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Abstract
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1 Introduction
In this paper, we deal with the following Cauchy problem of the coupled semilinear
parabolic system:

∂u
∂t

= �u + b
(|x|)x · ∇u +

(|x| + 1
)λ1 vp, x ∈R

n, t > 0, (1.1)

∂v
∂t

= �v + b
(|x|)x · ∇v +

(|x| + 1
)λ2 uq, x ∈R

n, t > 0, (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈R
n, (1.3)

where p, q > 1, λ1,λ2 ≥ 0, u0, v0 ∈ L1
loc(Rn) ∩ L∞(Rn) are nonnegative nontrivial, b ∈

C1([0, +∞)) satisfies

lim
s→+∞ s(s + 1)b(s) = κ (–∞ ≤ κ ≤ +∞), (1.4)

and additionally, in the case that –n < κ ≤ +∞, b also satisfies

κ0 = inf
{

s(s + 1)b(s) : s > 0
}

> –n. (1.5)

It was Fujita [1] who first proved that the Cauchy problem of the semilinear equation

∂u
∂t

= �u + up, x ∈R
n, t > 0 (1.6)
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admits no nonnegative nontrivial global solutions if 1 < p < pc = 1 + 2/n, whereas it admits
both nontrivial global (with small initial data) and non-global nonnegative (with large ini-
tial data) solutions if p > pc. Later, the fact that the critical case p = pc belongs to the blow-
up case was shown in [2–4]. From then on, many mathematicians have focused on the
extensions of Fujita’s results (see, e.g., [5–23] and the references therein).

Studies on equations with a gradient term are relatively rich. Meier [5] investigated the
Cauchy problem of

∂u
∂t

= �u + b(x) · ∇u + up, x ∈R
n, t > 0, (1.7)

with b ∈ L∞(Rn;Rn) and proved that the critical Fujita exponent is

pc = 1 +
1
ω∗ ,

where ω∗ is the maximal decay rate for solutions to (1.7) without up. For constant vector
b, ω∗ = n/2, while for nonconstant vector b, ω∗ is unknown generally. Nevertheless, there
are still some results for some special nonconstant vectors b. In [20], Zheng et al. studied
the Neumann exterior problem for (1.7) with

b(x) =
κ

|x|2 x, x ∈ R
n (–∞ < κ < +∞)

and formulated its critical Fujita exponent as

pc =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, –∞ ≤ κ ≤ –n,

1 + 2
n+κ

, –n < κ < +∞,

1, κ = +∞.

(1.8)

Also, it was shown in [22] that the critical Fujita exponent to the Cauchy problem for (1.7)
with b(x) = b(|x|)x is still (1.8), where b satisfies (1.4) and (1.5). A more general case that
the coefficients of the derivative of u with respect to time t and source term depend on
spatial position was considered in [23]. For more studies about the quasilinear equations
with gradient terms, one can see [14, 18, 20], etc.

The results of Fujita type for coupled systems are also fairly rich. In 1991, Escobedo et al.
[6] formulated the critical Fujita curve for (1.1)–(1.3) with b ≡ 0 and λ1 = λ2 = 0 as follows:

(pq)c = 1 +
2
n

max{p + 1, q + 1}. (1.9)

Moreover, Guo [9] studied the Neumann exterior problem of the system

∂u
∂t

= �u +
κ

|x|2 x · ∇u + |x|λvp, x ∈R
n \ B1, t > 0, (1.10)

∂v
∂t

= �v +
κ

|x|2 x · ∇v + |x|λuq, x ∈R
n \ B1, t > 0 (1.11)
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with κ ∈R, λ ≥ 0, and proved that the corresponding critical Fujita curve is

(pq)c =

⎧
⎨

⎩
+∞, κ ≤ –n,

1 + 2+λ
n+κ

max{p + 1, q + 1}, κ > –n.

Na et al. [24] showed that the critical Fujita curve for problem (1.1)–(1.3) with λ1 = λ2 = 0
and nonnegative b is

(pq)c =

⎧
⎨

⎩
1 + 2

n+κ
max{p + 1, q + 1}, 0 ≤ κ < +∞,

1, κ = +∞.

