Ω +

∥∥e�q∥∥
0,Ω

) ≤ Chmin{k,k′}+ 1
2 .

Following [25], we introduce lifting operators in order to extend the numerical flux to
the entire space P(h) ×Q(h). We define the lifting operator L+

hp ∈Qh(Ω) for p ∈P(h) by

∫
Ω

L+
hp · �qh dx =

∑
e∈E

∫
e
[[p]]

(�C12
[[�qh]] +

{{�qh}})ds, ∀�qh ∈Qh(Ω), (3.4)

and also L–
h �q ∈Ph(Ω) for �q ∈Q(h) by

∫
Ω

L–
h �qph dx =

∑
e∈E

∫
e
[[�q]] · (�C12

[[
ph]] –

{{
ph}})ds, ∀ph ∈Ph(Ω). (3.5)
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It can be seen that by the definition of the L2-projection (3.2) we have
∫

Ω

L+
hp · �q dx =

∫
Ω

L+
hp · Πh�q dx,

∫
Ω

L–
h �qp dx =

∫
Ω

L–
h �qΠhp dx ∀p ∈P(h), �q ∈Q(h).

We now extend (3.1) using the two lifting functions

(
1
c2 pt , r

)
+ ãh(p, r) – b̃′

h(�q, r) = 0 ∀r ∈P(h), t ∈ I,

(�qt , �v) + b̃h(p, �v) + c̃h(�q, �v) = 0 ∀�q ∈Q(h), t ∈ I,

where the bilinear forms are given by

ãh(p, r) =
∑

K∈Th

∫
K

σp

c2 pr dx +
∑
e∈E

∫
e
C11[[p]] · [[r]] ds,

b̃h(p, �v) = –
∑

K∈Th

∫
K

p∇ · �v dx –
∫

Ω

pL–
h�v dx,

b̃′
h(�q, r) =

∑
K∈Th

∫
K

�q · ∇r dx –
∫

Ω

�q ·L+
hr dx,

c̃h(�q, �v) =
∑

K∈Th

∫
K

σ�q�q · �v dx +
∑
e∈E

∫
e
C22[[q]][[v]] ds.

(3.6)

Error equations. To derive the error equations we define for r ∈ P(h), �v ∈ Q(h) and p ∈
H1

0 (Ω), �q ∈ H
1(Ω)

Rp(p, �v) :=
∑
e∈E

∫
e
[[�v]]

(
–�C12 · [[Πhp – p]] + {{Πhp – p}})ds,

R�q(�q, r) :=
∑
e∈E

∫
e
[[r]] · (�C12[[Πh�q – �q]] + {{Πh�q – �q}})ds.

(3.7)

The assumption that p ∈ H1
0 (Ω), �q ∈H

1(Ω) ensures that Rp(p, �v),R�q(�q, r) are well defined
since the trace map of p, �q are uniquely defined on all e ∈ E . From the definition (2.4) of the
jump it directly follows that Rp(p, �v) = 0,R�q(�q, r) = 0 when r ∈ H1

0 (Ω), �v ∈ H
1(Ω). Using

the definition of the error equations, we have the following property.

Lemma 3.5 Let the analytical solution (p, �q) of (2.1) satisfy

(p, �q) ∈ L∞(
I; H1

0 (Ω) ×H
1(Ω)

)
, (pt , �qt) ∈ L1(I; L2(Ω) ×L

2(Ω)
)
.

Let (ph, �qh) be the semi-discrete DG approximation obtained by (3.1). Then the error ep =
p – ph, e�q = �q – �qh satisfy

(
1
c2 ep

t , rh
)

+ ãh
(
ep, rh) – b̃′

h
(
e�q, rh) = R�q(�q, rh), ∀rh ∈Ph(Ω) a.e. in I,

(
e�q

t , �vh) + b̃h
(
ep, �vh) + c̃h

(
e�q, �vh) = Rp(p, �vh), ∀�vh ∈Qh(Ω) a.e. in I.

(3.8)
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Proof Let ph ∈ Ph(Ω) and �vh ∈ Qh(Ω). Then we obtain using the discrete formulation
in (3.1)

(
1
c2 ep

t , rh
)

+ ãh
(
ep, rh) – b̃′

h
(
e�q, rh)

=
(

1
c2 pt , rh

)
+ ãh

(
p, rh) – b̃′

h
(�q, rh) a.e. in I,

(
e�q

t , �vh) + b̃h
(
ep, �vh) + c̃h

(
e�q, �vh)

=
(�qt , �vh) + b̃h

(
p, �vh) + c̃h

(�q, �vh) a.e. in I.

