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Abstract
For the pricing of vulnerable options, we improve the results of Klein and Inglis
[Journal of Banking and Finance] and Tian et al. [The Journal of Futures and Markets],
considering the circumstances in which the writers of options face financial crisis. Our
pricing model faces the risks of default and the occasional impact experienced by the
underlying assets and counterparty’s assets. The correlation between the option’s
underlying assets and the option writer’s assets is clearly modeled. Asset prices are
driven by the jump-diffusion processes of two related assets. Furthermore, we
consider a variable default boundary (VDB) based on the option’s potential debt and
the option writer’s other liabilities. In case financial distress happens, the payout rate is
connected to the option writer’s assets. Through the Taylor expansion, we derive an
approximate explicit valuation for vulnerable options.
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1 Introduction
In the 1990s and earlier, financial market participants did not pay enough attention to
counterparty risk. On account of the impact of the global financial crisis, more and more
investors and researchers have begun to consider the influence of counterparty risk on the
company’s credit risk. Now many financial institutions trade their derivatives with coun-
terparties and other institutions in the over-the-counter (OTC for short) markets. Due to
system defects used for OTC market transactions as well as ineffective regulation, credit
risk becomes the major risk threatening the stability of the entire financial system. Thus,
accurately pricing the various options to effectively resist financial crises is urgent in the
OTC markets. The standard option pricing formulas [1, 2] do not focus on counterparty
risk. Subsequently, some literatures begin to pay attention to the pricing of vulnerable
options and consider counterparty risk (see [3–13]).

Specifically, Johnson and Stulz [3] think that the option is the writer’s sole liability. When
the counterparty defaults, the option holder will receive all the assets of the option writer.
Hull and White [5] extend the model, assume that the counterparty has other liabilities,
the payout rate is exogenous, and the option holder will obtain part of the option’s intrin-
sic value when the counterparty defaults, thereby deriving the vulnerable option’s pricing
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formula. Jarrow and Turnbull [6] propose a risk neutral evaluating mechanism of deriva-
tive securities exposed to default risk. Klein [7] provides an analytical solution of the Eu-
ropean vulnerable option’s price, taking into account the interrelationship between the
option writer’s asset and the underlying asset. They also assume that the option writers
have other liabilities, and when the counterparty defaults, some of the nominal claims will
be paid.

Recently, Klein and Inglis [8] and Hung and Liu [9] have extended the model of [7] to
obtain closed-form solutions of European vulnerable options facing interest rate risk and
financial crisis, and to price vulnerable options in incomplete markets, respectively. Klein
and Inglis [10] extend the results of [3] and [7] through incorporating the VDB that re-
lies on both the potential liabilities of the options and the other liabilities of the option
writers. If a financial distress occurs, the payout rate is associated with the asset of the
option writer, and the correlation between the underlying asset and the option writer’s
asset is explicitly modeled. They get an approximate analytical formula for vulnerable op-
tions. In [11], the pricing model of vulnerable options not only faces default risk but also
faces the occasional impact of the underlying asset and the counterparty’s assets. These
two types of assets are related. The asset price dynamics follow the jump-diffusion pro-
cesses. The jump is divided into two parts: the trait part of each asset price and the part
of the system that affects the price of all assets. In [12], when the underlying asset follows
a stochastic volatility model, Yang et al. use asymptotic analysis to obtain an approximate
analytical pricing formula for vulnerable options. Yoon et al. [13] use the Double Merlin
Transform under constant and random (Hull–White) interest rates to get analytical pric-
ing formulas for each interest rate case so that vulnerable option’s value can be accurately
and effectively calculated. Through a Markov modulation mechanism switching method
to simulate various economic conditions and giving the dynamics of the assets values by
two related jump-diffusion processes, Niu et al. [4] study the pricing of vulnerable Eu-
ropean options. By Laplace transforms, they obtain an analytical solution of the price of
vulnerable options.

This paper will extend the results of [10] and [11] for valuing vulnerable options when
the option writer suffers the financial crisis. As in [11], the asset prices are driven by jump-
diffusion processes. The jump is divided into two parts: the trait part of each asset price
and the part of the system that affects the price of all assets. Following Klein and Inglis [10],
we assume that there are interrelations between the option’s underlying asset and the op-
tion writer’s assets, and the option writers have other liabilities. The value growth of the
option itself may also give rise to financial distress. The default barrier is divided into a
stochastic part that measures the option’s potential payoff and the fixed part that repre-
sents the option writer’s other liabilities. Furthermore, we make the assumption that only
variations in the value of the asset underlying the option or the writer’s assets can cause
financial distress. By the Taylor expansion, we derive an approximate explicit valuation for
vulnerable options.

We proceed as follows. In Sect. 2, a jump-diffusion model incorporating a variable de-
fault boundary (VDB for short) is proposed, and we obtain an approximate explicit solu-
tion of vulnerable European option. We present the detailed technical calculations in the
Appendix.
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2 Pricing vulnerable options
2.1 The model
Let (Ω ,F ,Q) be a complete probability space and r be the instantaneous riskless rate.
Jump processes are given to describe the discontinuous changes of prices. We will give the
following assumptions underlying our model for vulnerable option. One can see references
[10] and [11] for the detailed description.

Assumption 1 Suppose that St denotes the price of the underlying asset of the option.
The dynamics of St are presented as follows:

dSt

St–
=

(
r – kSλ

∗
S
)

dt + σS dW (1)
t +

(
eZ(1)

t– – 1
)

dM(1)
t , (2.1)

where W (1)
t is a standard Brownian motion on (Ω ,F ,Q), and σS denotes the volatility.

M(1)
t represents a Poisson process, which models the jumps of the underlying asset price.

