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Abstract
The total variation model is widely used in image deblurring and denoising process
with the features of protecting the image edge. However, this model usually causes
some staircase effects. To overcome the shortcoming, combining the second-order
total variation regularization and the total variation regularization, we propose a
hybrid total variation model. The new improved model not only eliminates the
staircase effect, but also well protects the edges of the image. The alternating
direction method of multipliers (ADMM) is employed to solve the proposed model.
Numerical results show that our proposed model can get more details and higher
image visual quality than some current state-of-the-art methods.

Keywords: Total variation; Image restoration; Staircase effect; Alternating direction
method of multipliers

1 Introduction
Image restoration mainly includes image deblurring and image denoising, which is one
of the most fundamental problems in imaging science. It plays an important role in many
mid-level and high-level image-processing areas such as medical imaging, remote sensing,
machine identification, and astronomy [1–4]. The image restoration problem usually can
be expressed in the following form:

g = Hf + η, (1.1)

where f ∈ Rn2 is the original n × n image, H ∈ Rn2×n2 is a blurring operator, η ∈ Rn2 is the
white Gaussian noise, and g ∈ Rn2 is a degraded image.

It is well known that the image restoration problem is usually an ill-posed problem. An
efficient method to overcome the ill-posed problems is to add some regularization terms
to the objective functions, which is known as a regularization method. There are two fa-
mous regularization methods. One is the Tikhonov regularization [5], and the other is the
total variation (TV) regularization [6]. The Tikhonov regularization method has a disad-
vantage, which tends to make images overly smooth and often fails to adequately preserve
important image attributes such as sharp edges. The total variation regularization method
has the ability to preserve edges well and remove noise at the same time, which was first
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introduced by Rudin et al. [6] as follows:

min
f

‖Hf – g‖2
2 + α‖f ‖TV, (1.2)

where ‖ · ‖2 denotes the Euclidean norm, ‖ · ‖TV is the discrete total variation regulariza-
tion term, and α is a positive regularization parameter that controls the tradeoff between
these two terms. To define the discrete TV norm, we first introduce the discrete gradient
∇f :

(∇f )i,j =
(
(∇f )x

i,j, (∇f )y
i,j
)

with

(∇f )x
i,j =

⎧
⎨

⎩
fi+1,j – fi,j if i < n,

f1,j – fn,j if i = n,
(∇f )y

i,j =

⎧
⎨

⎩
fi,j+1 – fi,j if j < n,

fi,1 – fi,n if j = n,

for i, j = 1, . . . , n. Here ∇ : �n2 → �n2 denotes the discrete gradient operator, fi,j refers to
the ((j – 1)n + i)th entry of the vector f , which is the (i, j)th pixel location of the image; see
[7]. Then the discrete TV of f is defined by

‖f ‖TV =
∑

1≤i,j≤n

√∣∣(∇f )x
i,j
∣∣2 +

∣∣(∇f )y
i,j
∣∣2.

Due to the nonlinearity and nondifferentiability of the total variation function, it is dif-
ficult to solve model (1.2). To solve this problem more effectively, many methods have
been proposed for total-variation-based image restoration in recent years [6–27]. In these
methods, Rudin et al. [6] raised a time marching scheme, and Vogel et al. [7] put forward
a fixed point iteration method. The time marching scheme converges slowly, especially
when the iterate point is close to the solution set. The fixed point iteration method is also
very difficult to solve as the blurring kernel becomes larger. Based on the dual formulation,
Chambolle [15] proposed a gradient algorithm for the total variation denoising problem.
At present, based on variable separation and penalty techniques, Wang et al. [16] proposed
the fast total variant deconvolution (FTVd) method. By introducing an auxiliary variable
to replace the nondifferentiable part of model (1.2), the TV model (1.2) can be rewritten
in the following minimization problem:

min
f ,ω

‖Hf – g‖2
2 + α‖ω‖2 +

β

2
‖ω – ∇f ‖2

2,

where β is a penalty parameter. Experimental results verify the effectiveness of the FTVd
method. But in the calculation, the penalty parameter β needs to approach infinity, which
creates numerical instability. To avoid the approach of penalty parameter to infinity, Chan
et al. [28] proposed the alternating direction method of multipliers (ADMM) to solve
model (1.2). By defining the augmented Lagrange function, the image restoration model
(1.2) can be translated into the following form:

min
f ,ω

‖Hf – g‖2
2 + α‖ω‖2 + 〈λ,ω – ∇f 〉 +

β

2
‖ω – ∇f ‖2

2,



Zhu et al. Advances in Difference Equations         (2019) 2019:34 Page 3 of 16

where λ is a Lagrange multiplier. The experimental results show that the ADMM method
is robust and fast, and has a good restoration effect.