By the definition of b̃h, the property (3.2) of L2-projection Πh,Πh, and the definitions (3.4),
(3.5) of the lifted elements L+

h , L–
h , we obtain

b̃h
(
p, �vh) = –

∑
K∈Th

∫
K

p∇ · �vh dx –
∑
e∈E

∫
e

[[�vh]](�C12 · [[Πhp]] – {{Πhp}})ds,

b̃′
h
(�q, rh) =

∑
K∈Th

∫
K

�q · ∇rh dx –
∑
e∈E

∫
e

[[
rh]] · (�C12[[Πh�q]] + {{Πh�q}})ds.

Since (pt , �qt) ∈ L1(I; L2(Ω) × L
2(Ω)), we have ∇ · �q ∈ L2(Ω) and ∇p ∈ L

2(Ω) almost ev-
erywhere in I , which implies that p and �q have continuous normal components across
all interior faces. By integration by parts in element-wise and combination with the trace
operators, we obtain

b̃h
(
p, �vh) =

∑
K∈Th

∫
K

∇p · �vh dx –
∑
E

∫
e

[[�vh]]({{p}} + �C12 · [[Πhp]] – {{Πhp}})ds,

b̃′
h
(�q, rh) = –

∑
K∈Th

∫
K

∇ · �qrh dx +
∑
E

∫
e

[[
rh]] · ({{�q}} – �C12[[Πh�q]] – {{Πh�q}})ds.

From the definition of R�q(�q, rh) and Rp(p, �vh) in (3.7) we have

(
1
c2 pt , rh

)
+ ãh

(
p, rh) – b̃′

h
(�q, rh) =

(
1
c2 pt +

σp

c2 p + ∇ · �q, rh
)

+ R�q(�q, rh),

(�qt , �vh) + b̃h
(
p, �vh) + c̃h

(�q, �vh) = (�qt + σ�q�q + ∇p, �v) + Rp(p, �vh),

and we obtain

(
1
c2 ep

t , rh
)

+ ãh
(
ep, rh) – b̃′

h
(
e�q, rh) = R�q(�q, rh),

(
e�q

t , �vh) + b̃h
(
ep, �vh) + c̃h

(
e�q, �vh) = Rp(p, �vh),

where we have used the differential equations in (2.1). �

There is also an important relation between b̃h and b̃′
h from the dual property of ∇ and

–∇· in the following lemma.
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Lemma 3.6 Let the analytical solution (p, �q) of (2.1) satisfy

(p, �q) ∈ L∞(
I; H1

0 (Ω) ×H
1(Ω)

)
, (pt , �qt) ∈ L1(I; L2(Ω) ×L

2(Ω)
)
.

Let (ph, �qh) be the semi-discrete DG approximation obtained by (3.1). Then the following
property holds for all (rh, �vh) ∈Ph(Ω) ×Qh(Ω):

–b̃′
h
(
e�q,Πhp – ph) + b̃h

(
ep,Πh�q – �qh) = 0,

–b̃′
h
(�vh, rh) + b̃h

(
rh, �vh) = 0.

Proof By the definition of b̃′
h, the property (3.4) of lifted element, and the property of L2-

projection, we obtain

b̃′
h
(�q – Πh�q, rh) = 0. (3.9)

Here, we have used the definition of L2-projection, Πh(�q – Πh�q) = Πh�q – Πh�q = �0. In the
similar way, b̃h(p – Πhp, �qh) = 0. For (rh, �vh) ∈ Ph(Ω) × Qh(Ω), we use definition of b̃′

h,
element-wise integration by parts, and the trace identity (2.5) to obtain

b̃′
h
(�vh, rh) = –

∑
K∈Th

∫
K

∇ · �vhrh dx –
∑
e∈E

∫
e

([[
rh]] · �C12 –

{{
rh}})[[�vh]]ds,

and from the definition of b̃h,

b̃h
(
rh, �vh) = –

∑
K∈Th

∫
K

rh∇ · �vh dx –
∑
e∈E

∫
e

([[
rh]] · �C12 –

{{
rh}})[[�vh]]ds.

