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Abstract
This work explores the new exact solutions of nonlinear fractional partial differential
equations (FPDEs). The solutions are obtained by adopting an effective technique, the
first integral method (FIM). The Riemann–Liouville (R–L) derivative and conformable
derivative definitions are used to deal with fractional terms in FPDEs. The proposed
method is applied to get exact solutions for space-time fractional Cahn–Allen
equation and coupled space-time fractional (Drinfeld’s Sokolov–Wilson system) DSW
system. The suggested technique is easily applicable and effectual, which can be
implemented successfully to obtain the solutions for different types of nonlinear
FPDEs.

1 Introduction
Fractional Calculus (FC) is an imperative field of science which deals with real number
powers of the differential equations. FC has numerous applications in science, for instance,
in electromagnetics, fluid mechanics, biological models, optics, and signal processing.
Aforementioned physical phenomena are accurately modeled by nonlinear FPDEs [1, 2].
FPDEs have gained a great significance and popularity over the last few years for their
powerful potential applications, mainly in mathematical physics, biology, and engineering
[3–5]. Recently, researchers are taking interest to investigate the exact solutions of non-
linear FPDEs [6–11]. Many effective methods have been introduced in order to acquire
exact solutions of nonlinear FPDEs such as hyperbolic function method [12], extended
hyperbolic tangent method [13–16], the sub-equation method [17], homotopy perturba-
tion technique [18], exponential rational function method [19], and homotopy analysis
method [20].

The FIM was first introduced by Feng for the solution of Burgers–KdV equation [21].
The FIM is based on commutative algebra ring theory. The FIM constructs the first inte-
grals having explicit polynomial coefficients to an independent planar system using divi-
sion theorem. The FIM, due to its reliability and efficacy, is eminently used by many re-
searchers to interpret results for various kinds of nonlinear problems [21–23]. In contrast
with different methods, the proposed technique has many advantages. The FIM avoids
complex and tedious computations and provides exact and explicit solutions. Guner et
al. applied the FIM to a fractional Cahn–Allen equation using Jumarie’s definition [24].
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Therefore, in this work, the FIM is adopted to obtain exact solutions of the nonlinear
space-time fractional Cahn–Allen equation and a coupled space-time fractional DSW
system. Two definitions of fractional derivatives are applied: R–L derivative [4] and con-
formable derivative [25]. The R–L derivative is chosen as it is more general than the Caputo
derivative.

The paper is arranged as follows. The basic definitions, properties, and theorems of
R–L and a new conformable derivative are provided in Sect. 2. Section 3 illustrates the
main steps of FIM. Afterwards, in Sect. 4, the exact solutions of fractional Cahn–Allen
equation and fractional DSW system are given. Finally, Sect. 5 comprises conclusions and
recommendations.

2 Preliminaries
Riemann–Liouville introduced the following definition [4]:

Definition Let there be a continuous function g such that g : R → R, t → g(t). The R–L
derivative of fractional order α is expressed as follows:

Dα
t g(t) =

1
�(r – α)

dr

dtr

∫ t

0

g(x)
(t – x)α–r+1 dx, r ≥ 0,α > 0, r ∈ �. (1)

From the above definition (1), we have

Dαtm =
�(1 + m)

�(1 + m – α)
tm–α , m > –1, 0 < α < 1. (2)

Recently, Khalil et al. presented a new simple definition of derivative of fractional order
which is called conformable fractional derivative [25].

Definition Let g : [0,∞) → R be a function, then it is a fractional conformable derivative
of order α and can be presented as follows:

Tα(g)(x) = lim
ε→0

g(x + εx1–α) – g(x)
ε

, (3)

where α ∈ (0, 1) and holds for all x > 0. If the function g is α-differentiable in (0, l) for
l > 0 and further limx→0+ g(α)(x) exists, then the conformable derivative at 0 is defined as
g(α)(0) = limx→0+ g(α)(x).

