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1 Introduction

An American-style option is an option that can be exercised at any time during its lifespan.
In financial engineering, the pricing of this kind of options has long been acknowledged
as a very challenging problem [33]. The challenge mainly comes from the early exercise
nature of the American options. Mathematically, this early exercise feature gives the pric-
ing problem its free boundary form; in turn this free boundary problem may be recast
as an LCP (linear complementarity problem). Nowadays, it is important to ensure that
American-style options can be priced accurately as well as efficiently due to the popular-
ity of such options in today’s financial markets.

Zhu [48] has made a breakthrough by successfully deriving a closed-form pricing for-
mula for American options. His formula is not, however, computationally as well as practi-
cally appealing, as pointed out in [51]. Till now, approximation methods, especially various
numerical approaches, are still popular among market practitioners because most of them
are usually faster with acceptable accuracy.

In the literature, of all the approximation methods, there are predominantly two types,
analytical approximations and numerical methods, for the valuation of American op-
tions. Typical methods in the first category include the compound-option approximation
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method [20], the randomization approach [4], the integral equation method [9, 52], and
the Laplace transform method [49]. However, as pointed out in [43], the generalization
of these quasi-analytical approaches to some exotic options may not be easy. Moreover, it
seems quite difficult to extend all these methods to high-dimensional problems. On the
other hand, the numerical methods for the valuation of American options typically include
the FD (finite difference) method [15, 29, 37, 38, 43, 53], the FE (finite element) method
[2, 45], the IFE (inverse finite element) method [51], the radius basis function method [25,
36], the binomial tree method [17], the moving boundary approach [10, 35], the Monte
Carlo simulation technique [19], and the least square approach [33]. We remark that the
FD method is common but elegant in solving either linear or nonlinear heat equations.
Examples include [23, 24, 27, 34, 44] and the references therein.

It is worth mentioning that, from a purely numerical point of view, there are two dif-
ficulties associated with the pricing of American options. Firstly, the Black—Scholes dif-
ferential operator at zero underlying asset price is degenerative. A common and widely
used approach dealing with such a singularity is to apply the Euler transformation to re-
move the singularity [16, 39, 40, 47]. As a result of the transformation, the pricing domain
becomes (—00, +00). However, the truncation on the left-hand side of the domain to arti-
ficially remove the degeneracy may cause additional computational errors. Furthermore,
the uniform mesh on the transformed interval will lead to the originally grid points con-
centrating around x = 0. While the standard finite difference method is used to discretize
the Black—Scholes differential operator in the original form, numerical difficulty can be
caused. The main reason is that when the volatility or the asset price is small, the Black—
Scholes differential operator becomes a convection-dominated operator. Hence, the im-
plicit Euler scheme with central spatial difference method may lead to nonphysical oscil-
lations in the computed solution [5, 6]. The implicit Euler scheme with upwind spatial
difference method does not have this disadvantage, but this difference scheme is only first
order convergent. Recently, a stable fitted finite volume method [3, 41] has been employed
for the discretization of the Black—Scholes differential operator, but it is also first order
convergent. The second difficulty of the pricing of American options is that the payoff
functions of vanilla options are not smooth at the strike price. This would result in the so-
lution of the LCP governing the price of American options being not smooth enough and,
consequently, difficult to be determined accurately [5]. Although the second difficulty will
also be faced in the numerical pricing of European options, it is admittedly exacerbated
in the American case due to the need to find the free boundary using “smooth pasting”
condition.

In this paper we propose a HODIE (high order via differential identity expansion) finite
difference scheme (see [12—14] for details) to solve the linear complementarity problem
of the pricing of American puts. We remark that in the literature, the HODIE method is
restricted to solve PDE (partial differential equation) formulated problems only; the ap-
plication of this method to solve the linear complementarity problem, as presented in the
current paper, is achieved for the first time. In particular, in our work, we concentrate on
overcoming the two difficulties mentioned to further improve the accuracy. To avoid the
computational error brought in by the truncation around x = 0 (corresponding to —oo in
the transformed domain), we deal with the Black—Scholes equation in the original form,
but with the HODIE finite difference approximations on a piecewise uniform mesh for
the spatial direction. Fortunately, with the HODIE finite difference approximations on a
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piecewise uniform mesh, we show theoretically that the coefficient matrix after discretiza-
tion is an M-matrix. This ensures that the scheme is maximum-norm stable for arbitrary
parameter settings. Most remarkably, we have successfully obtained a sharp error estimate
of the current scheme by applying the maximum principle to the discrete linear comple-
mentarity problem in two mesh sets. It is proved that the scheme is first and second order
convergent with respect to the time and spatial variables, respectively. Numerical results
agree with the theoretical statement and indicate that our method is more accurate than
the other existing methods.