There are also some results about coupled parabolic systems involving time-weighted
sources. For example, Cao et al. [25] investigated the Cauchy problem of the following
systems:

∂u
∂t

= �u + f1(t)vp, x ∈R
n, t > 0,

∂v
∂t

= �v + f2(t)uq, x ∈R
n, t > 0,

where fi(t) ∈ Cμ([0, +∞)), fi(t) ∼ tσi (t → +∞) with σi ∈ R, i = 1, 2, and showed that the
critical Fujita curve is

(pq)c = 1 +
2
n

max
{

(σ2 + 1)p + (σ1 + 1), (σ1 + 1)q + (σ2 + 1)
}

.

In this paper, we formulate the critical Fujita curve to problem (1.1)–(1.3) as follows:

(pq)c =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+∞, –∞ ≤ κ ≤ –n,

1 + 1
n+κ

max{(2 + λ1) + p(2 + λ2),

q(2 + λ1) + (2 + λ2)}, –n < κ < +∞,

1, κ = +∞,

(1.12)

and prove the following Fujita-type blow-up theorems.

Theorem 1.1 Assume that b ∈ C1([0, +∞)) satisfies (1.4) and (1.5) with –∞ ≤ κ < +∞.
Let p, q > 1 satisfy

p ≥ 1 +
λ1

n + κ
, q ≥ 1 +

λ2

n + κ
, 1 < pq < (pq)c

with (pq)c defined in (1.12). Then every nonnegative nontrivial solution to problem (1.1)–
(1.3) must blow up in a finite time.

Theorem 1.2 Assume that b ∈ C1([0, +∞)) satisfies (1.4) and (1.5) with –n < κ ≤ +∞. Let
pq > (pq)c with (pq)c defined in (1.12), then there exist both nonnegative nontrivial global
and nonnegative blow-up solutions to problem (1.1)–(1.3).
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The difference between (1.12) and (1.9) shows that the asymptotic behavior of the coeffi-
cients of the gradient term and the exponents in the coefficients of source terms can affect
the properties of solutions essentially. The method used in the paper is mainly inspired by
[16, 18, 20, 22, 23]. To prove the blow-up of solutions, we determine the interactions be-
tween the diffusion terms and the gradient terms by energy estimates instead of the point-
wise comparison principle. A nontrivial global supersolution is constructed to show the
global existence of nontrivial solutions. What is noteworthy is that the non-self-similarity
of (1.1) and (1.2) brings a difficult challenge for constructing the supersolution.

The paper is divided into three parts. In Section 2, we list some preliminaries such as the
well-posedness of problem (1.1)–(1.3). Later, in Section 3, we illustrate several auxiliary
lemmas to be used later. Finally, in Section 4, the Fujita-type blow-up theorems are proved.
We will always assume that

(2 + λ1) + p(2 + λ2) ≥ q(2 + λ1) + (2 + λ2)

without loss of generality.

2 Preliminaries
The solution to problem (1.1)–(1.3) is defined as follows.

Definition 2.1 Let 0 < T ≤ +∞. (u, v) is called a solution to problem (1.1)–(1.3) in (0, T)
if

0 ≤ u, v ∈ C
(
[0, T), L1

loc
(
R

n)) ∩ L∞
loc

(
0, T ; L∞(

R
n))

and the integral identities

∫ T

0

∫

Rn
u(x, t)

∂ϕ

∂t
(x, t) dx dt +

∫ T

0

∫

Rn
u(x, t)

(
�ϕ(x, t) – div

(
b
(|x|)ϕ(x, t)x

))
dx dt

+
∫ T

0

∫

Rn

(|x| + 1
)λ1 vp(x, t)ϕ(x, t) dx dt +

∫

Rn
u0(x)ϕ(x, 0) dx = 0

and

∫ T

0

∫

Rn
v(x, t)

∂ψ

∂t
(x, t) dx dt +

∫ T

0

∫

Rn
v(x, t)

(
�ψ(x, t) – div

(
b
(|x|)ψ(x, t)x

))
dx dt

+
∫ T

0

∫

Rn

(|x| + 1
)λ2 uq(x, t)ψ(x, t) dx dt +

∫

Rn
v0(x)ψ(x, 0) dx = 0

are fulfilled for any ϕ,ψ ∈ C2,1(Rn × [0, T)) vanishing when t is near T or |x| are sufficiently
large.