Conformable integral of function g is defined as

Il
α(g)(x) =

∫ x

l

g(t)
t1–α

dt, (4)

where l ≥ 0, and α ∈ (0, 1]. Equation (4) represents the usual Riemann improper integral.

According to the definition in Eq. (3), Khalil et al. presented the following theorem [25],
which provides some useful properties satisfied by the conformable derivative.

Theorem Suppose the functions u and v are α-differentiable at any point x > 0 for α ∈
(0, 1]. Then
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(1) Tα(au + bv) = aTα(u) + bTα(v) ∀a, b ∈ R.
(2) Tα(xm) = mxm–α ∀m ∈R.
(3) Tα(C) = 0 ∀u(x) = C (constant functions).
(4) Tα(uv) = uTα(v) + vTα(u).
(5) Tα( u

v ) = vTα (u)–uTα (v)
v2 .

(6) Additionally, if the function u is differentiable, then Tα(u)(x) = x1–α du
dx .

The new definition has gained significant attention due to its simplicity. Abdeljawad [26]
used the conformable derivative to express chain rule, integration by parts, exponential
functions, Taylor power series expansion, Gronwall’s inequality, and Laplace transform.
Conformable time-scale calculus was introduced by Benkhettoua et al. [27]. Many scien-
tists used this new derivative in some physical applications due to its convenience, sim-
plicity, and usefulness [28–30]. Chung [31] discussed conformable Newtonian mechanics
using this new definition. Hammad and Khalil [32] interpreted the results for the con-
formable heat equation.

3 The first integral method
A brief exposition of the FIM is presented as follows.

Step 1: First, we take into account a nonlinear FPDE of the following form:

F
(

∂αu
∂tα

,
∂αu
∂xα

1
,
∂αu
∂xα

2
, . . . ,

∂αu
∂xα

m
,
∂2αu
∂t2α

,
∂2αu

∂xα
1 ∂xα

1
,

∂2αu
∂xα

2 ∂xα
2

, . . .
)

= 0. (5)

Step 2: Then, the following transformation is applied:

u(x1, x2, . . . , xm, t) = U(ξ ). (6)

In order to apply the R–L derivative, we have

ξ =
k1xα

1 + k2xα
2 + · · · + kmxα

m ± ctα

�(1 + α)
. (7)

In order to use a conformable derivative, we have

ξ =
k1xα

1 + k2xα
2 + · · · + kmxα

m ± ctα

α
. (8)

Using these transformations given in Eq. (7) and Eq. (8), we reduce the FPDE into an in-
teger order nonlinear ODE as follows:

H
(
U(ξ ), U ′(ξ ), U ′′(ξ ), . . .

)
= 0, (9)

where U ′(ξ ) = dU(ξ )
dξ

and ξ is a new transformed variable.
Step 3: Afterwards, introducing some new independent variables, we get

U(ξ ) = X(ξ ),

Uξ (ξ ) = Y (ξ ).
(10)
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A new system of nonlinear ODE is generated which is given as follows:

∂X
∂ξ

= Y (ξ ),

∂Y
∂ξ

= G
(
X(ξ ), Y (ξ )

)
.

(11)

Step 4: According to the qualitative theory of ODEs, the general solutions of Eq. (11)
can be directly obtained if one can find integrals of Eq. (11). Generally it is difficult to
obtain even one first integral, because there is no systematic or logical procedure to find
first integrals for a plane independent system. Division theorem presents an idea to find
first integrals. One first integral of Eq. (11) is obtained by applying the division theorem,
which reduces a nonlinear ODE to an integrable first order ODE. Finally, we obtain exact
solutions of the problem after solving the system.

The division theorem is stated below which is defined in C for two variables.

Division Theorem ([21]) Assume there are two polynomials P(x, y) and Q(x, y) in a com-
plex domain C(x, y) such that P(x, y) is an irreducible polynomial in C(x, y). If at all the zero
points of P(x, y) the polynomial Q(x, y) vanishes, then a polynomial R(x, y) exists in C(x, y)
and the following equality holds:

Q(x, y) = P(x, y)R(x, y). (12)

4 Applications
This section contains exact solutions of the considered models of fractional order.

4.1 Exact solutions of the space-time fractional Cahn–Allen equation
Cahn–Allen equation appears in numerous applications of science including quantum
mechanics, mathematical biology, and plasma physics [33].