On the other hand, to deal with the non-smoothness of the payoff function, we use the
singularity-separating method developed by Zhu et al. [54, 55] for solving shock waves in
fluid mechanics. The application of this method to the quantitative finance area can be
found in [5]. According to the essence of this approach, we first compute the difference
between the American option and its corresponding European counterpart, because the
terminal value of such a difference is zero, which is smooth. The final option price could
then be obtained by adding the corresponding European option price to the difference.
Financially, this approach reveals the fact that the price of an American option could be
decomposed into the price of its European counterpart and the early exercise premium.

The rest of the paper is organized as follows. In Sect. 2, we describe some theoretical
results on the linear complementarity formulation of American put options. In Sect. 3, we
introduce the HODIE method in detail including its stability and error analysis. In Sect. 4,
some numerical experiments are provided to test the theoretical error estimation obtained
in the previous section. Concluding remarks are given in the last section.

2 The continuous problem

To demonstrate the HODIE method in a clear way, we shall consider the pricing of Amer-
ican puts under the classical Black—Scholes model throughout the paper. In fact, the ex-
tension of the current method to price other American-style securities is quite straight-
forward.

It is well known that the pricing of American puts can be formulated as a linear com-
plementarity problem [26, 42]. Let v(x, ) denote the value of an American put option on
the underlying price x at any time ¢ before the expiry date T with strike price E. It can be
shown that v satisfies the following linear complementarity problem:

Lv(x,t)>0, x>0andt€[0,7), (2.1)
v(x,t) —g(x) >0, x>0andtel0,T], (2.2)
Lv(x,t) - (v(%,£) - g(x)) =0, x>0andt € [0,T), (2.3)
vix, T) =g(x), x>0, (2.4)
v(0,t)=E, tel0,T], (2.5)
v(x,£) = 0, x— +ocandt e [0,T], (2.6)

where L denotes the Black—Scholes differential operator defined as

v 1 92 9
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with o being the volatility of the underlying, r and d being the risk-free interest rate and
dividend yield, respectively.
We further remark that g(x) appearing in (2.2) is the payoff function defined as

g(x) = max(E - x,0).

For simplicity, we assume that r —d > 0.

One should notice that the final condition g(x) = max(E — x, 0) is not smooth, and hence
v(x, £) should not be very smooth in the region where x near E and ¢ near T'. This would
result in large truncation error in the numerical solution near x = E and ¢ = T Fortunately,
such a singularity can be ingeniously dealt with by the singularity-separating method in-
troduced in [54, 55], as will be illustrated in the following.

According to the essence of the so-called singularity-separating method, we split the
price of an American put option v(x, ) into two parts, i.e.,

V(x, t) =V (x: t) + VZ(xr t)'
Here, v1(x, t) is the price of the European put, which has a closed-form representation as
vi(x,t) = Ee " TON(~dy) — xe “TIN(~d}), (2.7)

where

dl:ln%+(r—d+ %)(T—t)
oNT -t ’
d2=d1—(TVT—t

and

z sz
N(z):\/%/ e 7 ds.

Since v;(x, £) has the same terminal value as v(x, £), it is clear that v,(x, £) satisfies the

following linear complementarity problem:

Lwy(x,6) >0, x>0andte[0,7), (2.8)
va(x,8) - [g¥) = vi(x,£)] =0, x>0and €0, T], (2.9)
Ly (x,8) - [va(x,8) — (g(¥) —v1(x,1))] =0, x>0andz€(0,T), (2.10)
(%, T)=0, x>0, (2.11)
1,(0,8) =E(1-e" "), te[o,T], (2.12)
v(x,8) > 0, x—> +ooand ¢ € [0, T]. (2.13)

We remark that such a splitting indeed coincides with the financial fact that the price of
an American option can be written as the sum of its European counterpart and the early



Cen and Chen Advances in Difference Equations (2019) 2019:67 Page 5 of 17

exercise premium. Most importantly, after splitting v into two parts, the terminal value of
v2(x, t) becomes zero, which is a smooth function in the entire solution domain.