Subtracting b̃′
h from b̃h we have

–b̃′
h
(�vh, rh) + b̃h

(
rh, �vh) = 0 ∀(

rh, �vh) ∈Ph(Ω) ×Qh(Ω). (3.10)

Using the definition of error ep and e�q with the properties (3.9) and (3.10) we obtain

b̃′
h
(
e�q,Πhp – ph) – b̃h

(
ep,Πh�q – �qh) = 0,

which completes the proof. �

Approximation properties. Let Πh and Πh denote the L2-projections onto Vh and Qh,
respectively. We note the following L2-projection approximation properties; see [7]. Using
the approximation properties in [7], we introduce the following results.

Lemma 3.7 Let p ∈ H1+s(Ω), s > 1
2 . Then the following holds:

∥∥{{Πhp – p}}∥∥0,E ≤ Chmin{s,k}+ 1
2 ‖p‖1+s,Ω ,

∥∥[[Πhp – p]]
∥∥

0,E ≤ Chmin{s,k}+ 1
2 ‖p‖1+s,Ω
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with a constant C that is independent of the local mesh size hK and depends only on the
shape-regularity of the mesh, the approximation order k, the dimension d, and the regu-
larity exponent s.

Proof It is directly obtained from the properties in [7] and definition of jump and average
on faces of elements K . �

Lemma 3.8 Let (p, �q) ∈ H1+s(Ω) ×H
1+s(Ω) with s > 1

2 . Then, the following holds:
(i) For (r, �v) ∈P(h) ×Q(h), the forms (3.7) can be bounded by

∣∣Rp(p, �v)
∣∣ ≤ Cp

Rhmin{s,k}+ 1
2
∥∥C 1

2
22[[�v]]

∥∥
0,E‖p‖1+s,Ω ,

∣∣R�q(�q, r)
∣∣ ≤ C�q

Rhmin{s,k′}+ 1
2
∥∥C 1

2
11[[r]]

∥∥
0,E‖�q‖1+s,Ω ,

with constants Cp
R and C�q

R independent of h, which depend only on the stabilization
parameters α11,α12,α22 given in (2.3), and the constant in the approximation
properties in [7].

(ii) The bilinear forms are estimated by the following:

ãh
(
ep,Πhp – p

) ≤ Cahmin{s,k}+ 1
2
(
h

1
2
∥∥ep∥∥

0,Ω +
∥∥C 1

2
11

[[
ep]]∥∥

0,E
)‖p‖1+s,Ω ,

c̃h
(
e�q,Πh�q – �q) ≤ Cchmin{s,k′}+ 1

2
(
h

1
2
∥∥e�q∥∥

0,Ω +
∥∥C 1

2
22

[[
e�q]]∥∥

0,E
)‖�q‖1+s,Ω ,

with constants Ca and Cc independent of h, which depend only on α11,α22, and the
constant in the approximation properties in [7].

Proof (i) To show the first estimate we begin with the definition of Rp in (3.7) and apply
the Cauchy–Schwartz inequality and approximation properties in [7] to obtain

∣∣Rp(p, �v)
∣∣2 ≤

∑
e∈E

∫
e

∣∣C 1
2
22[[�v]]

∣∣2 ds
∑
e∈E

∫
e
C–1

22
∣∣(�C12 · [[Πhp – p]] + {{Πhp – p}})∣∣2 ds

≤ α–1
22

∥∥C 1
2
22[[�v]]

∥∥2
0,E

∑
K∈Th

(
1 + |�C12|

)‖p – Πhp‖2
0,∂K

≤ (
Cp

R
)2h2 min{s,k}+1∥∥C 1

2
22[[�v]]

∥∥2
0,E‖p‖2

1+s,Ω

for a positive constant Cp
R that depends on α12,α22. This completes the first estimate. Sim-

ilarly, we can have the second bound in (i).
(ii) From the definition of ãh and c̃h in (3.6) we apply Hölder’s inequality, the definition

of α11, the Cauchy–Schwartz inequality, and the approximation properties in [7] to obtain
the estimates of (ii) with the same order of h. �

Proof of Theorem 3.3.

Proof From Theorem 2.1, we have

ep ∈ C0(Ī;P(h)
) ∩ C1(Ī; L2(Ω)

)
and e�q ∈ C0(Ī;Q(h)

) ∩ C1(Ī;L2(Ω)
)
.
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Since ep = p – Πhp + Πhp – ph, e�q = �q – Πh�q + Πh�q – �qh, using the error equations (3.8), we
have

1
2

(
d
dt

∥∥∥∥1
c

ep
∥∥∥∥

2

0,Ω
+

d
dt

∥∥e�q∥∥2
0,Ω

)

=
(

1
c2 ep

t , p – Πhp
)

– ãh
(
ep,Πhp – ph) +

(
e�q

t ,Πh�q – �qh)