λ∗
S denotes the jump intensity of M(1)

t . M(1)
t and λ∗

S both consist of two parts,

M(1)
t = N (1)

t + Nt ,

λ∗
S = λS + λ,

where N (1)
t models the individual impact on the asset price, and Nt models common shocks

that also have influence on the counterparty’s asset. Nt and N (1)
t are both Poisson processes

with intensities λ and λS , respectively. We assume that they are independent. Z(1)
t denotes

the underlying asset’s jump amplitude when the jump happens. We suppose that Z(1)
s and

Z(1)
t are independent and have the same distribution when s �= t. kS = E[eZ(1)

t ] – 1 represents
the average jump percentage of the price. We always assume that kS is finite and Z(1)

t is a
normal random variable with expectation μ1 and variation σ 2

1 . Then kS = eμ1+ 1
2 σ 2

1 – 1.

Assumption 2 Suppose that Vt denotes the value of the option writer’s asset. The dy-
namics of Vt are presented as follows:

dVt

Vt–
=

(
r – kV λ∗

V
)

dt + σV dW (2)
t +

(
eZ(2)

t– – 1
)

dM(2)
t , (2.2)

where W (2)
t denotes a standard Brownian motion on (Ω ,F ,Q), and σV represents the

volatility of the counterparty’s asset. We assume that ρ denotes the correlation coefficient
of W (1)

t and W (2)
t . M(2)

t represents a Poisson process, which models the jumps of the asset
price Vt . λ∗

V denotes the intensity of M(2)
t . M(2)

t and λ∗
V both consist of two parts,

M(2)
t = N (2)

t + Nt ,

λ∗
V = λV + λ,

where N (2)
t is a Poisson process independent of N (1)

t and Nt . N (2)
t modeling the indi-

vidual impact on the asset price has the intensity λV . Z(2)
t denotes the jump ampli-

tude of the underlying asset when the jump happens. Suppose that Z(2)
t is distributed

normally by N1(μ2,σ 2
2 ), and Z(2)

t and Z(2)
s are independently and identically distributed
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when t �= s, where N1(·, ·) denotes the one-dimensional normal distribution function.
kV = E[eZ(2)

t ] – 1 = eμ2+ 1
2 σ 2

2 – 1 denotes the mean percentage jump when the jump arrives.
Furthermore, we assume that (W (1)

t , W (2)
t ), Nt , Z(1)

t , N (1)
t , Z(2)

t , and N (2)
t are independent.

In our model, we consider the related credit risk not only in the continuous section but
also in the point process section. Regarding the continuous section, W (1)

t and W (2)
t have

the correlation coefficient ρ . Regarding the point process section, relevance is reflected in
the common market factors Nt .

Assumption 3 Default happens only at the maturity of the option T when the threshold
value D∗ + cT is more than the value of the option writer’s asset VT , where D∗ denotes the
value of the option writer’s other liabilities, and cT = (ST – K)+. ST denotes the underlying
asset’s price at the maturity, and K denotes the excise price of the option.

Assumption 4 When the financial crisis happens, the option holder receives (1–w) times
the intrinsic value of the option at its maturity. w denotes the percentage reduction of
the option holder’s nominal claim. We assume that w = 1 – (1–α)VT

D∗+cT
, where α denotes the

deadweight costs of the financial crisis, and VT
D∗+cT

denotes the value of the option writer’s
assets which can be used to pay the claim represented as a percentage of the total claims
at T .

Based on the methods used in [10] and [11], we get the approximate explicit valuation
of the vulnerable options.

2.2 Valuation of European vulnerable options
Let C∗ denote the value of a vulnerable European calls, which can be presented as

C∗ = e–rTE

[
(ST – K)+

(
I{VT ≥D∗+ST –K} +

(1 – α)VT

D∗ + ST – K
I{VT <D∗+ST –K}

)]
.

The first part of this equation is the standard expression for the payoff on a European call
option when there is no financial crisis, i.e., VT ≥ D∗ + ST – K . The second part indicates
that in case financial distress happens, i.e., VT < D∗ + ST – K , the entire assets of the option
writer can be allocated to the option holder and other creditors of the option writer. The
rate ST –K

D∗+ST –K represents the proportion of the amount that can be used to pay to the option
holder.

Through the Itô formula, we have the following equalities:

ln ST = ln S0 +
(

r –
1
2
σ 2

S – kSλ
∗
S

)
T + σSW (1)

T +
M(1)

T∑

k=1

Z(1)
τ

(1)
k

,

ln VT = ln V0 +
(

r –
1
2
σ 2

V – kV λ∗
V

)
T + σV W (2)

T +
M(2)

T∑

k=1

Z(2)
τ

(2)
k

,

where τ
(i)
k represents the kth jump time of M(i)

t , i = 1, 2, respectively. Suppose that Z(i)
t

distributes normally by N1(μi,σ 2
i ), i = 1, 2. Conditional on

G(n,n1,n2)
T =

{
NT = n, N (1)

T = n1, N (2)
T = n2

}
,
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the total jump times of St and Vt are denoted by

m1 = n + n1,

m2 = n + n2.

Obviously, (ln ST
S0

, ln VT
V0

) is a bivariate normal random vector with the following numerical
characteristics:

M1(m1) = E

[
ln

ST

S0

]
=

(
r –

1
2
σ 2

S – kSλ
∗
S

)
T + m1μ1,

M2(m2) = E

[
ln

VT

V0

]
=

(
r –

1
2
σ 2

V – kV λ∗
V

)
T + m2μ2,

Cov

(
ln

ST

S0
, ln

VT

V0

)
= ρσSσV T .

(2.3)

Denote

ln ST ,m1 = ln S0 +
(

r –
1
2
σ 2

S – kSλ
∗
S

)
T + σSW (1)

T +
m1∑

k=1

ξ
(1)
k ,

ln VT ,m2 = ln V0 +
(

r –
1
2
σ 2

V – kV λ∗
V

)
T + σV W (2)

T +
m2∑

k=1

ξ
(2)
k ,

where ξ
(i)
k are independent and distribute normally by N(μi,σ 2

i ), i = 1, 2. The probability
space can be decomposed: Ω =

⋃∞
n=0

⋃∞
n1=0

⋃∞
n2=0 G

(n,n1,n2)
T andG(i,i1,i2)

T ∩ G(j,j1,j2)
T = ∅ for any

i �= j, i1 �= j1, and i2 �= j2.
Thus, C∗ can be rewritten as follows:

C∗ = e–rTE

[
(ST – K)+

(
I{VT ≥D∗+ST –K} +

(1 – α)VT

D∗ + ST – K
I{VT <D∗+ST –K}

)
I{ω∈Ω}

]

= e–rT
∞∑

n=0

∞∑

n1=0

∞∑

n2=0

E

[
(ST – K)+

(
I{VT ≥D∗+ST –K}

+
(1 – α)VT

D∗ + ST – K
I{VT <D∗+ST –K}

)
I{ω∈G(n,n1,n2)

T }

]

=
∞∑

n=0

∞∑

n1=0

∞∑

n2=0

Q
(
NT = n, N (1)

T = n1, N (2)
T = n2

)

· e–rTE

[
(ST ,m1 – K)+

(
I{VT ,m2 ≥D∗+ST ,m1 –K}

+
(1 – α)VT ,m2

D∗ + ST ,m1 – K
I{VT ,m2 <D∗+ST ,m1 –K}

)]

=
∞∑

n=0

∞∑

m1=n

∞∑

m2=n

(λT)n

n!
(λST)m1–n

(m1 – n)!
(λV T)m2–n

(m2 – n)!
e–λT–λST–λV T Cm1,m2 , (2.4)
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where

Cm1,m2 = e–rTE

[
(ST ,m1 – K)+

(
I{VT ,m2 ≥D∗+ST ,m1 –K}

+
(1 – α)VT ,m2

D∗ + ST ,m1 – K
I{VT ,m2 <D∗+ST ,m1 –K}

)]
.

Now, we divide Cm1,m2 into four parts for further calculation:

Cm1,m2 = e–rT[
C1(m1, m2) + C2(m1, m2) + C3(m1, m2) + C4(m1, m2)

]
, (2.5)

where C1(m1, m2), C2(m1, m2), C3(m1, m2), and C4(m1, m2) are given by

C1(m1, m2) = E[ST ,m1 I{ST ,m1 ≥K ,VT ,m2 ≥D∗+ST ,m1 –K}],

C2(m1, m2) = –KE[I{ST ,m1 ≥K ,VT ,m2 ≥D∗+ST ,m1 –K}],

C3(m1, m2) = E

[
1 – α

D∗ + ST ,m1 – K
ST ,m1 VT ,m2 I{ST ,m1 ≥K ,VT ,m2 <D∗+ST ,m1 –K}

]
,

C4(m1, m2) = –KE

[
1 – α

D∗ + ST ,m1 – K
VT ,m2 I{ST ,m1 ≥K ,VT ,m2 <D∗+ST ,m1 –K}

]
.

By complicated calculation, we can get the closed form of C1(m1, m2), C2(m1, m2),
C3(m1, m2), and C4(m1, m2) respectively:

C1(m1, m2) = S0 exp

{
(
r – kSλ

∗
S
)
T + m1μ1 +

1
2

m1σ
2
1

}
N2

(
a1(m1), a2(m1, m2), δ

)
,

C2(m1, m2) = –KN2
(
b1(m1), b2(m1, m2), δ

)
,

C3(m1, m2) = H exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
c1(m1, m2), c2(m1, m2), –δ

)
,

C4(m1, m2)

= –H̃ exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
d1(m1, m2), d2(m1, m2), –δ

)
,

where N2(·, ·, ·) denotes the two-dimensional normal distribution function. The calcula-
tion process can be found in the Appendix, and the above parameter values are given as
follows:

a1(m1) =
ln S0

K + (r + 1
2σ 2

S – kSλ
∗
S)T + m1μ1 + m1σ

2
1√

σ 2
S T + m1σ

2
1

,

a2(m1, m2) =
–b + mp + (ρ̄ – m)

√
σ 2

S T + m1σ
2
1

√
1 – 2ρm + m2

,
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b1(m1) =
ln S0

K + (r – 1
2σ 2

S – kSλ
∗
S)T + m1μ1

√
σ 2

S T + m1σ
2
1

,

b2(m1, m2) = –
b – mp

√
1 – 2ρm + m2

,

c1(m1, m2) = b1(m1) +
(

g +
√

σ 2
S T + m1σ

2
1 + m

√
σ 2

V T + m2σ
2
2

)

+ δ
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 ,

c2(m1, m2) = –b2(m1, m2) – δ
(

g +
√

σ 2
S T + m1σ

2
1 + m

√
σ 2

V T + m2σ
2
2

)

–
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 ,

d1(m1, m2) = b1(m1) +
(

g + m
√

σ 2
V T + m2σ

2
2

)
+ δ

√
1 – 2ρm + m2

√
σ 2

V T + m2σ
2
2 ,

d2(m1, m2) = –b2(m1, m2) – δ
(

g + m
√

σ 2
V T + m2σ

2
2

)

–
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 , (2.6)

ρ(m1, m2) =
σSσV T

√
σ 2

S T + m1σ
2
1

√
σ 2

V T + m2σ
2
2

ρ = ρ,

b =
ln( D∗–K+S0 exp{M1(m1)+

√
σ 2

S T+m1σ 2
1 ·p}

V0
) – M2(m2)

√
σ 2

V T + m2σ
2
2

m =

√
σ 2

S T + m1σ
2
1

√
σ 2

V T + m2σ
2
2

·
S0 exp{(r – 1

2σ 2
S – kSλ

∗
S)T + m1μ1 +

√
σ 2

S T + m1σ
2
1 p}

D∗ – K + S0 exp{(r – 1
2σ 2

S – kSλ
∗
S)T + m1μ1 +

√
σ 2

S T + m1σ
2
1 p}

,

δ =
ρ – m

√
1 – 2ρm + m2

,

g =
–S0

√
σ 2

S T + m1σ
2
1 exp{M1(m1) +

√
σ 2

S T + m1σ
2
1 q}

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 q}

,

H =
(1 – α)S0V0 exp(M1(m1) + M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

,

H̃ =
(1 – α)KV0 exp(M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

,

η =
√

1 – 2ρm + m2,

U(m1) =
√

σ 2
S T + m1σ

2
1 ,

V (m2) =
√

σ 2
V T + m2σ

2
2 ,
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where p and q are two design parameters, around which we take the first Taylor expansions
in the Appendix. From Equation (2.5) we can derive that