Now, to solve the linear complementarity problem (2.8)—(2.13) on a computer, we need
to truncate the domain (0, +00) into (0,X). Based on Wilmott et al’s estimate [42] that
the upper bound of the asset price is typically three or four times of the strike price, it
is reasonable to set X = 4E. Remarkably, this truncation of the domain only leads to a
negligible error in the computed option price [30]. The boundary condition at x = X is now
artificially set to vo(X, t) = 0. Therefore, in the remainder of this paper, we shall concentrate

on solving the following linear complementarity problem numerically:

Lvy(x,8) >0, (x,8) € (0,X) x (0,T), (2.14)
v, 8) - [g(x) =i )] =0,  (x,8) € (0,X) x [0, T, (2.15)
Lvy(x, 1) - [va(x,8) — (g(¥) —v1(x, 1)) ] =0, (x,2) € (0,X) x [0, T, (2.16)
va(x, T) =0, x€[0,X], (2.17)
v2(0,8) =E(1-e" "), n(X,)=0,t€[0,T]. (2.18)

3 The HODIE method

In this section, the HODIE method used to price American puts will be illustrated in great
detail. Although this method has been used to solve many problems recently, it is the first
time that the method is successfully applied to solve problems in a linear complementar-
ity formulation. This section is further organized into two subsections, according to two
important issues to be addressed. In the first subsection, the discretization of the HODIE
method will be introduced, whereas in the second subsection, the stability and the error

estimate of the current method will be analyzed.

3.1 Discretization
Our numerical method is based on a HODIE finite difference scheme for the spatial dis-
cretization and the implicit Euler scheme for the temporal discretization.

Similar to [6], to ensure the stability of the discrete scheme, we use a piecewise uniform
mesh 2V on the spatial interval [0, X]:

xizh[1+

X
1+ 22 (N-1)

For the temporal discretization, we use a uniform mesh 22X on [0, T] with K mesh el-
ements. Then the piecewise uniform mesh 27K on £ = (0,X) x (0, T) is defined as the

tensor product VK = 2N x 2K, We remark that the quasi-uniform mesh is used to en-

where /1 =

sure that the current scheme is maximum-norm stable for arbitrary parameter settings.
Now, applying the implicit Euler scheme with uniform mesh size At = t;—¢;_; = 1% to the
time direction, (2.14)—(2.18) could be discretized into the following semi-linear comple-

mentarity problem:

L) =V ), xe(0,X), (3.2)
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h@) - [g) - @] =0, xe(0,X), (3.3)
(L) — Vi () - [Va) — (g) = v, ()] =0, x € (0,X), (3.4)
V¥ (x) =0, x€[0,X], (3.5)
15(0) = E(1-e %), ,(X) =0, (3.6)

where 1/'2(96) is the solution of (2.14)—(2.18) at the jth time level, and L is the operator de-
fined as

‘ . 2,/ / .
Zl/z(x) =(x) + At[—%azxzé—;ﬁ —(r— d)xo:;—‘jc2 + rl/z(x):|.

To approximate the solution 14(96) of the semi-discrete problem (3.2)—(3.6), we use the
HODIE finite difference scheme, which will be illustrated in detail in the following.
The first step in applying the HODIE technique is to propose a discrete scheme

INU, = a; Uiy +ail; + af Uy — q}iui_l — qiziu,' (3.7)

for the differential operator L.
We now assume that the space P,[x] is in the kernel of the operator L; moreover, the

normalization conditions
a +q;=1, ¢,>0, j=12 (3.8)

are satisfied. Based on the above two assumptions, the following linear system can be ob-
tained after we transform the interval [x;_1,%;,1] into [—/;, h;1]:

a; +d; +aj =1+rAt,

—hja; + hiaa) = qi1 { [—(r —d)x;i_1 — hir]At - h,»} - qiz(r —d)x;At,

Wa; + ki, af = q}{[-0’x7 + 2hi(r — d)xioy + Bl At + 17} - i o?x] At

g =1-q;.
Solving the above linear system, we obtain

_qi[=0?x + (r = dhxi | At — g7 [o %%} + (r — d)hixi ] At

“ Ui+ i)
N gH{[(r — d)xi1 + hir] At + b} + @2 (r — d)x,»At’ (3.9)
hy
at = g [~02x? | + (r — d)hxi 1At — g lo*x? + (r - d)hix,-]At, (3.10)
(hi + hiz1)hia
a;=1+rAt—a; —a;. (3.11)