More recently, to overcome the shortcoming of the TV norm of f in model (1.2), Huang
et al. [29] proposed a fast total variation minimization method for image restoration as
follows:

min
f ,u

‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2‖u‖TV, (1.3)

where α1, α2 are positive regularization parameters. Model (1.3) adds a term ‖f – u‖2
2,

compared with model (1.2). The experimental results show that the modified TV mini-
mization model can preserve edges very well in the image restoration processing. Based
on model (1.3), Liu et al. [30] proposed the following minimization model:

min
f ,u

‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2‖f ‖TV + α3‖u‖TV, (1.4)

where α1, α2, and α3 are positive regularization parameters. Liu et al. [30] adopted the split
Bregman method and Chambolle projection algorithm to solve the minimization model
(1.4). Numerical results illustrated the effectiveness of their model.

Although the total variation regularization can preserve sharp edges very well, it also
causes some staircase effects [31, 32]. To overcome this kind of staircase effect, some high-
order total variational models [33–39] and fractional-order total variation models [40–44]
are introduced. It has been proved that the high-order TV norm can remove the staircase
effect and preserve the edges well in the process of image restoration.

To eliminate the staircase effect better and preserve edges very well in image process-
ing, we combine the TV norm and second-order TV norm and introduce a new hybrid
variational model as follows:

min
f ,u

‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2
∥∥∇2f

∥∥
2 + α3‖∇u‖2, (1.5)

where α1, α2, and α3 are positive regularization parameters, ‖∇u‖2 is the TV norm of u,
and ‖∇2f ‖2 is the second-order TV norm of f . The definition of the second-order TV
norm is similar to that of the TV norm. The second-order TV norm is defined by

(∇2f
)

i,j =
(
(∇f )x,x

i,j , (∇f )x,y
i,j , (∇f )y,x

i,j , (∇f )y,y
i,j

)
,

∥
∥∇2f

∥
∥ =

∑

1≤i,j≤n

√∣
∣(∇f )x,x

i,j
∣
∣2 +

∣
∣(∇f )x,y

i,j
∣
∣2 +

∣
∣(∇f )y,x

i,j
∣
∣2 +

∣
∣(∇f )y,y

i,j
∣
∣2,

where (∇f )x,x
i,j , (∇f )x,y

i,j , (∇f )y,x
i,j , (∇f )y,y

i,j denote the second-order differences of the
((j – 1)n + i)th entry of the vector f . For more detail about the second-order differences,
we refer to [45]. The second-order TV regularization and TV regularization are used; the
edges in the restored image can be preserved quite well, and the staircase effect is reduced
simultaneously.

The rest of this paper is organized as follows. In Sect. 2, we propose our alternating iter-
ative algorithm to solve model (1.5). In Sect. 3, we give some numerical results to demon-
strate the effectiveness of the proposed algorithm. Finally, concluding remarks are given
in Sect. 4.
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2 The alternating iterative algorithm
In this section, we use an alternating iterative algorithm to solve (1.5). Based on the vari-
able separation technique [16], the minimization problem (1.5) can be divided into de-
blurring and denoising steps. The alternating iterative algorithm is based on decoupling
of denoising and deblurring steps in the image restoration process. The deblurring step is
defined as

arg min
f

‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2
∥∥∇2f

∥∥
2. (2.1)

The denoising step is defined as

arg min
u

α1‖u – f ‖2
2 + α3‖∇u‖2. (2.2)

We adopt the alternating direction multiplier method to solve these two subproblems.