– c̃h
(
e�q,Πh�q – �qh) + R�q(�q,Πhp – ph) + Rp(p,Πh�q – �qh),

by the property in (2.2). Now we fix τ ∈ I and integrate over the time interval (0, τ ), which
yields

1
2

(∥∥∥∥1
c

ep(τ )
∥∥∥∥

2

0,Ω
+

∥∥e�q(τ )
∥∥2

0,Ω

)
+

∫ τ

0

(
ãh

(
ep, ep) + c̃h

(
e�q, e�q))dt

=
1
2

(∥∥∥∥1
c

ep(0)
∥∥∥∥

2

0,Ω
+

∥∥e�q(0)
∥∥2

0,Ω

)
+

∫ τ

0

((
1
c2 ep

t , p – Πhp
)

+
(
e�q

t , �q – Πh�q
))

dt

+
∫ τ

0

(
ãh

(
ep, p – Πhp

)
+ c̃h

(
e�q, �q – Πh�q

)
+ Rp(p,Πh�q – �qh)

+ R�q(�q,Πhp – ph))dt. (3.11)

Integration by parts in the first integral on the right hand side and the standard Hölder
inequality yield

∫ τ

0

((
1
c2 ep

t , p – Πhp
)

+
(
e�q

t , �q – Πh�q
))

dt

=
[(

1
c2 ep, p – Πp

)
+

(
e�q, �q – Πh�q

)]t=τ

t=0

–
∫ τ

0

((
1
c2 ep, (p – Πhp)t

)
+

(
e�q, (�q – Πh�q)t

))
dt ≤ T1,

where

T1 :=
∥∥∥∥1

c
ep

∥∥∥∥
L∞

0,Ω

(
2
∥∥∥∥1

c
(p – Πhp)

∥∥∥∥
L∞

0,Ω

+
∥∥∥∥1

c
(p – Πhp)t

∥∥∥∥
L1

0,Ω

)

+
∥∥e�q∥∥

L∞
0,Ω

(
2‖�q – Πh�q‖L∞

0,Ω
+

∥∥(�q – Πh�q)t
∥∥

L1
0,Ω

)
.

From the definition of ãh and c̃h and the standard Hölder inequality in the second integral
on the right hand side in (3.11), we have

∫ τ

0

(
ãh

(
ep, p – Πhp

)
+ c̃h

(
e�q, �q – Πh�q

))
dt ≤ T2,

where

T2 := σ ∗T
(∥∥∥∥1

c
ep

∥∥∥∥
L∞(0,Ω)

∥∥c(p – Πhp)
∥∥

L∞
0,Ω
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+
∥∥e�q∥∥

L∞(0,(Ω))‖�q – Πh�q‖L∞
0,Ω

)

+
∥∥C 1

2
11

[[
ep]]∥∥

L1(0,E)

∥∥C 1
2
11[[p – Πhp]]

∥∥
L∞(0,E)

+
∥∥C 1

2
22

[[
e�q]]∥∥

L1(0,E)

∥∥C 1
2
22[[�q – Πh�q]]

∥∥
L∞(0,E).

Next, we combine T1 and T2 and rewrite the left hand side (3.11) with the new bounds

1
2

(∥∥∥∥1
c

ep(τ )
∥∥∥∥

2

0,Ω
+

∥∥e�q(τ )
∥∥2

0,Ω

)

+
∫ τ

0

(∥∥∥∥σp

c2 ep
∥∥∥∥

2

0,Ω
+

∥∥C 1
2
11

[[
ep]]∥∥2

0,E +
∥∥σ�qe�q∥∥2

0,Ω +
∥∥C 1

2
22

[[
e�q]]∥∥2

0,E

)
dt

≤ 1
2

(∥∥∥∥1
c

ep(0)
∥∥∥∥

2

0,Ω
+

∥∥e�q(0)
∥∥2

0,Ω

)

+
∫ τ

0

(∣∣Rp(p,Πh�q – �qh)∣∣ +
∣∣R�q(�q,Πhp – ph)∣∣)dt + T1 + T2.