Consider the Cahn–Allen equation fractional in space and time

∂αu
∂tα

–
∂2αu
∂x2α

+ u3 – u = 0, (13)

where α ∈ (0, 1). Firstly, we apply the R–L definition of fractional derivative. The following
transformation is introduced:

ξ =
kxα

�(1 + α)
+

ctα

�(1 + α)
,

u(ξ ) = u(x, t),
(14)

where ξ is the transformation variable and k, c are the constants. Using Eq. (14) in Eq. (13),
we convert our problem into an ODE:

c
du
dξ

– k2 d2u
dξ 2 + u3 – u = 0. (15)

Then using Eq. (10), the 2-D autonomous system is attained

dX
dξ

= Y , (16a)
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dY
dξ

=
1
k2

[
cY + X3 – X

]
. (16b)

Now, to find the first integral of Eqs. (16a)–(16b), we implement the division theorem.
In accordance with the FIM, it is assumed that nontrivial solutions of the above system
(cf. Eqs. (16a)–(16b)) are X and Y respectively. Thus, irreducible polynomial Q(X, Y ) =∑n

j=0 aj(X)Y j exists in C[X, Y ] and the following holds:

Q
(
X(ξ ), Y (ξ )

)
=

n∑
j=0

aj
(
X(ξ )

)
Y (ξ )j = 0 (17)

for j = 0, 1, . . . , n, and an(X) 	= 0. Now a polynomial r(X) + s(X)Y exists in C[X, Y ], so

∂Q
∂ξ

=
∂Q
∂X

∂X
∂ξ

+
∂Q
∂Y

∂Y
∂ξ

=
(
r(X) + s(X)Y

)( n∑
j=0

aj(X)Y j

)
. (18)

Suppose n = 1. On equating coefficients of Y j (j = 0, 1) in Eq. (18) on both sides, we get

a′
1(X) = a1(X)s(X), (19)

a′
0(X) = –

c
k2 a1(X) + r(X)a1(X) + s(X)a0(X), (20)

r(X)a0(X) =
1
k2 a1(X)

(
X3 – X

)
. (21)

As aj(X) are polynomials of X, then from Eq. (19) we come to know that the polynomial
a1(X) is constant in nature, therefore s(X) = 0. Let us consider a1(X) = 1, for convenience.
After substituting afore values, we balance the degrees of the functions r(X) and a0(X) and
deduce the deg(r(X)) equal to 0 or 1. Assume that r(X) = A1X + A0, therefore Eq. (20) gives

a0(X) =
1
2

A1X2 +
(

A0 –
c

k2

)
X + B. (22)

Here, B is the integration constant.
Replacing the values of a0, a1, r, and s in Eq. (21), we obtain a nonlinear system of al-

gebraic equations by putting all coefficients equal to zero for the same powers of X. After
calculations, we get:

Case 1:

A1 =
√

2
k

, A0 =
√

2
k

, B = 0, c =
3k

√
2

2
, k = k. (23)

Applying the conditions given in Eq. (23) and Eq. (22) in Eq. (17), we have

Y1(ξ ) = –
√

2
2k

[
X2 – X

]
. (24)

Combining Eq. (24) with Eq. (16a), the solution of fractional Cahn–Allen equation with
R–L derivative is obtained as follows:

u1(x, t) =
1

1 + γ e
–
√

2
2k ( kxα+ctα

�(1+α) )
. (25)



Javeed et al. Advances in Difference Equations        (2018) 2018:459 Page 6 of 15

Case 2:

A1 =
√

2
k

, A0 = –
√

2
k

, B = 0, c = –
3k

√
2

2
, k = k. (26)