2.1 The deblurring step
Because the ADMM method has the characteristics of notable stability and high rate of
convergence, this method can avoid the approach of penalty parameter to infinity. We
employ the alternating direction method of multipliers to solve the minimization prob-
lem (2.1). Because the objective function of (2.1) is nondifferentiable, by introducing an
auxiliary variable ω, the unconstrained optimization problem (2.1) can be transformed
into the following equivalent constraint optimization problem:

arg min
f ,ω

‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2‖ω‖2 s.t. ω = ∇2f . (2.3)

For the constrained optimization problem (2.3), its augmented Lagrange function is de-
fined by

LA(f ,ω,λ1) = ‖Hf – g‖2
2 + α1‖f – u‖2

2 + α2‖ω‖2

+
〈
λ1,ω – ∇2f

〉
+

β1

2
∥
∥ω – ∇2f

∥
∥2

2, (2.4)

where λ1 is a Lagrange multiplier, playing the role of avoiding the positive penalty pa-
rameters to go to infinity, and β1 is a positive penalty parameter. Then, the alternating
minimization method to minimize problem (2.4) can be expressed as follows:

⎧
⎨

⎩
(f k+1,ωk+1) = arg minf ,ω LA(f ,ω,λk

1),

λk+1
1 = λk

1 + β1(ωk+1 – ∇2f k+1).
(2.5)

Based on the classical ADMM, starting at u = uk , ω = ωk , λ = λk , the iterative scheme is
implemented via the following subproblems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f k+1 = arg minf {‖Hf – g‖2
2 + α1‖f – uk‖2

2 – 〈λk
1,∇2f 〉 +

β1

2
‖ωk – ∇2f ‖2

2}, (2.6)

ωk+1 = arg minω{α2‖ω‖2 + 〈λk ,ω〉 +
β1

2
‖ω – ∇2f k+1‖2

2}, (2.7)

λk+1
1 = λk

1 + β1(ωk+1 – ∇2f k+1). (2.8)
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Based on the optimal conditions, the solution of (2.6) is given by the equation

(
2HT H + β1∇2T ∇2 + 2α1I

)
f = 2HT g + 2α1uk + β1∇2T

(
ωk +

λk
1

β1

)
, (2.9)

where ∇2T is the conjugate operator of ∇2. Under the periodic boundary condition, HT H
and ∇2T ∇2 are block circulant matrices [46, 47], so HT H and ∇2T ∇2 can be diagonalized
by the Fourier transform. The Fourier transform of f is denoted by F (f ), and F–1(f ) is
the inverse Fourier transform of f . By using the Fourier transform the solution of f can be
given as follows:

f k+1 = F–1(γ ),

where

γ =
F (2HT g + 2α1uk + β1∇2T (ωk + λk

β1
))

F (2α1I + β1∇2T ∇2 + 2HT H)
.

The subproblem for ω can be written as

ωk+1 = arg min
ω

{
α2‖ω‖2 +

β1

2

∥∥
∥∥ω –

(
∇2f k+1 –

λk
1

β1

)∥∥
∥∥

2

2

}
,

and the solution can be explicitly obtained using the following two-dimensional shrinkage
operator [16, 48]:

ωk+1 = max

{∥
∥∥
∥∇2f k+1 –

λk
1

β1

∥
∥∥
∥

2
–

α2

β1
, 0

} ∇2f k+1 – λk
1

β1

‖∇2f k+1 – λk
1

β1
‖2

, (2.10)

where we follow the convention that 0 · (0/0) = 0.
Finally, we update λ1 by

λk+1
1 = λk

1 + ηβ1
(
ωk+1 – ∇2f k+1), (2.11)

where η is a relaxation parameter, and η ∈ (0, (
√

5 + 1)/2).
The algorithm of the deblurring step is summarized in Algorithm 1.

2.2 The denoising step
Subproblem (2.2) is a classical TV regularization process for image denoising, which can
be solved by the Chambolle projection algorithm. However, it is well known that the
Chambolle projection algorithm has large amount of calculations in the process of ex-
periment and causes numerical instability. To overcome the disadvantage of numerical
instability and large amount of calculations of the Chambolle projection algorithm, in this
paper, we adopt the alternating direction multiplier method to solve subproblem (2.2).