Since this inequality holds for any τ ∈ I , it also holds for the supremum over I , that is,

1
2

sup
t∈I

(∥∥∥∥1
c

ep(t)
∥∥∥∥

2

0,Ω
+

∥∥e�q(t)
∥∥2

0,Ω

)

+
∥∥∥∥σp

c2 ep
∥∥∥∥

2

L1
0,Ω

+
∥∥C 1

2
11

[[
ep]]∥∥2

L1
0,E

+
∥∥σ�qe�q∥∥2

L1
0,Ω

+
∥∥C 1

2
22

[[
e�q]]∥∥2

L1
0,E

≤ 1
2

(∥∥∥∥1
c

ep(0)
∥∥∥∥

2

0,Ω
+

∥∥e�q(0)
∥∥2

0,Ω

)

+
∫

I

(∣∣Rp(p,Πh�q – �qh)∣∣ +
∣∣R�q(�q,Πhp – ph)∣∣)dt + T1 + T2.

Using the geometric–arithmetic mean inequality |ab| ≤ 1
2ε

a2 + ε
2 b2 valid for ε > 0, (a +

b)2 ≤ 2(a2 + b2), and the approximation results in Lemma 3.7, we obtain

T1 + T2 ≤ 1
ε

(∥∥∥∥1
c

ep
∥∥∥∥

2

L∞
0,Ω

+
∥∥e�q∥∥2

L∞
0,Ω

)
+

1
2ε′

(∥∥C 1
2
11

[[
ep]]∥∥2

L1
0,E

+
∥∥C 1

2
22

[[
e�q]]∥∥2

L1
0,E

)

+ Cεh2 min{s,k}+2
(

1
2
σ ∗2T2c∗2 +

4
c2∗

)
‖p‖2

L∞
1+s,Ω

+ Cεh2 min{s,k′}+2
(

1
2
σ ∗2T2 + 4

)
‖�q‖2

L∞
1+s,Ω

+ Ch2 min{s,k}+1
(

ε′

2
‖p‖2

L∞
1+s,Ω

+ ε
1
c2∗

‖pt‖2
L1

s,Ω

)

+ Ch2 min{s,k′}+1
(

ε′

2
‖�q‖2

L∞
1+s,Ω

+ ε‖�qt‖2
L1

s,Ω

)
.
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Using the approximation properties in [7] and Lemma 3.8 we can also bound the error
equations

∫
I

∣∣Rp(p,Π�q – �qh)∣∣dt ≤ 1
2ε′

(∥∥C 1
2
22

[[
e�q]]∥∥2

L1
0,E

+ α22h2 min{s,k′}+1‖�q‖2
L∞

1+s,Ω

)

+
ε′

2
(
Cp

R
)2(1 + T2)h2 min{s,k}+1‖p‖2

L∞
1+s,Ω

and
∫

I

∣∣Rq(�q,Πhp – ph)∣∣dt ≤ 1
2ε′

(∥∥C 1
2
11

[[
ep]]∥∥2

L1
0,E

+ α11h2 min{s,k}+1‖p‖2
L∞

1+s,Ω

)

+
ε′

2
(
C�q

R
)2(1 + T2)h2 min{s,k′}+1‖�q‖2

L∞
1+s,Ω

.

Combining the above estimates and T1, T2 with ε = 4 and ε′ = 2, we have

1
4

sup
t∈I

(∥∥∥∥1
c

ep
∥∥∥∥

2

0,Ω
+

∥∥e�q∥∥2
0,Ω

)
+

1
2
(∥∥C 1

2
11

[[
ep]]∥∥2

L1
0,E

+
∥∥C 1

2
22

[[
e�q]]∥∥2

L1
0,E

)

≤ 1
2

(∥∥∥∥1
c

ep(0)
∥∥∥∥

2

0,Ω
+

∥∥e�q(0)
∥∥2

0,Ω

)

+ Ch2 min{s,k+ 1
2 }(‖p‖2

L∞
1+s,Ω

+ ‖pt‖2
L1

s,Ω

)
+ Ch2 min{s,k′+ 1

2 }(‖�q‖2
L∞

1+s,Ω
+ ‖�qt‖2

L1
s,Ω

)

with a constant that is independent of the mesh size h. Using the bound 1
c∗2 ‖ep‖2

0,Ω ≤
‖ 1

c ep‖2
0,Ω , we conclude the proof of Theorem 3.3. �

Remark 3.9 In our LDG method the parameters are independent of mesh size h, which
gives higher accuracy of the L2-norms of errors in p and �q with k + 1

2 , k′ + 1
2 , respectively,

for smooth solutions.

Remark 3.10 In this paper, we consider a first-order hyperbolic system of acoustic wave
equation in a bounded domain with lower-order damping terms and present a priori
error analysis introducing a LDG method for the system. The system (2.1) with the
time-dependent damping terms σp(x, t) and σ�q(x, t) can also be considered and the well-
posedness with the initial condition (p0, �q0) in D(L) is obtained from Theorem 4.10,
page 245 in [5].