Definition 2.2 (u, v) is said to be a blow-up solution to problem (1.1)–(1.3) if

∥∥u(·, t)
∥∥

L∞(Rn) +
∥∥v(·, t)

∥∥
L∞(Rn) → +∞ as t → T–

∗

with 0 < T∗ < +∞, which is called blow-up time. Otherwise, (u, v) is said to be a global
solution.
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The existence theorem and the comparison principle to problem (1.1)–(1.3) can be
found in [26, 27] and the references therein.

3 Auxiliary lemmas
As mentioned in [20, 22, 24], one can prove the following lemma and remarks which will
be used later.

Lemma 3.1 Assume that b ∈ C1([0, +∞)) satisfies (1.4) and (1.5) with –∞ ≤ κ < +∞. Let
(u, v) be a solution to problem (1.1)–(1.3). Then there exist R0 > 0, δ > 1, and M0 > 0, de-
pending only on n and b, such that for any R > R0,

d
dt

∫

Rn
u(x, t)ηR

(|x|)dx ≥ –M0R–2
∫

BδR\BR

u(x, t)ηR
(|x|)dx

+
∫

Rn

(|x| + 1
)λ1 vp(x, t)ηR

(|x|)dx, t > 0 (3.1)

and

d
dt

∫

Rn
v(x, t)ηR

(|x|)dx ≥ –M0R–2
∫

BδR\BR

v(x, t)ηR
(|x|)dx

+
∫

Rn

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx, t > 0 (3.2)

in the distribution sense, where

ηR(s) =

⎧
⎪⎪⎨

⎪⎪⎩

h(s), 0 ≤ s ≤ R,
1
2 h(s)(1 + cos (s–R)π

(δ–1)R ), R < s < δR,

0, s ≥ δR

with

h(s) = exp

{∫ s

0
s̃b(s̃) ds̃

}
, r ≥ 0,

while Br denotes the open ball in R
n with radius r and centered at the origin.

Remark 3.1 If κ = +∞, then Lemma 3.1 holds for any fixed R > 0, but δ > 1 and M0 > 0
depend also on R.

Let us seek the self-similar supersolutions to system (1.1) and (1.2) of the following form:

u(x, t) = (t + t0)–μU
(
(t + t0)–1/2(|x| + 1

))
,

v(x, t) = (t + t0)–νV
(
(t + t0)–1/2(|x| + 1

))
,

x ∈R
n, t ≥ 0

(3.3)

with

μ =
(2 + λ1) + p(2 + λ2)

2(pq – 1)
, ν =

q(2 + λ1) + (2 + λ2)
2(pq – 1)

,
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and t0 > 0 to be determined later. If U ,V ∈ C1([0, +∞)) solve

U ′′(r) +
n – 1

r
U ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
U ′(r) +

1
2

rU ′(r)

+ μU (r) + rλ1Up(r) ≤ 0, r > (t + t0)–1/2, (3.4)

V ′′(r) +
n – 1

r
V ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
V ′(r) +

1
2

rV ′(r)

+ νV(r) + rλ2Vq(r) ≤ 0, r > (t + t0)–1/2, (3.5)

for fixed t > 0, respectively. Then (u, v) given by (3.3) is a supersolution to system (1.1) and
(1.2).