Cm1,m2

= S0 exp

{
–kSλ

∗
ST + m1μ1 +

1
2

m1σ
2
1

}
N2

(
a1(m1), a2(m1, m2), δ

)

– Ke–rT N2
(
b1(m1), b2(m1, m2), δ

)

+ He–rT exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
c1(m1, m2), c2(m1, m2), –δ

)

– H̃e–rT exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
d1(m1, m2), d2(m1, m2), –δ

)
. (2.7)

Thus, we can obtain the analytical pricing formula of the vulnerable European call op-
tions

C∗ =
∞∑

n=0

∞∑

m1=n

∞∑

m2=n

(λT)n

n!
(λST)m1–n

(m1 – n)!
(λV T)m2–n

(m2 – n)!
e–λT–λST–λV T

·
{

S0 exp

{
–kSλ

∗
ST + m1μ1 +

1
2

m1σ
2
1

}
N2

(
a1(m1), a2(m1, m2), δ

)

– Ke–rT N2
(
b1(m1), b2(m1, m2), δ

)

+ He–rT exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
c1(m1, m2), c2(m1, m2), –δ

)

– H̃e–rT exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
d1(m1, m2), d2(m1, m2), –δ

)
}

. (2.8)

Similarly, the explicit form of vulnerable European put option is expressed as

P∗ =
∞∑

n=0

∞∑

m1=n

∞∑

m2=n

(λT)n

n!
(λST)m1–n

(m1 – n)!
(λV T)m2–n

(m2 – n)!
e–λT–λST–λV T

·
{

–S0 exp

{
–kSλ

∗
ST + m1μ1 +

1
2

m1σ
2
1

}
N2

(
–a1(m1), a2(m1, m2), –δ

)

+ Ke–rT N2
(
–b1(m1), b2(m1, m2), –δ

)
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– He–rT exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
–c1(m1, m2), c2(m1, m2), δ

)

+ H̃e–rT exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
–d1(m1, m2), d2(m1, m2), δ

)
}

.

2.3 Three specific examples
As our particular cases, we will give the following three examples: classical Black–Scholes
model, Merton’s jump-diffusion model, and the model in [10].

Example 1 (Classical Black–Scholes model) When the counterparty risk and jump risk do
not exist, we have D∗ + ST – K = 0, λ = λS = λV = 0, and n = n1 = n2 = 0. Then Equation
(2.8) is the classical Black–Scholes equation. This time, we can get

C1(0, 0) = E[ST ,0I{ST ,0≥K}] = S0E

[
ST ,0

S0
I{ln ST ,0

S0
≥ln K

S0
}

]

= S0E

[
ST ,0

S0
I
{ξ1≥

ln K
S0

–M1(0)

σS
√

T
}

]

= S0

∫ ∞

–b1(0)
eM1(0)+σS

√
Tx 1√

2π
e– x2

2 dx

= S0

∫ ∞

–b1(0)
erT– 1

2 σ 2
S T+σS

√
Tx 1√

2π
e– x2

2 dx

= S0erT
∫ ∞

–b1(0)

1√
2π

e– (x–σS
√

T)2
2 dx

= S0erT
∫ ∞

–b1(0)–σS
√

T

1√
2π

e– u2
2 du

= S0erT N1(A1),

C2(0, 0) = –KE[I{ST ,0≥K}] = –KE[I{ln ST ,0
S0

≥ln K
S0

}]

= –KE[I
{ξ1≥

ln K
S0

–M1(0)

σS
√

T
}
]

= –K
∫ ∞

–b1(0)

1√
2π

e– u2
2 du

= –KN1(B1),

C3(0, 0) = C4(0, 0) = 0,

where N1(·) denotes the standard normal distribution function.
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Moreover, a1(0) and b1(0) reduce to A1 = ln
S0
K +(r+ 1

2 σ 2
S )T

σS
√

T
and B1 = A1 –σS

√
T , respectively.

Equation (2.8) can be rewritten as

C∗ = S0N1(A1) – Ke–rT N1(B1).

Example 2 (Merton’s jump-diffusion model) Since there is no risk of default, we have D∗ +
ST – K = 0. Thus,

C1(m1, m2) = E[ST ,m1 I{ST ,m1 ≥K}] = S0E

[
ST ,m1

S0
I{ln ST ,m1

S0
≥ln K

S0
}

]

= S0E
[
eM1(m1)+

√
σ 2

S T+m1σ 2
1 ξ1 I

{ξ1≥
ln K

S0
–M1(m1)

σS
√

T
}

]

= S0

∫ ∞

–b1(m1)
eM1(m1)+

√
σ 2

S T+m1σ 2
1 u 1√

2π
e– u2

2 du

= S0erT–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1

∫ ∞

–b1(m1)

1√
2π

e–
(u–

√
σ2

S T+m1σ2
1 )2

2 du

= S0erT–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1

∫ ∞

–b1(m1)–
√

σ 2
S T+m1σ 2

1

1√
2π

e– x2
2 dx

= S0erT–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1

∫ ∞

–a1(m1)

1√
2π

e– x2
2 dx

= S0erT–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1 N1

(
a1(m1)

)
,

C2(m1, m2) = –KE[I{ST ,m1 ≥K}] = –KE[I{ln ST ,m1
S0

≥ln K
S0

}]

= –KE[I
{ξ1≥

ln K
S0

–M1(m1)

σS
√

T
}
]

= –K
∫ ∞

–b1(m1)

1√
2π

e– u2
2 du

= –KN1
(
b1(m1)

)
,

C3(0, 0) = C4(0, 0) = 0.

Thus

Cm1,m2 = S0e–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1 N1

(
a1(m1)

)
– Ke–rT N1

(
b1(m1)

)
.