Now, with all the (a;)s available, it suffices for us to summarize the finite difference equa-

tion written on a grid point (i, ) as

INKV] >0, (i) € 2 (3.12)

Page 6 of 17
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Vyi—lg-vi] =0, @))€ (3.13)

INKVL [V = (@ =70)] =0, () € 20, (3.14)

Vy;=0, i=0,1,...,N, (3.15)

Vip=E(1-eT4),  Vjy=0, j=K-1,...,10, (3.16)
where

LN Vé,i =a; Vé,i—l +a; Vé,i +a; Vé,m -q; V{il -4 VZ‘I’ (3.17)

and
2 ={)I1<i<N-1,0<j<K-1}.

We remark that in (3.12)—(3.16), the parameter g! provides a degree of freedom to ensure
that the current scheme is stable. In the next subsection, we will show that the discrete

operator LNK

satisfies a discrete maximum principle when g; = 0. Hence, there exists a
unique solution V; satisfying (3.12)—(3.16). For a detailed discussion on the uniqueness of
the solution of the discrete linear complementarity problem, we refer to [22].

To solve numerically problem (3.12)—(3.16), the projection scheme introduced in [21,
p- 433] can be adopted. Assuming that the function value V; at the (j + 1)th time step is
already known, and we set LMK Vé;m = 0, which is then solved together with the boundary

condition (3.16), i.e., we solve for {Vémz} from

LN,KV;J;UZ:O’ i=1,2,...,N-1,

Vit =E(1-e"T0), Vi =o.
With {Vémz} available, we set
V), =max{V)'2 g -9}, i=01,...,N
2i = 2 8i 1Lif =0, L...,IN,

which ensures that (3.13) and (3.14) are satisfied.
After V) is solved, the desired option price at (x;,¢) can be obtained by

VX, t) = Vé,i +vi(xi, ),

where v;(x;, %) is the corresponding European put price and can be determined directly
from (2.7).

3.2 Analysis of the method

As an error analysis forms an indispensable part of any numerical approach, the proposed
HODIE approach needs an error estimation as well. Remarkably, in the literature, such an
issue has never been formally addressed when the HODIE method is applied to solve linear
complementarity problems. In the following, based on the discrete maximum principle,
truncation error analysis, and the barrier function technique, we have managed to provide
an error estimation for the HODIE method applied to solve the price of American puts.
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Lemma 1 (Discrete maximum principle) The operator LNX defined in (3.17) on the piece-
wise uniform mesh Q2N*X satisfies a discrete maximum principle when q; =0, i.e., if u, is a
mesh function that satisfies uy > 0,u), > 0 (0 <j < K), uX >0 (0 <i <N), and LN u, > 0

for (i,]) € 2y, then L/L >0 foralli,j.
Proof Let qil =01in (3.9) be zero, we obtain

_ —lo?xd + (r—d)hxi) At (r—d)xiAt

S (Y >
0%} + (r = d)hax) At - [—o2x; + (r — d)hi)x; At
- (hi + hi1)h; - (hi + hi)hy
[~o2h + (r — d) Sy )x; At
< =
- (h; + hi)h;

for (i,)) € S~2h. It is also not difficult to show that, for (i, ) € fzh,

. o+ (r—d)hxi] At
a; = <0,
(hi + his)hia

ai=1+rAt-a; —al >0,
and
a; +a; +a; —1=rAt>0.

LN K

Therefore, the matrix associated with is an M-matrix.* By applying the same argu-

ment as Lemma 3.1 in [31] used, it is straightforward to obtain the result of our lemma. [J

It should be remarked that from the above lemma, one can also conclude that our
scheme is stable because the associated matrix is a strictly diagonally dominant M-matrix.
Next, by using the Taylor expansion, the following truncation error estimate can be ob-
tained.

Lemma 2 Let u(x,t) be a smooth function defined on 2K, Then, if g} = 0, the following
estimate for the truncation error holds true:

|LNK (i, ;) — At(Lu)(xi, 8)| < CAL(H* + At)  for (i,)) € 2,
where C is a positive constant independent of the mesh.

Based on Lemmas 1 and 2, our main result for the HODIE finite difference scheme can
be achieved as follows.