Lemma 3.2 Assume that b ∈ C1([0, +∞)) satisfies (1.4) and (1.5) with –n < κ ≤ +∞. Let
pq > (pq)c with (pq)c defined in (1.12) and

U (r) = V(r) = σe–ω(r), r ≥ 0, (3.6)

with ω ∈ C1,1([0, +∞)) satisfies ω(0) = 0 and

ω′(r) =

⎧
⎪⎪⎨

⎪⎪⎩

ω1r, 0 ≤ r ≤ l2,

(ω2 + (ω1 – ω2) l2(n+κ2)

rn+κ2 )r, l2 < r < l,

(ω2 + (ω1 – ω2)ln+κ2 )r, r ≥ l,

where 0 < l < 1 will be determined,

ω1 =
2(pq – 1)μ

(n + κ1)(pq + (pq)c – 2)
, ω2 =

2(pq – 1)μ
(n + κ2)(pq + (pq)c – 2)

with κ1, κ2 satisfying

κ1 < κ0, –n < κ1 <
2((2 + λ1) + p(2 + λ2))

pq + (pq)c – 2
– n < κ2 < κ .

Then there exist σ > 0, 0 < l < 1, and t0 > 0 such that (u, v) given by (3.3) and (3.6) is a
supersolution to (1.1)–(1.3).

Proof In the case that 0 < r < l2 and t > 0,

U ′′(r) +
n – 1

r
U ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
U ′(r)

+
1
2

rU ′(r) + μU (r)

=
(

–nω1 – ω1(t + t0)1/2r
(
(t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
+ μ + ω1

(
ω1 –

1
2

)
r2

)

× U (r)

≤ (
–(n + κ0)ω1 + μ + ω2

1l
)
U (r)

≤
(

–(κ0 – κ1)ω1 –
(pq – (pq)c)μ
pq + (pq)c – 2

+ ω2
1l

)
U (r),
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where κ0 = inf{s(s + 1)b(s) : s > 0}. We can take 0 < l1 < 1 such that, for any 0 < l < l1,

U ′′(r) +
n – 1

r
U ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
U ′(r)

+
1
2

rU ′(r) + μU (r)

≤ –
(pq – (pq)c)μ

2(pq + (pq)c – 2)
U (r), 0 < r < l2, t > 0. (3.7)

From the definition of the function ω, one gets

U ′′(r) +
n + κ2 – 1

r
U ′(r) +

1
2

rU ′(r) + μU (r)

=
((

ω′(r)
)2 – ω′′(r) –

n + κ2 – 1
r

ω′(r) –
1
2

rω′(r) + μ

)
U (r)

=
((

ω2 + (ω1 – ω2)
l2(n+κ2)

rn+κ2

)(
ω2 + (ω1 – ω2)

l2(n+κ2)

rn+κ2
–

1
2

)
r2 –

(pq – (pq)c)μ
pq + (pq)c – 2

)
U (r)

≤
(

–
(pq – (pq)c)μ
pq + (pq)c – 2

+ ω2
1l

)
U (r), l2 < r < l,

which implies that one can take 0 < l2 < l1 such that, for any 0 < l < l2,

U ′′(r) +
n + κ2 – 1

r
U ′(r) +

1
2

rU ′(r) + μU (r)

≤ –
(pq – (pq)c)μ

2(pq + (pq)c – 2)
U (r), l2 < r < l, t > 0. (3.8)

Finally, for r > l, it holds that

U ′′(r) +
n + κ2 – 1

r
U ′(r) +

1
2

rU ′(r) + μU (r)

=
(
ω2 + (ω1 – ω2)ln+κ2

)(
ω2 + (ω1 – ω2)ln+κ2 –

1
2

)
r2U (r)

+
(
μ – (n + κ2)

(
ω2 + (ω1 – ω2)ln+κ2

))
U (r)

≤ (
ω2 + (ω1 – ω2)ln+κ2

)
(

ω2 + (ω1 – ω2)ln+κ2 –
1
2

)
r2U (r) +

(
μ – (n + κ2)ω2

)
U (r)

=
(
ω2 + (ω1 – ω2)ln+κ2

)(
ω2 + (ω1 – ω2)ln+κ2 –

1
2

)
r2U (r) –

(pq – (pq)c)μ
pq + (pq)c – 2

U (r).