As Cm1,m2 is irrelevant to m2,

C∗ =
∞∑

n=0

∞∑

m1=n

∞∑

m2=n

(λT)n

n!
(λST)m1–n

(m1 – n)!
(λV T)m2–n

(m2 – n)!
e–λT–λST–λV T Cm1,m2

=
∞∑

n=0

∞∑

m1=n

(λT)n

n!
(λST)m1–n

(m1 – n)!
e–λT–λST Cm1,m2

( ∞∑

n2=0

(λV T)n2

n2!
e–λV T

)
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=
∞∑

n=0

∞∑

m1=n
e–λT–λST (λT)n

n!
(λST)m1–n

(m1 – n)!

· (S0e–kSλ∗
ST+m1μ1+ 1

2 m1σ 2
1 N1

(
a1(m1)

)
– Ke–rT N1

(
b1(m1)

))
,

where a1(m1) and b1(m1) can be found in (2.6). Noting that (a + b)m =
∑m

i=0Ci
maibm–i, we

can represent C∗ as follows:

C∗ =
∞∑

i=0

e–λ∗
ST (λ∗

ST)i

i!
(
S0e–kSλ∗

ST+iμ1+ 1
2 iσ 2

1 N1
(
a1(i)

)
– Ke–rT N1

(
b1(i)

))
.

Example 3 (Vulnerable non-jump Black–Scholes model in [10]) To simplify the formula,
we can assume that the two design parameters p and q are equal. If there is no jump, that
is, λ = λS = λV = 0, m1 = m2 = 0, C1(0, 0), C2(0, 0), C3(0, 0), and C4(0, 0) can be restated as
follows:

C1(0, 0) = S0erT N2

(
b1(0) + σS

√
T , –

b – mp
√

1 – 2ρm + m2
+ δσS

√
T , δ

)
,

C2(0, 0) = –KN2

(
b1(0), –

b – mp
√

1 – 2ρm + m2
, δ

)
,

C3(0, 0) =
(1 – α)S0V0 exp{2rT + (ρ – m)σSσV T + (–2ρm + m2) σ 2

V
2 T – gp}

D∗ – K + S0 exp((r – 1
2σ 2

S )T + σS
√

Tp)

× N2
(
c1(0, 0), c2(0, 0), –δ

)
,

C4(0, 0) =
(1 – α)KV0 exp{rT + (–2ρm + m2) σ 2

V
2 T – gp}

D∗ – K + S0 exp((r – 1
2σ 2

S )T + σS
√

Tp)
N2

(
d1(0, 0), d2(0, 0), –δ

)
,

where the parameters are given by

b1(0) =
ln S0

K + (r – 1
2σ 2

S )T
σS

√
T

,

c1(0, 0) = b1(0) +
(
σS + (ρ – m)σV

)√
T ,

c2(0, 0) =
b – mp

√
1 – 2ρm + m2

–
(
δσS –

√
1 – 2ρm + m2σV

)√
T ,

d1(0, 0) = b1(0) + (ρ – m)σV
√

T ,

d2(0, 0) =
b – mp

√
1 – 2ρm + m2

–
√

1 – 2ρm + m2σV
√

T ,

δ =
ρ – m

√
1 – 2ρm + m2

,

b = ln

(D∗ – K + S0 exp(r – σ 2
S
2 T + σS

√
Tp)

V0

)
,

m =
σS

σV

( S0 exp(r – σ 2
S
2 T + σS

√
Tp)

D∗ – K + S0 exp(r – σ 2
S
2 T + σS

√
Tp)

)
.
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Equation (2.8) can be rewritten as

C∗ = S0N2

(
b1(0) + σS

√
T , –

b – mp
√

1 – 2ρm + m2
+ δσS

√
T , δ

)

– Ke–rT N2

(
b1(0), –

b – mp
√

1 – 2ρm + m2
, δ

)

+
(1 – α)S0V0 exp{rT + (ρ – m)σSσV T + (–2ρm + m2) σ 2

V
2 T – gp}

D∗ – K + S0 exp((r – 1
2σ 2

S )T + σS
√

Tp)

× N2
(
c1(0, 0), c2(0, 0), –δ

)

+
(1 – α)KV0 exp{(–2ρm + m2) σ 2

V
2 T – gp}

D∗ – K + S0 exp((r – 1
2σ 2

S )T + σS
√

Tp)
N2

(
d1(0, 0), d2(0, 0), –δ

)
.

Appendix
In this section, we will give the detailed calculation needed to obtain the pricing formula.

Suppose that ξ1 and ξ2 both distribute normally N1(0, 1) with correlation coefficient

ρ(m1, m2) =
σSσV T

√
σ 2

S T + m1σ
2
1

√
σ 2

V T + m2σ
2
2

ρ.

For simplicity, we sometimes denote it by ρ . As we know, (ln ST ,m1
S0

, ln VT ,m2
V0

) is bivariate
normally distributed. Then the following equalities hold:

ln
ST ,m1

S0
=

(
r –

1
2
σ 2

S – kSλ
∗
S

)
T + m1μ1 +

√
σ 2

S T + m1σ
2
1 ξ1,

ln
VT ,m2

V0
=

(
r –

1
2
σ 2

V – kV λ∗
V

)
T + m2μ2 +

√
σ 2

V T + m2σ
2
2 ξ2.

Recall that

M1(m1) = E

[
ln

ST , m1

S0

]
=

(
r –

1
2
σ 2

S – kSλ
∗
S

)
T + m1μ1,

M2(m2) = E

[
ln

VT , m2

V0

]
=

(
r –

1
2
σ 2

V – kV λ∗
V

)
T + m2μ2.