Applying the conditions given in Eq. (26) and Eq. (22) in Eq. (17), we have

Y2(ξ ) = –
√

2
2k

[
X2 + X

]
. (27)

Combining Eq. (27) with Eq. (16a), the solution of fractional Cahn–Allen equation with
R–L derivative is obtained as follows:

u2(x, t) =
1

–1 + γ e
√

2
2k ( kxα+ctα

�(1+α) )
. (28)

Case 3:

A1 = –
√

2
k

, A0 =
√

2
k

, B = 0, c =
3k

√
2

2
, k = k. (29)

Using the conditions given in Eq. (29) and Eq. (22) in Eq. (17), we have

Y3(ξ ) =
√

2
2k

[
X2 + X

]
. (30)

Combining Eq. (30) with Eq. (16a), the solution of fractional Cahn–Allen equation with
R–L derivative is obtained as follows:

u3(x, t) =
1

–1 + γ e–
√

2
2k ( kxα+ctα

�(1+α) )
. (31)

Case 4:

A1 = –
√

2
k

, A0 = –
√

2
k

, B = 0, c = –
3k

√
2

2
, k = k. (32)

Using the conditions given in Eq. (32) and Eq. (22) in Eq. (17), we have

Y4(ξ ) =
√

2
2k

[
X2 – X

]
. (33)

Combining Eq. (33) with Eq. (16a), the solution of fractional Cahn–Allen equation with
R–L derivative is obtained as follows:

u4(x, t) =
1

1 + γ e
√

2
2k ( kxα+ctα

�(1+α) )
. (34)

Now we apply the conformable definition of fractional derivative. The following transfor-
mation is introduced:

ξ =
kxα

α
+

ctα

α
,

u(ξ ) = u(x, t),
(35)
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where ξ is the transformation variable and k, c are the constants. Afterwards, applying the
same procedure given from Eq. (15) to Eq. (22), we get four different solutions:

Case 1: For A1 =
√

2
k , A0 =

√
2

k , B = 0, c = 3k
√

2
2 , k = k,

u5(x, t) =
1

1 + γ e
–
√

2
2k ( kxα

α + ctα
α )

. (36)

Case 2: For A1 =
√

2
k , A0 = –

√
2

k , B = 0, c = – 3k
√

2
2 , k = k,

u6(x, t) =
1

–1 + γ e
√

2
2k ( kxα

α + ctα
α )

. (37)

Case 3: For A1 = –
√

2
k , A0 =

√
2

k , B = 0, c = 3k
√

2
2 , k = k,

u7(x, t) =
1

–1 + γ e–
√

2
2k ( kxα

α + ctα
α )

. (38)

Case 4: For A1 = –
√

2
k , A0 = –

√
2

k , B = 0, c = – 3k
√

2
2 , k = k,

u8(x, t) =
1

1 + γ e
√

2
2k ( kxα

α + ctα
α )

. (39)

It is important to note that the solutions u1, u2, u3, u4 are acquired by using the R–L
derivative and u5, u6, u7, u8 are obtained by using the conformable derivative.

In Figs. 1–4, graphs of exact solutions of fractional Cahn–Allen equation are presented
by using the R–L and conformable derivatives.

Figure 5 shows the effects of α on solutions u5(x, t) using the conformable definition.
Figure 5 reveals that the steeper peaks are originating from origin for smaller values of α,
whereas wider peaks are found for values of α closer to 1.

Figure 1 Exact solutions u1(x, t), u5(x, t) of fractional Cahn–Allen equation at α = 0.8, γ = 1, c = 1, k = 1
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Figure 2 Exact solutions u2(x, t), u6(x, t) of fractional Cahn–Allen equation at α = 0.8, γ = 1, c = 1, k = 1

Figure 3 Exact solutions u3(x, t), u7(x, t) of fractional Cahn–Allen equation at α = 0.8, γ = 1, c = 1, k = 1

4.2 Exact solutions of the space-time fractional Drinfeld’s Sokolov–Wilson system
One of the widely used models is a DSW system introduced by Drinfeld, Sokolov, and
Wilson. Zha and Zhi [34] solved this system using an improved F-expansion method. Inc
utilized the Adomian decomposition method to find solutions of the DSW system [35].
The solitary solution of this model was obtained by Zhang using variational approach [36].