The choice of κ1, κ2 leads to

lim
l→0+

(
ω2 + (ω1 – ω2)ln+κ2

)
= ω2 <

1
2

,

which yields that there exists 0 < l3 < l2 such that, for any 0 < l < l3,

ω2 + (ω1 – ω2)ln+κ2 <
1
2

,
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and thus

U ′′(r)+
n + κ2 – 1

r
U ′(r)+

1
2

rU ′(r)+μU (r) ≤ –
(pq – (pq)c)μ

2(pq + (pq)c – 2)
U (r), r > l, t > 0. (3.9)

Fix 0 < l < l3, it follows from (1.4) that, for t0 > 0 sufficiently large,

(t + t0)1/2r
(
(t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

) ≥ κ2

r
, r > l2, t > 0. (3.10)

It follows from (3.7)–(3.10) that

U ′′(r) +
n – 1

r
U ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
U ′(r)

+
1
2

rU ′(r) + μU (r)

≤ U ′′(r) +
n + κ2 – 1

r
U ′(r) +

1
2

rU ′(r) + μU (r)

≤ –
(pq – (pq)c)μ

2(pq + (pq)c – 2)
U (r), r ∈ (

0, l2) ∪ (
l2, l

) ∪ (l, +∞), t > 0. (3.11)

Similarly, one can show that

V ′′(r) +
n – 1

r
V ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
V ′(r)

+
1
2

rV ′(r) + νV(r)

≤ –
(

(pq – (pq)c)μ
2(pq + (pq)c – 2)

+
((2 + λ1) + p(2 + λ2)) – (q(2 + λ1) + (2 + λ2))

2(pq – 1)

)
V(r)

≤ –
(pq – (pq)c)μ

2(pq + (pq)c – 2)
V(r), r ∈ (

0, l2) ∪ (
l2, l

) ∪ (l, +∞), t > 0. (3.12)

Due to λ1,λ2 ≥ 0, p, q > 1, and the definition of the function ω,

0 < K0 = sup
r>0

(
rλ1 e–(p–1)ω(r) + rλ2 e–(q–1)ω(r)) < +∞.

Choose σ > 0 sufficiently small such that

max
{
σ p–1,σ q–1} ≤ (pq – (pq)c)μ

2K0(pq + (pq)c – 2)
.

Then (3.11) and (3.12) yield that

U ′′(r) +
n – 1

r
U ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
U ′(r)

+
1
2

rU ′(r) + μU (r) + rλ1Vp(r) ≤ 0,

r ∈ (
0, l2) ∪ (

l2, l
) ∪ (l, +∞), t > 0



Gai et al. Advances in Difference Equations        (2018) 2018:467 Page 9 of 13

and

V ′′(r) +
n – 1

r
V ′(r) + (t + t0)1/2((t + t0)1/2r – 1

)
b
(
(t + t0)1/2r – 1

)
V ′(r)

+
1
2

rV ′(r) + νV(r) + rλ2Uq(r) ≤ 0,

r ∈ (
0, l2) ∪ (

l2, l
) ∪ (l, +∞), t > 0.

Therefore, (u, v) given by (3.3) and (3.6) is a supersolution to system (1.1) and (1.2). �

4 Proofs of Fujita-type blow-up theorems
In the final section, we will prove the blow-up theorems of Fujita type for problem (1.1)–
(1.3). Let ηR, h, R0, δ, and M0 be given as Lemma 3.1 in this section.

Let us prove Theorem 1.1 firstly.

Proof of Theorem 1.1 It follows from –∞ ≤ κ < +∞ and 1 < pq < (pq)c that

κ <
(2 + λ1) + p(2 + λ2)

pq – 1
– n.

Fix κ̃ ≥ κ to satisfy

–n ≤ κ̃ <
(2 + λ1) + p(2 + λ2)

pq – 1
– n, (4.1)

which, together with (1.4), yields that there exists R1 > 1 such that

s2b(s) < κ̃ , s > R1.