Theorem 1 Let vy(x, t) be the solution of problem (2.14)—(2.18) and Vé,i be the solution of
problem (3.12)—(3.16). Then, if qil =0, we have the following error estimates:

|valxin ) — Vii| <C(I* + At)

for0<i<Nand0<j<K, where C is a positive constant independent of the mesh.
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Proof We apply the maximum principle to the discrete linear complementarity problem
(3.12)—(3.16) in two mesh sets to derive the error estimate [8].
Now, let

2 ={NI0<i<N,0<j<K}, 3824 =152\ 2

QU ={(i,)) € Lulnt) =gi-v;}, 2@ =2\ 2"
From (2.14)—(2.18), it is clear that

Lvy(x,t5) >0, (i,)) € 29,

Lvy(x, ) =0, (i,)) € 212.
Denote
QP ={ipe@Vi=g-4} 2P =2\ 2P
It is obvious that
INKV] =0, (i) e 2. (3.18)
Define the function on £2;, by
W] = C[(T - t; + DAL+ (X - x)H?] >0, (3.19)
where C is a sufficiently large constant independent of the mesh.
For (i,)) € Q;lz), using the fact that Lvy(x;,£) > 0, together with (3.18), (3.19), and

Lemma 2, we obtain

INK (vz(x,», L) — Vii + Wl’) = LNy, (x;, L)+ LN’KW{
= [IN va(xi ) — AtLvy(x;, 1) + LN’KW,(]

+ AtLvy(x;, t;) > 0.
For the nodes on the ‘boundary’ of .(2,(12), if (i,)) € .Q,(,l), we have
v t) = Vi, + Wi = vl ) = (g = v),;) + W) =0,
and if (i,j) € 02, we obtain
Vo (i, t) — Vé’t + VVl’ = VVZJ > 0.
Applying the maximum principle to Q;lz), it is clear at this stage that

@ t) -V, + W >0, (i) €2,
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and thus
b)) =V, + W, >0, (i) € 2 (3.20)

On the other hand, for (i,j) € 2@, itis known that Lv,(x;, ;) = 0, but LN Vé,l. > 0. There-
fore, we have

LN’K(vz(x,, ) — Vél ) INKy, 2 (%0 b)) — ALLvo (%, ) — LN’KW{] — LN’KVéJ

IA

0.
On the ‘boundary’ of 2@, if the nodes (i,j) € 21, we have

va(xi, ) = Vé,z -W = (gi- ‘/1;) - Vé,i - VV{ =0,

1

and if (i,j) € 082, we obtain

Vz(xl', tj) - Vé,i - W} = —VV{ <0.

1

Now, applying the maximum principle to £2®?), we obtain
nxnt) - V), - W <0, (ij)e 2®
Thus
nxnt) = Vi, - W <0, (i) € 2. (3.21)
From (3.20) and (3.21), we obtain

max |V2(x,,t,) - sz| < max W] < C(lfz2 + At).
(i)e2y (i))es2y

This completes the proof. d

It should be remarked that although the current scheme is second order accurate in
space, much more accurate solutions may be obtained by the idea of the HODIE dis-
cretization. Based on the adapted mesh used in [14], a third order HODIE scheme could
be constructed, based on the current framework, to solve for the price of American-style
options accurately. Also, as pointed out in [11], it is quite possible to combine the current
method with some other techniques, such as the defect-correction or Richardson extrap-
olation, to increase the order of convergence in the time direction. These possibilities will
be further explored in a forthcoming paper.

It is also worth mentioning that although the HODIE method is currently used to
price American puts under the Black—Scholes model, this method may be extended to
price other kinds of American-style options, for example, American-style options in
multi-dimensions such as options with stochastic volatility [50] or on multi-assets [46],
American-style options under a modified Black—Scholes equation with fractional deriva-
tives [7, 28].
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(a) Option price at t = 0 with o = 0.1, » = 0.08, (b) The corresponding constraint V — g.
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(c) Option price at t = 0 with o = 0.4, » = 0.06, (d) The corresponding constraint V' — g
d=0.02,T=1, E=25and X = 100.

Figure 1 Option prices with different parameter settings

4 Numerical experiments

In this section, we shall present some numerical results as well as useful discussions on
the performance and convergence of the HODIE finite difference scheme. In particular, we
shall concentrate on calculating the errors and the convergence rate of the current scheme
through the following examples.