Consider the space-time fractional DSW system [37]

∂αu
∂tα

+ pv
∂αv
∂xα

= 0, (40a)

∂αv
∂tα

+ q
∂3αv
∂x3α

+ ru
∂αv
∂xα

+ sv
∂αu
∂xα

= 0, x > 0, t > 0. (40b)

In Eqs. (40a)–(40b), α is the order of the fractional derivative and α ∈ (0, 1).
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Figure 4 Exact solutions u4(x, t), u8(x, t) of fractional Cahn–Allen equation at α = 0.8, γ = 1, c = 1, k = 1

Figure 5 Exact solution u5(x, t) of fractional Cahn–Allen equation at α = 0.8, 0.6, 0.5, 0.3, γ = 1, c = 1, k = 1

Firstly, we apply the R–L definition of fractional derivative. The following transforma-
tion is introduced:

ξ =
kxα + ctα

�(1 + α)
,

u(x, t) = u(ξ ),

v(x, t) = v(ξ ),

(41)
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where ξ is the transformation variable and k, c are the constants. Using Eq. (41) into
Eqs. (40a)–(40b), we convert the problem into ODE:

c
du
dξ

+ kpv
dv
dξ

= 0, (42a)

c
dv
dξ

+ k3q
d3v
dξ 3 + kru

dv
dξ

+ ksv
du
dξ

= 0. (42b)

Considering Eq. (42a) and rearranging,

du
dξ

= –
kp
c

v
dv
dξ

. (43)

Integrating Eq. (43) w.r.t ξ and taking integration constant to be equal to zero, we get

u = –
kp
2c

v2. (44)

Embedding Eq. (43) and Eq. (44) into Eq. (42b), we get a nonlinear ODE:

2ck3q
d3v
dξ 3 – pk2(r + 2s)v2 dv

dξ
+ 2c2 dv

dξ
= 0. (45)

Integrating Eq. (45) with respect to ξ and taking integration constant equal to zero, we
arrive at the following ODE:

2ck3q
d2v
dξ 2 –

1
3

pk2(r + 2s)v3 + 2c2v = 0. (46)

Then using Eq. (10), the 2-D autonomous system is attained

dX
dξ

= Y , (47a)

dY
dξ

=
p(r + 2s)

6cqk
X3 –

c
qk3 X. (47b)

Now, to find the first integral of Eqs. (47a)–(47b), we implement the division theorem. In
accordance with the FIM, it is assumed that nontrivial solutions of the above system (cf.
Eqs. (47a)–(47b)) are X and Y respectively. Thus, the irreducible polynomial Q(X, Y ) =∑n

j=0 aj(X)Y j exists in C[X, Y ] and the following holds:

Q
(
X(ξ ), Y (ξ )

)
=

n∑
j=0

aj
(
X(ξ )

)
Y (ξ )j = 0 (48)

for j = 0, 1, . . . , n, and an(X) 	= 0. Now, a polynomial r(X) + s(X)Y exists in C[X, Y ], so

∂Q
∂ξ

=
∂Q
∂X

∂X
∂ξ

+
∂Q
∂Y

∂Y
∂ξ

=
(
r(X) + s(X)Y

)( n∑
j=0

aj(X)Y j

)
. (49)
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Suppose n = 1. On equating coefficients of Y j (j = 0, 1) in Eq. (49) on both sides, we get

a′
1(X) = a1(X)s(X), (50)

a′
0(X) = r(X)a1(X) + s(X)a0(X), (51)

r(X)a0(X) = a1(X)
(

p(r + 2s)
6cqk

)
X3 –

c
qk3 X. (52)