For any R > R1, one can get that

∫ s

0
s̃b(s̃) ds̃ ≤

⎧
⎨

⎩
K0, 0 ≤ s ≤ R1,

K0 + ln sκ̃ , s > R1,

and

h(s) = exp

{∫ s

0
s̃b(s̃) ds̃

}
≤

⎧
⎨

⎩
eK0 , 0 ≤ s ≤ R1,

eK0 sκ̃ , s > R1
≤ K(s + 1)κ̃ , s ≥ 0,

where

K = max

{
sup

0≤s≤R1

eK0

(s + 1)κ̃
, sup

s>R1

eK0 sκ̃

(s + 1)κ̃

}
, K0 = |κ̃| ln R1 + sup

0≤s≤R1

∫ s

0
s̃b(s̃) ds̃.

Therefore,

0 ≤ ηR(s) ≤ h(s)χ[0,δR](s) = K(s + 1)κ̃χ[0,δR](s), s ≥ 0, (4.2)
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where χ[0,δR] is the characteristic function of the interval [0, δR] and K > 0 depends only
on n, b, R1, δ, and κ̃ . Let (u, v) be the solution to problem (1.1)–(1.3), and denote

wR(t) =
∫

Rn

(
u(x, t) + Rθ v(x, t)

)
ηR

(|x|)dx, t ≥ 0

with some constant θ to be determined. For any R > max{R0, R1}, Lemma 3.1 shows

d
dt

wR(t) ≥ –M0R–2wR(t) + Rθ

∫

Rn

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx

+
∫

Rn

(|x| + 1
)λ1 vp(x, t)ηR

(|x|)dx, t > 0. (4.3)

From the Hölder inequality and (4.2), one gets

∫

Rn
u(x, t)ηR

(|x|)dx

≤
(∫

Rn

(|x| + 1
)–λ2/(q–1)

ηR
(|x|)dx

)(q–1)/q(∫

Rn

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx
)1/q

≤
(

K
∫

BδR

(|x| + 1
)κ̃–λ2/(p–1) dx

)(q–1)/q(∫

Rn

(|x| + 1
)λ2 up(x, t)ηR

(|x|)dx
)1/q

≤
(

Kωn

∫ δR

0
(r + 1)n+κ̃–1–λ2/(q–1) dr

)(q–1)/q(∫

BδR

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx
)1/q

≤ M(q–1)/q
1 Rn+κ̃–(n+κ̃+λ2)/q

(∫

Rn

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx
)1/q

, t > 0. (4.4)

Similarly, we have

∫

Rn
v(x, t)ηR

(|x|)dx ≤ M(p–1)/p
1 Rn+κ̃–(n+κ̃+λ1)/p

(∫

Rn

(|x| + 1
)λ1 vp(x, t)ηR

(|x|)dx
)1/p

,

t > 0, (4.5)

while M1 > 0 depends only on n, b, R1, δ, λ1, λ2, p, q, and κ̃ . Substituting (4.4) and (4.5)
into (4.3) gives

d
dt

wR(t) ≥ –M0R–2wR(t) + M–(q–1)
1 R–(q–1)(n+κ̃)+λ2+θ

(∫

Rn
u(x, t)ηR(x) dx

)q

+ M–(p–1)
1 R–(p–1)(n+κ̃)+λ1–pθ

(
Rθ

∫

Rn
v(x, t)ηR(x) dx

)p

, t > 0. (4.6)

Choosing θ = (q–p)(n+κ̃)+λ1–λ2
p+1 , then

–(q – 1)(n + κ̃) + λ2 + θ = –(p – 1)(n + κ̃) + λ1 – pθ =
(1 – pq)(n + κ̃) + λ1 + pλ2

p + 1
.
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Lemma 3.6 in [24] and (4.6) lead to

d
dt

wR(t) ≥ –M0R–2wR(t) + M2R–(pq–1)(n+κ̃+λ1)/(p+1)

·
{(∫

Rn
u(x, t)ηR(x) dx

)q

+
(

Rθ

∫

Rn
v(x, t)ηR(x) dx

)p}

≥ –M0R–2wR(t) + 2–pM2R[(1–pq)(n+κ̃)+λ1+pλ2]/(p+1) · min
{

wp
R(t), wq

R(t)
}

= wR(t)
(
–M0R–2 + 2–pM2R[(1–pq)(n+κ̃)+λ1+pλ2]/(p+1) · min

{
wp–1

R (t), wq–1
R (t)

})
,

t > 0 (4.7)

with M2 = min{M1–p
1 , M1–q

1 }. Note that (4.1) implies

(1 – pq)(n + κ̃) + λ1 + pλ2

p + 1
> –2,

while wR(0) is nondecreasing with respect to R ∈ (0, +∞) and

sup
{

wR(0) : R > 0
}

> 0.