4 Numerical experiments
In this section, we test the model problem to support the theoretical result of the LDG
method. We consider rectangular meshes Th over Ω = [–1, 1]2, consisting of N2 uniform
cubes with corresponding mesh size h = 2

√
2/N in the numerical experiments. For the

time discretization, we employ a one-step Euler scheme with a sufficiently small time step
size, which guarantees the numerical stability and also that errors introduced by the time
discretization can be neglected in the experiments. The initial condition is given as a two-
dimensional Gaussian function

f (x, y) = Ae–ρ(x2+y2), (x, y) ∈ Ω := [–1, 1]2,
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Table 1 Convergence order of the LDG method with �C12 = (1, 1) and speed c = 1

C11 = C22 σp = σ�q = σ

σ = 2.0 σ = 1 σ = 1/2

eh eh eh

C11 = C22 = 1/5 1.373 1.374 1.374
C11 = C22 = 1/10 1.453 1.456 1.458
C11 = C22 = 1/20 1.487 1.491 1.493

Table 2 Convergence order of the LDG method with �C12 = (1/
√
2, 1/

√
2) and speed c = 1/2

C11 = C22 σp = σ�q = σ

σ = 2.0 σ = 1 σ = 1/2

eh eh eh

C11 = C22 = 1/5 1.460 1.418 1.398
C11 = C22 = 1/10 1.480 1.514 1.493
C11 = C22 = 1/20 1.475 1.441 1.424

where the amplitude coefficient A and the spreading coefficient ρ are taken as A = 1 and
ρ = 9. As the initial condition is almost zero around the boundary, we consider the homo-
geneous boundary condition as the Dirichlet boundary condition. The numerical orders
of convergence for numerical solutions are measured as follows:

eh :=
log( ‖ph–ph/2‖0,Ω +‖�qh–�qh/2‖0,Ω

‖ph/2–ph/4‖0,Ω +‖�qh/2–�qh/4‖0,Ω
)

log(2)
,

where ph/n and �qh/n are numerical solutions corresponding to mesh size h/n (n = 1, 2, 4) at
the final time T = 1. In addition, we demonstrate the behavior of the energy for various
dampings, which is defined by

E(t) :=
1
2

∫
Ω

(
1
c2

∣∣ph(t)
∣∣2 +

∣∣�qh(t)
∣∣2

)
dx. (4.1)

We repeat the tests to obtain convergence order for a sequence of uniformly refined
meshes, different damping factors σp = σ�q = σ and different coefficients C11,C22, �C12 with
a fixed set (k, k′) of the orders of polynomials for ph and �qh. For the same mesh size h as
obtained from N = 11, we compute the convergence rate eh for different sets of parameters
�C12 = (1, 1), c = 1 and �C12 = (1/

√
2, 1/

√
2), c = 1/2, respectively. The results are displayed in

Tables 1 and 2 for different dampings σ and parameters C11,C22. The figures in the tables
show that the method has numerically almost spatial convergence order 1.5 with the bi-
linear polynomial approximation for different parameters C11 = C22 = 1/5, 1/10, 1/20 and
dampings σ = 1/2, 1, 2. This supports the theoretical convergence order shown in Theo-
rem 3.3. Further, we display the energy, defined in (4.1), with the parameters C11 = C22 =
1/5, �C12 = (1/2, 1/2), c = 1, N = 31 for various dampings σ = 0, 1/2, 1, 2 in Fig. 1. The energy
decreases exponentially in time when the damping σ > 0 and its decay rate is getting high
as σ is increased. Especially, when damping σ and parameters Cjk (j, k = 1, 2) are zero, the
energy is almost constant, which shows that the semi-discretized DG method successfully
conserves the energy quantity even though it is affected by the temporal discretization er-
rors in fully discretized schemes, which is shown in the case of σ = 0.
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Figure 1 Behavior of energy for various dampings

5 Conclusion
We introduce a general formula for the system of acoustic damped wave equations in a
bounded two-dimensional domain and successfully propose a LDG method for the sys-
tem. Further, we show the well-posedness of the system and stability using the energy
decay property and an a priori error estimate for the semi-discretized LDG method. The
theoretical convergence order and the energy behavior of the method are also tested by
a numerical experiments with various parameters. We will study the efficient time dis-
cretization for the semi-discretized LDG method and analyze its error estimates in a forth-
coming work.
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