As aj(X) are polynomials of X, then from Eq. (50) we come to know that the polynomial
a1(X) is constant in nature, therefore s(X) = 0. Let us consider a1(X) = 1, for convenience.
After substituting these values, we balance the degrees of the functions r(X) and a0(X)
and deduce the deg(r(X)) equal to 0 or 1. Assume that r(X) = A1X + A0, therefore Eq. (51)
gives

a0(X) =
1
2

A1X2 + A0X + B. (53)

Here, B is the integration constant.
Replacing the values of a0, a1, r, and s in Eq. (52), we get a nonlinear system of algebraic

equations by putting all coefficients equal to zero for the same powers of X. After some
calculations, we get

A1 = ±
√

p(r + 2s)
3cqk

,

A0 = 0,

B = –
c

qk3A1
.

(54)

Applying the conditions given in Eq. (54) and Eq. (53) in Eq. (48), we have

Y (ξ ) = –
1
2

A1X2(ξ ) – B. (55)

Combining Eq. (55) with Eq. (47a), the solutions of fractional DSW system with R–L
derivative are obtained as follows:

v1(x, t) =
–
√

2A1B
A1

tan

[√
2A1B
2

(
kxα + ctα

�(1 + α)

)
+

√
2A1B
2

γ

]
, (56)

u1(x, t) =
–pkB
cA1

tan2
[√

2A1B
2

(
kxα + ctα

�(1 + α)

)
+

√
2A1B
2

γ

]
. (57)

Now we apply the conformable definition of fractional derivative. The following transfor-
mation is introduced:

ξ =
kxα

α
+

ctα

α
,

u(x, t) = u(ξ ),

v(x, t) = v(ξ ),

(58)
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Figure 6 Exact solutions v1(x, t), v2(x, t) of fractional DSW system at c = 0.1, k = 0.8, p = 0.006, q = 0.009,
r = 0.04, s = 1, γ = 0.1, α = 0.7

Figure 7 Exact solutions u1(x, t), u2(x, t) of fractional DSW system at c = 0.1, k = 0.8, p = 0.006, q = 0.009,
r = 0.04, s = 1, γ = 0.1, α = 0.7

where ξ is the transformation variable and k, c are the constants. Afterwards, adopting
the same procedure given in Eqs. (42a)–(42b) to Eq. (53), we get two different solutions:

v2(x, t) =
–
√

2A1B
A1

tan

[√
2A1B
2

(
kxα

α
+

ctα

α

)
+

√
2A1B
2

γ

]
, (59)

u2(x, t) =
–pkB
cA1

tan2
[√

2A1B
2

(
kxα

α
+

ctα

α

)
+

√
2A1B
2

γ

]
. (60)

It is important to note that the solutions u1, v1 are acquired by using the R–L derivative
and u2, v2 are obtained by using the conformable derivative.
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Figure 8 Exact solution v1(x, t) of fractional DSW system at α = 0.9, 0.8, 0.7, 0.5, c = 0.1, k = 0.8, p = 0.006,
q = 0.009, r = 0.04, s = 1, γ = 0.1

In Figs. 6–7, graphs of exact solutions of fractional DSW system are shown by using the
R–L and conformable derivatives.

Figure 8 shows the effects of α on the solution v1(x, t) using the R–L definition. Figure 8
depicts that the curved nonlinearity is observed for smaller values of α, whereas less non-
linear trends are found for α closer to 1.

5 Conclusion
The focus of the paper was to find exact solutions of FPDEs using two fractional deriva-
tives. The FIM was used to find new exact solutions of nonlinear FPDEs, namely, a space-
time fractional Cahn–Allen equation and a coupled space-time fractional DSW system.
The R–L derivative and conformable derivative definitions were used to deal with the frac-
tional terms in FPDEs. The suggested technique proved itself direct and concise. The FIM
performs tedious and complicated algebraic calculations easily using a computer. Based on
its good performance, we deduce that this technique is very effective to deal with various
nonlinear fractional order systems.
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