(A.1)

Then C1(m1, m2) in Equation (2.5) is given by

C1(m1, m2)

= E[ST ,m1 I{ST ,m1 ≥K ,VT ,m2 ≥D∗–K+ST ,m1 }]

= S0E

[
ST ,m1

S0
I
{ln(

ST ,m1
S0

)≥ln K
S0

,ln(
VT ,m2

V0
)≥ln(

D∗–K+ST ,m1
V0

)}

]

= S0E

[
ST ,m1

S0
I
{

ln(
ST ,m1

S0
)–M1(m1)√

σ2
S T+m1σ2

1
≥

ln K
S0

–M1(m1)√
σ2

S T+m1σ2
1

,
ln(

VT ,m2
V0

)–M2(m2)√
σ2

V T+m2σ2
2

≥
ln(

D∗–K+ST ,m1
V0

)–M2(m2)√
σ2

V T+m2σ2
2

}

]
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= S0E
[
eM1(m1)+

√
σ 2

S T+m1σ 2
1 ξ1 I

{ξ1≥
ln K

S0
–M1(m1)√

σ2
S T+m1σ2

1
,ξ2≥

ln(
D∗–K+ST ,m1

V0
)–M2(m2)√

σ2
V T+m2σ2

2
}

]

= S0

∫ ∞

–b1(m1)

∫ ∞

f (̃u)
eM1(m1)+

√
σ 2

S T+m1σ 2
1 ũ 1

2π
√

1 – ρ(m1, m2)2

· exp

{
–

1
2(1 – ρ(m1, m2)2)

[
ũ2 – 2ρ(m1, m2)̃ũv + ṽ2]

}
d̃v dũ,

where

b1(m1) =
ln S0

K + (r – 1
2σ 2

S – kSλ
∗
S)T + m1μ1

√
σ 2

S T + m1σ
2
1

,

f (̃u) =
ln( D∗–K+S0 exp{M1(m1)+

√
σ 2

S T+m1σ 2
1 ũ}

V0
) – M2(m2)

√
σ 2

V T + m2σ
2
2

.

As in [10], we linearize the non-linear boundary f (̃u) in the integral by taking a first
order Taylor series expansion around the point “p” as follows:

f (̃u) ≈ f (p) + f ′(p)(̃u – p) = b + m(̃u – p),

where

b = f (p) =
ln( D∗–K+S0 exp{M1(m1)+

√
σ 2

S T+m1σ 2
1 p}

V0
) – M2(m2)

√
σ 2

V T + m2σ
2
2

and

m = f ′(p) =

√
σ 2

S T + m1σ
2
1

√
σ 2

V T + m2σ
2
2

·
S0 exp{M1(m1) +

√
σ 2

S T + m1σ
2
1 p}

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 p}

.

Now we derive

C1(m1, m2)

= S0eM1(m1)
∫ ∞

–b1(m1)

∫ ∞

b+m(̃u–p)
e
√

σ 2
S T+m1σ 2

1 ũ 1
2π

√
1 – ρ(m1, m2)2

· exp

{
–

1
2(1 – ρ(m1, m2)2)

[
ũ2 – 2ρ(m1, m2)̃ũv + ṽ2]

}
d̃v dũ.

Next we need to rotate the default boundary to eliminate its dependence on the variable
ũ. Consider the following transformation:

ũ =
1√

1 + m2
x̃,

ṽ = ỹ +
m√

1 + m2
x̃.
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The determination of the Jacobian of this mapping is |J| = 1√
1+m2 . Applying this trans-

formation to C1(m1, m2) gives

C1(m1, m2) = S0eM1(m1)
∫ ∞

–b1(m1)
√

1+m2

∫ ∞

b–mp

exp(
√

σ 2
S T+m1σ 2

1√
1+m2 x̃)

2π
√

1 – ρ2
Ω (̃x, ỹ) d̃y d̃x

= S0eM1(m1)
( √

1 – δ2
√

1 – ρ2
√

1 + m2

)

×
∫ ∞

–b1(m1)
√

1+m2

∫ ∞

b–mp

exp(
√

σ 2
S T+m1σ 2

1√
1+m2 x̃)

2π
√

1 – δ2
Ψ (̃x, ỹ) d̃y d̃x,

where

Ω (̃x, ỹ) = exp

{
–

1
2(1 – ρ2)

[(
x̃√

1 + m2

)2

– 2ρ

(
x̃√

1 + m2

)(
ỹ +

m√
1 + m2

x̃
)

+
(

ỹ +
m√

1 + m2
x̃
)2]}

,

Ψ (̃x, ỹ) = exp

{
–

1
2(1 – δ2)

[(
x̃√

1 + m2

)2

– 2δ

(
x̃√

1 + m2

)(
ỹ

√
1 – 2ρm + m2

)

+
(

ỹ
√

1 – 2ρm + m2

)2]}

and

δ =
ρ – m

√
1 – 2ρm + m2

.

Simplifying the exponential term Ψ (̃x, ỹ), we obtain

C1(m1, m2) = S0eM1(m1)
∫ ∞

–b1(m1)

∫ ∞

b–mp√
1–2ρm+m2

exp(
√

σ 2
S T + m1σ

2
1 q̃)

2π
√

1 – δ2
Λ(̃q, r̃) d̃r d̃q,

where

Λ(̃q, r̃) = exp

{
–

1
2(1 – δ2)

[
q̃2 – 2δ̃q̃r + r̃2]

}
.

Now completing the square gives

C1(m1, m2) = S0eM1(m1)+
σ2

S T+m1σ2
1

2

∫ ∞

–b1(m1)

∫ ∞

b–mp√
1–2ρm+m2

1
2π

√
1 – δ2

· exp

{
–

1
2(1 – δ2)

[(
q̃ –

√
σ 2

S T + m1σ
2
1

)2
– 2δ

(
q̃ –

√
σ 2

S T + m1σ
2
1

)

×
(

r̃ – δ

√
σ 2

S T + m1σ
2
1

)
+

(
r̃ – δ

√
σ 2

S T + m1σ
2
1

)2]}
d̃r d̃q.
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We denote

M̃(m1) = M1(m1) +
σ 2

S T + m1σ
2
1

2
=

(
r – kSλ

∗
S
)
T + m1μ1 +

1
2

m1σ
2
1 .