4.1 Computed option price and optimal exercise prices
Depicted in Fig. 1(a) and Fig. 1(c) are two sets of American put prices as a function of the
underlying but with different parameter settings. From these figures, it is clear that the
option price is a decreasing function of the underlying. Moreover, the “smooth pasting”
conditions across the free boundary, which are usually difficult to implement numerically,
are also satisfied well. One could observe from these two figures that the American option
price dominates its European counterpart. This makes sense, as the right of being able to
exercise earlier, in comparison to the European-style options, has added additional values
to the option price. Besides the option prices, the differences between the option price,
and the payoff, i.e., V — g, are further shown in Fig. 1(b) and Fig. 1(d) for the two cases.
From these two figures, it is observed that the option prices computed using our method
are always greater than or equal to the payoff value at any time to maturity, which is one
of the essential properties of American options.

As pointed out in [30], the truncation of the domain only leads to a negligible error

in the computed option price. To corroborate this, we have compared the option prices
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140 Payoff function
(=@ = X=100
1@ X=200

12 —+— X=400

option prices
®
T

underlying

Figure 2 Impacts of the truncation of the domain. Model parameters are ¢ =0.3,r=0.1, D=0,
T—t=1(year), E=$25

computed with otherwise identical but different X, as displayed in Fig. 2. One could clearly
observe from this figure that the option prices with different choices of X agree perfectly
well with each other. Numerical calculation further shows that the maximum pointwise
error among them is in the order of 1074, which is indeed negligible from a financial point
of view.

It is known that the optimal exercise price is far more difficult to determine accurately
than the option price. From our algorithm described in Sect. 3.1, it is clear that the opti-
mal exercise price can be obtained as the maximum underlying at which Vé,i =g - ‘/11 is
satisfied. Based on this fact, we calculate the optimal exercise prices with N = 2048 and
K =4096, and compare the numerical values with those calculated by the IFE method and
Zhu’s analytical approach [48], as shown in Fig. 3. From this figure, one can clearly observe
that our numerical results agree well with those calculated using other methods. A close
examination reveals that the current approach slightly underestimates the Sy values when
the time is close to expiry. This is not surprising because of the well-known singularity at
expiry [18], which is not possible for most of the numerical schemes to deal with.

Another important issue in finance industry is the speed of calculation, which is equally
important, sometimes even more, than the accuracy. To clearly demonstrate the overall
numerical performance of the current approach, we display in Fig. 4 the relationship be-
tween the efficiency and accuracy of our scheme. Here, the computational efficiency is
measured by the total CPU time in seconds consumed for each run, whereas the accuracy
is measured by the relative error over the whole computational domain, which is defined

as

” V- Vexact”oo

[ Vexactll oo

Relative error =

’
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with V and Veyc: denoting the computed values and the reference values, respectively, and
I - [0 being the infinite norm. We remark that the approximate solution calculated on very
fine grid sizes, i.e., with N = 4096 and K = 8192, is used as the reference solution here. In
this figure, four sets of relative errors with fixed number of time steps are displayed as a
function of the varying number of spatial steps and CPU times. All the experiments were

performed within Matlab2011b on an Intel(R) Core(TM)i7-2600 CPU, 3.40 GHz machine.
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Table 1 Error estimate and convergence rate for the spatial direction with the same parameters as
used in Fig. 1(c)

K N error rate
4096 128 4.0555e-3 -
256 1.0697e-3 1.923
512 2.8216e-4 1.923
1024 8.7300e-5 1.692

From Fig. 4, one can clearly observe that the efficiency of the current scheme is inversely
varying with the accuracy. In other words, a demand in high accuracy in the computed op-
tion price requires more computational time. However, by using our method, it is possible
to produce a result with the relative error being less than 5% within 1 second. This level
of accuracy and efficiency certainly suits the practical needs of financial market [51].

4.2 Convergence rate
As demonstrated in Sect. 3.2, our method is first and second order convergent in the time
and spatial directions, respectively. To further verify this theoretical result, we turn to in-
vestigating the error estimate and convergence rate of the current method from a numeri-
cal point of view. Since we do not have the exact solution of American options in hand, we
shall adopt the approximate solution calculated on very fine grid sizes, i.e., with N = 2048
and K = 4096, as the exact solution. For comparison purpose, we use linear interpolation
to get values at desired points, because “the exact solution” here is only known on mesh
points.