Therefore, there exists R2 > 0 such that, for any R > R2,

M0R–2 ≤ 2–(p+1)M2R[(1–pq)(n+κ̃)+λ1+pλ2]/(p+1) · min
{

wp–1
R (0), wq–1

R (0)
}

. (4.8)

Fix R > max{R0, R1, R2}. Then (4.7) and (4.8) yield

d
dt

wR(t) ≥ 2–(p+1)M2R[(1–pq)(n+κ̃)+λ1+pλ2]/(p+1) · min
{

wp
R(t), wq

R(t)
}

, t > 0.

It follows from p, q > 1 that there exists T∗ > 0 such that

wR(t) =
∫

Rn

(
u(x, t) + Rθ v(x, t)

)
ηR(x) dx → +∞ as t → T–

∗ .

From suppηR(|x|) = BδR, one gets

∥
∥u(·, t)

∥
∥

L∞(Rn) +
∥
∥v(·, t)

∥
∥

L∞(Rn) → +∞ as t → T–
∗ .

That is to say, (u, v) blows up in a finite time. �

Let us turn to proving Theorem 1.2.

Proof of Theorem 1.2 The fact that problem (1.1)–(1.3) with small initial data admits a
nontrivial global solution follows from the comparison principle and Lemma 3.2. Then let
us show the blow-up of the solution to problem (1.1)–(1.3) with large initial data.

Fix R > R0 and let (u, v) be the solution to problem (1.1)–(1.3). Denote

w̃R(t) =
∫

Rn

(
u(x, t) + v(x, t)

)
ηR(x) dx, t ≥ 0.
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From Lemma 3.1, Remark 3.1, the Hölder inequality, and Lemma 3.6 in [24], it follows that

d
dt

w̃R(t) ≥ –M0R–2w̃R(t) +
∫

Rn

(|x| + 1
)λ2 uq(x, t)ηR

(|x|)dx

+
∫

Rn

(|x| + 1
)λ1 vp(x, t)ηR

(|x|)dx

≥ –M0R–2w̃R(t) +
(∫

Rn

(|x| + 1
)–λ2/(q–1)

ηR
(|x|)dx

)1–q

×
(∫

Rn
u(x, t)ηR

(|x|)dx
)q

+
(∫

Rn

(|x| + 1
)–λ1/(p–1)

ηR
(|x|)dx

)1–p(∫

Rn
v(x, t)ηR

(|x|)dx
)p

≥ –M0R–2w̃R(t) + M3

{(∫

Rn
u(x, t)ηR

(|x|)dx
)q

+
(∫

Rn
v(x, t)ηR

(|x|)dx
)p}

≥ –M0R–2w̃R(t) + 2–pM3 · min
{

w̃p
R(t), w̃q

R(t)
}

= w̃R(t)
(
–M0R–2 + 2–pM3 · min

{
w̃p–1

R (t), w̃q–1
R (t)

})
, t > 0 (4.9)

with

M3 = min

{(∫

Rn

(|x| + 1
)–λ2/(q–1)

ηR
(|x|)dx

)1–q

,
(∫

Rn

(|x| + 1
)–λ1/(p–1)

ηR
(|x|)dx

)1–p}

depending only on n, δ, p, q, and R. If (u0, v0) is so large that

2–(p+1)M3 · min
{

w̃p–1
R (0), w̃q–1

R (0)
} ≥ M0R–2,

then (4.9) leads to

d
dt

w̃R(t) ≥ 2–(p+1)M3 · min
{

w̃p
R(t), w̃q

R(t)
}

, t > 0.

The same argument as the proof of Theorem 1.1 shows that (u, v) must blow up in a finite
time. �
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