Using a simple change of variables results in

C1(m1, m2) = S0eM̃1(m1)
∫ ∞

–b1(m1)–
√

σ 2
S T+m1σ 2

1

∫ ∞

b–mp√
1–2ρm+m2

–δ
√

σ 2
S T+m1σ 2

1

1
2π

√
1 – δ2

· exp

{
–

1
2(1 – δ2)

[
w̃2 – 2δw̃̃z + z̃2]

}
d̃z dw̃

= S0eM̃1(m1)N2

(
b1(m1) +

√
σ 2

S T + m1σ
2
1 ,

–
b – mp

√
1 – 2ρm + m2

+ δ

√
σ 2

S T + m1σ
2
1 , δ

)
,

where N2(·, ·, ·) denotes the two-dimensional normal distribution function.
In order to simplify the expression of parameters, we represent

a1(m1) = b1(m1) +
√

σ 2
S T + m1σ

2
1 ,

a2(m1, m2) = b2(m1, m2) + δ

√
σ 2

S T + m1σ
2
1 ,

b1(m1) =
ln S0

K + (r – 1
2σ 2

S – kSλ
∗
S)T + m1μ1

√
σ 2

S T + m1σ
2
1

,

b2(m1, m2) = –
b – mp

√
1 – 2ρm + m2

.

Thus,

C1(m1, m2) = S0eM̃1(m1)N2
(
a1(m1), a2(m1, m2), δ

)
.

For C2(m1, m2), the following expressions hold:

C2(m1, m2)

= –KE[I{ST ,m1 ≥K ,VT ,m2 ≥D∗+ST ,m1 –K}]

= –
∫ ∞

–b1(m1)

∫ ∞

f (̃u)

K
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ

= –K
∫ ∞

–b1(m1)

∫ ∞

b+m(̃u–p)

1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ

= –K
∫ ∞

–b1(m1)
√

1+m2

∫ ∞

b–mp

1
2π

√
1 – ρ2

Ω (̃x, ỹ) d̃y d̃x

= –K
( √

1 – δ2
√

1 – ρ2√1 + m2

)∫ ∞

–b1(m1)
√

1+m2

∫ ∞

b–mp

1
2π

√
1 – δ2

Ψ (̃x, ỹ) d̃y d̃x
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= –K
∫ ∞

–b1(m1)

∫ ∞

b–mp√
1–2ρm+m2

1
2π

√
1 – δ2

Λ(̃q, r̃) d̃r d̃q

= –K
∫ ∞

–b1(m1)

∫ ∞

b–mp√
1–2ρm+m2

1
2π

√
1 – δ2

exp

{
–

1
2(1 – δ2)

[
q̃2 – 2δ̃q̃r + r̃2]

}
d̃r d̃q

= –KN2
(
b1(m1), b2(m1, m2), δ

)
.

Recall that ξ1 and ξ2 both distribute normally N1(0, 1) with correlation coefficient ρ .
Then C3(m1, m2) can be presented as follows:

C3(m1, m2)

= E

[
1 – α

D∗ + ST ,m1 – K
ST ,m1 VT ,m2 I{ST ,m1 ≥K ,VT ,m2 <D∗+ST ,m1 –K}

]

= E

[
1 – α

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 ξ1}

× S0V0eM1(m1)+
√

σ 2
S T+m1σ 2

1 ξ1 eM2(m2)+
√

σ 2
V T+m2σ 2

2 ξ2

· I{ξ1≥–b1(m1),ξ2<f (ũ)}
]

=
∫ ∞

–b1(m1)

∫ f (̃u)

–∞
(1 – α)S0V0

×
exp{M1(m1) + M2(m2) +

√
σ 2

S T + m1σ
2
1 ũ +

√
σ 2

V T + m2σ
2
2 ṽ}

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 ũ}

· 1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ.

We also need to modify the denominator in the above integral. Let

F (̃u) =
1

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 ũ}

.

Define G(̃u) as follows:

G(̃u) = ln F (̃u).

Now we can use other first order Taylor series expansions around the point “q” to lin-
earize G(̃u):

G(̃u) = G(q) + G′(q)(̃u – q) = f + g (̃u – q),

where

f = G(q) = ln

(
1

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 q}

)
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and

g = G′(q) =
–S0

√
σ 2

S T + m1σ
2
1 exp{M1(m1) +

√
σ 2

S T + m1σ
2
1 q}

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 q}

.

Therefore

F (̃u) ≈ exp
[
f + g (̃u – q)

]
,

F (̃u) ≈ exp{g (̃u – q)}
D∗ – K + S0 exp{M1(m1) +

√
σ 2

S T + m1σ
2
1 q}

.

Now, substituting the Taylor series approximations into C3(m1, m2), we have

C3(m1, m2) =
(1 – α)S0V0 exp(M1(m1) + M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

·
∫ ∞

–b1(m1)

∫ b+m(̃u–p)

–∞
exp

{(
g +

√
σ 2

S T + m1σ
2
1

)
ũ +

√
σ 2

V T + m2σ
2
2 ṽ

}

· 1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ.

Denote

H =
(1 – α)S0V0 exp(M1(m1) + M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

,

then we have

C3(m1, m2)

= H
∫ ∞

–b1(m1)

∫ b+m(̃u–p)

–∞

exp{(g +
√

σ 2
S T + m1σ

2
1 )̃u +

√
σ 2

V T + m2σ
2
2 ṽ}

2π
√

1 – ρ2

· exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ

= H
∫ ∞

–b1(m1)
√

1+m2

∫ b–mp

–∞

exp{( g+
√

σ 2
S T+m1σ 2

1 +m
√

σ 2
V T+m2σ 2

2√
1+m2 )̃x +

√
σ 2

V T + m2σ
2
2 ỹ}

2π
√

1 – ρ2
Ω (̃x, ỹ) d̃y d̃x

= H
√

1 – δ2
√

1 – ρ2√1 + m2

∫ ∞

–b1(m1)
√

1+m2

∫ b–mp

–∞

exp{( g+
√

σ 2
S T+m1σ 2

1 +m
√

σ 2
V T+m2σ 2

2√
1+m2 )̃x +

√
σ 2

V T + m2σ
2
2 ỹ}

2π
√

1 – δ2
Ψ (̃x, ỹ) d̃y d̃x

= H
∫ ∞

–b1(m1)

∫ b–mp√
1–2ρm+m2

–∞
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exp{(g +
√

σ 2
S T + m1σ

2
1 + m

√
σ 2

V T + m2σ
2
2 )̃q +

√
1 – 2ρm + m2

√
σ 2

V T + m2σ
2
2 r̃}

2π
√

1 – δ2

× Λ(̃q, r̃) d̃r d̃q.