To obtain the convergence rate along the spatial direction, we fix the size of the time step
to be fairly small, i.e., K = 4096, and vary the number of spatial intervals from 128 to 1024.
The errors reported in Table 1 are measured by the discrete maximum norm defined as

e = max| V< - Vixi,4)|.
ij

With the errors associated with different N available, the convergence rate along the spatial
direction is then calculated from

K
N,K _
RY™ = IOgZ(ezN,K)'

From Table 1, one can clearly observe that :21\1sz( is close to 4 for sufficiently large K,
which indicates that our method is second order convergent in the spatial direction. This
agrees with our theoretical convergence result stated in Theorem 1.

Similarly, when we fix the spatial step size to N = 2048 and increase the grid number in
the time direction, we find that the rate approaches 1, as shown in Table 2. This indicates
that a first order convergence is achieved in the time direction.

To better investigate the convergence rate of the current scheme, we also calculate the
ratio with the time and spatial steps adjusted to each other according to the expected order
of error O(h* + At). Specifically, we choose varying grid numbers N; = n;N; and K; = n?Kj,
where N; and K; are the grid numbers used in the ith row of Table 3 with N; = 32 and
Kj = 16. It is anticipated that if the theoretic order of convergence is achieved, the rate
should approximately equal 2. This has been confirmed by the results shown in Table 3 as

well.
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Table 2 Error estimate and convergence rate for the time direction with the same parameters as
used in Fig. 1(c)

K N error rate

2048 64 2.551e-1 -
128 1.208e-2 1.078
216 5471e-2 1.143
512 2.5300e-2 1.112

Table 3 Global error estimate and convergence rate with the same parameters as used in Fig. 1(c)

n error rate
1 4.24e-2 -

2 1.33e-2 167
4 4.20e-3 1.66

Table 4 Comparison of the American put option values at different underlying values with
parameters:0 =0.3,t=0,7T=1,r=0.04,d=0.02, E =100, X =400

Stock Binomial Analytic Compact Compact Compact Our True
price x method approx. method method method stable values
method 1 2 3 scheme

75.9572 2533949 254509 25.10042 2532570 2532739 2532939 25.32986

83.9457 19.49101 19.6617 19.34597 1949193 1949383 19.49647 19.49691

92.7743 14.27957 14.4477 14.16375 14.25707 14.25914 14.26231 14.26265
102.5315 9.87092 10.0278 9.78167 9.83789 9.84000 9.84332 9.84354
113.3148 6.35580 6.53401 6.32881 6.36044 6.36241 6.36555 6.36558
1252323 3.84473 397728 3.81244 3.82898 3.83064 3.83327 3.83337
1384031 2.14801 225467 2.12653 2.13452 213578 213775 213784

We also compare our scheme with binomial method, analytic approximation method
proposed in [20], and compact finite difference methods proposed in [47], as shown in
Table 4. The values in this table are computed with the following parameter settings. The
binomial method is based on time step At = 0.01, the analytical approximation method
is based on time step At = 0.02, whereas compact finite difference methods 1, 2, and 3
are based on space step # = 0.02 and time step Az = 0.0005. In our stable scheme, we use
time step At = 0.0005 and N = 20,000 mesh points for spatial discretization which has
almost the same number of mesh points as the compact methods. The true option values
are based on the trinomial method proposed in [1] using time step At = 0.00005. From
Table 4, one can observe that our solution agrees perfectly well with the true option price,
which indicates that our scheme is more accurate than other methods.

5 Conclusion

In this paper, we have proposed and tested a HODIE finite difference method for the pric-
ing of American put options. Based on the HODIE finite difference discretization with
a piecewise uniform mesh, we have proved theoretically that the resulting matrix is an
M-matrix, and consequently, we obtain the stability of the current method. Furthermore,
with the discrete maximum principle, a theoretical error estimate for the current scheme
is also obtained, which is further verified numerically through our numerical experiments.
With the application of the HODIE method to the option pricing field for the first time, it is
promising that higher order methods could be constructed, based on the current method,
to price American-style options in multi-dimensions accurately. Moreover, the HODIE

Page 15 of 17
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method also may be extended to price other kinds of American-style options, for exam-
ple, American-style options in multi-dimensions, American-style options under a modi-
fied Black—Scholes equation with fractional derivatives.
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