Denote

U(m1) =
√

σ 2
S T + m1σ

2
1 ,

V (m2) =
√

σ 2
V T + m2σ

2
2 ,

P = g + U(m1) + mV (m2),

P̃ = g + mV (m2),

η =
√

1 – 2ρm + m2,

Q = ηV (m2),

and

c1(m1, m2) = b1(m1) +
(

g +
√

σ 2
S T + m1σ

2
1 + m

√
σ 2

V T + m2σ
2
2

)

+ δ
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 ,

c2(m1, m2) = –b2(m1, m2) – δ
(

g +
√

σ 2
S T + m1σ

2
1 + m

√
σ 2

V T + m2σ
2
2

)

–
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 .

Now completing the square gives

C3(m1, m2)

= H exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

·
∫ ∞

–b1(m1)

∫ b–mp√
1–2ρm+m2

–∞
1

2π
√

1 – δ2

× exp

{
–

1
2(1 – δ2)

[
(̃q – P – δQ)2 – 2δ(̃q – P – δQ)

+ (̃r – δP – Q) + (̃r – δP – Q)2]
}

d̃r d̃q

= H exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

·
∫ ∞

–b1(m1)–(g+U(m1)+mV (m2))–δηV (m2)

∫ b–mp√
1–2ρm+m2

–δ(g+U(m1)+mV (m2))–ηV (m2)

–∞
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1
2π

√
1 – δ2

exp

{
–

1
2(1 – δ2)

[
w̃2 – 2δw̃̃z + z̃2]

}
d̃z dw̃

= H exp

{
(g + U(m1) + mV (m2))2

2

+
2δ(g + U(m1) + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
c1(m1, m2), c2(m1, m2), –δ

)
.

Similarly, C4(m1, m2) can be written as

C4(m1, m2)

= –KE

[
1 – α

D∗ + ST ,m1 – K
VT ,m2 I{ST ,m1 ≥K ,VT ,m2 <D∗+ST ,m1 –K}

]

= –KE

[
1 – α

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 ξ1}

× V0eM2(m2)+
√

σ 2
V T+m2σ 2

2 ξ2 I{ξ1≥–b1(m1),ξ2<f (ũ)}
]

= –
∫ ∞

–b1(m1)

∫ f (̃u)

–∞

(1 – α)KV0 exp{M2(m2) +
√

σ 2
V T + m2σ

2
2 ṽ}

D∗ – K + S0 exp{M1(m1) +
√

σ 2
S T + m1σ

2
1 ũ}

· 1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ

= –
(1 – α)KV0 exp(M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

×
∫ ∞

–b1(m1)

∫ b+m(̃u–p)

–∞
exp

{
gũ +

√
σ 2

V T + m2σ
2
2 ṽ

}

· 1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ.

Denote

H̃ =
(1 – α)KV0 exp(M2(m2)) exp(–gq)

D∗ – K + S0 exp(M1(m1) +
√

σ 2
S T + m1σ

2
1 q)

,

then we have

C4(m1, m2)

= –H̃
∫ ∞

–b1(m1)

∫ b+m(̃u–p)

–∞
exp

{
gũ +

√
σ 2

V T + m2σ
2
2 ṽ

}

· 1
2π

√
1 – ρ2

exp

{
–

1
2(1 – ρ2)

[
ũ2 – 2ρ ũ̃v + ṽ2]

}
d̃v dũ
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= –H̃
∫ ∞

–b1(m1)
√

1+m2

∫ b–mp

–∞

exp{( g+m
√

σ 2
V T+m2σ 2

2√
1+m2 )̃x +

√
σ 2

V T + m2σ
2
2 ỹ}

2π
√

1 – ρ2
Ω (̃x, ỹ) d̃y d̃x

= –H̃
√

1 – δ2
√

1 – ρ2√1 + m2

∫ ∞

–b1(m1)
√

1+m2

∫ b–mp

–∞

exp{( g+m
√

σ 2
V T+m2σ 2

2√
1+m2 )̃x +

√
σ 2

V T + m2σ
2
2 ỹ}

2π
√

1 – δ2
Ψ (̃x, ỹ) d̃y d̃x

= –H̃
∫ ∞

–b1(m1)

∫ b–mp√
1–2ρm+m2

–∞

×
exp{(g + m

√
σ 2

V T + m2σ
2
2 )̃q +

√
1 – 2ρm + m2

√
σ 2

V T + m2σ
2
2 r̃}

2π
√

1 – δ2
Λ(̃q, r̃) d̃r d̃q.

Now completing the square gives

C4(m1, m2)

= –H̃ exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

·
∫ ∞

–b1(m1)

∫ b–mp√
1–2ρm+m2

–∞
1

2π
√

1 – δ2

× exp

{
–

1
2(1 – δ2)

[
(̃q – P̃ – δQ)2 – 2δ(̃q – P̃ – δQ)

+ (̃r – δP̃ – Q) + (̃r – δP̃ – Q)2]
}

d̃r d̃q

= –H̃ exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

·
∫ ∞

–b1(m1)–(g+mV (m2))–δηV (m2)

∫ b–mp√
1–2ρm+m2

–δ(g+mV (m2))–ηV (m2)

–∞

× 1
2π

√
1 – δ2

exp

{
–

1
2(1 – δ2)

[
w̃2 – 2δw̃̃z + z̃2]

}
d̃z dw̃

= –H̃ exp

{
(g + mV (m2))2 + 2δ(g + mV (m2))ηV (m2) + (ηV (m2))2

2

}

· N2
(
d1(m1, m2), d2(m1, m2), –δ

)
,

where

d1(m1, m2) = b1(m1) +
(

g + m
√

σ 2
V T + m2σ

2
2

)
+ δ

√
1 – 2ρm + m2

√
σ 2

V T + m2σ
2
2 ,

d2(m1, m2) = –b2(m1, m2) – δ
(

g + m
√

σ 2
V T + m2σ

2
2

)

–
√

1 – 2ρm + m2
√

σ 2
V T + m2σ

2
2 .
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