The solution process of subproblem (2.2) is the same as that of subproblem (2.1). First,
introducing an auxiliary variable v, problem (2.2) can be transformed into the following
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Algorithm 1 Alternating direction minimization method for solving subproblem (2.1)

1. Input: g, K , α1 > 0, α2 > 0, β1 > 0
2. Initialization: f 0 = g, ω0 = ∇2f 0

3. While “not converged”, Do
4. Compute f k+1 from

f k+1 = F–1(γ ).
5. Compute ωk+1 via

ωk+1 = max{‖∇2f k+1 – λk
1

β1
‖2 – α2

β1
, 0} ∇2f k+1–

λk
1

β1

‖∇2f k+1–
λk

1
β1

‖2

.

6. Update λk+1 from
λk+1

1 = λk
1 + ηβ1(ωk+1 – ∇2f k+1).

7. End Do
8. Output f k+1

constraint minimization problem:

min
u,v

α1
∥∥u – f k+1∥∥2

2 + α3‖v‖2 s.t. v = ∇u. (2.12)

Second, to use the alternating direction multiplier method to solve model (2.12), we define
its augmented Lagrangian function

LA(u, v,λ2) = α1
∥∥u – f k+1∥∥2

2 + α3‖v‖2 + 〈λ2, v – ∇u〉 +
β2

2
‖v – ∇u‖2

2, (2.13)

where β2 is a positive penalty parameters, and λ2 is a Lagrange multiplier.
The variables u, f , v are coupled together, so we separate this problem into two subprob-

lems and adopt the alternating iteration minimization method. The two subproblems are
given as follows.

The “u-subproblem” for v fixed:

min
u

α1
∥
∥u – f k+1∥∥2

2 +
β2

2
∥
∥vk – ∇u

∥
∥2

2 –
〈
λk

2,∇u
〉
. (2.14)

The “v-subproblem” for u fixed:

min
v

β2

2
∥∥v – ∇uk∥∥2

2 +
〈
λk

2, v
〉
+ α3‖v‖2. (2.15)

The minimizer of subproblem (2.14) can be simplified as

min
u

α1
∥
∥u – f k+1∥∥2

2 +
β2

2

∥∥
∥∥vk –

(
∇u +

λk
2

β2

)∥∥
∥∥

2

2
, (2.16)

and the minimization problem (2.16) can be solved by the following equation:

(
2α1I + β2∇T∇)

u = 2α1f k+1 + β2∇T vk + ∇Tλk
2. (2.17)

Under the periodic boundary conditions, ∇T∇ is a block circulant matrix, So ∇T∇ is di-
agonalizable by the two-dimensional discrete Fourier transform.



Zhu et al. Advances in Difference Equations         (2019) 2019:34 Page 7 of 16

Algorithm 2 Alternating direction minimization method for solving the subproblem (2.2)

1. Input: g, K , α1 > 0, α3 > 0, β2 > 0
2. Initialization: u0 = g, v0 = ∇u0

3. While “not converged”, Do
4. Compute uk+1 from (2.17)
5. Compute vk+1 via (2.19)
6. Update λk+1

2 from (2.20)
7. End Do
8. Output uk+1

Next, the minimization of (2.15) with respect to v is equivalent to the minimization
problem

min
v

β2

2

∥∥
∥∥v –

(
∇uk+1 –

λk
2

β2

)∥∥
∥∥

2

2
+ α3‖v‖2, (2.18)

and the solution of (2.18) can be explicitly obtained by the two-dimensional shrinkage:

vk+1 = max

{∥
∥∥
∥∇uk+1 –

λk
2

β2

∥
∥∥
∥

2
–

α3

β2
, 0

} ∇uk+1 – λk
2

β2

‖∇uk+1 – λk
2

β2
‖2

. (2.19)

The Lagrange multiplier λ2 is updated as follows:

λk+1
2 = λk

2 + ηβ2
(
vk+1 – ∇uk+1), (2.20)

where η is a relaxation parameter.
The algorithm of the denoising step is written in Algorithm 2.

3 Numerical experiments
This section presents some numerical examples, which show that the performance of our
proposed algorithm to solve image restoration problems. In the following experiments, we
compare our proposed method (HTV) with Fast-TV [29] and FNDTV methods [30]. All
experiments are performed under Windows 7 and MATLAB 2012a running on a desktop
with an core i5 Duo central processing unit at 2.50 GHz and 4 GB memory. The quality of
the restoration results by different methods is compared quantitatively by using the peak-
signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM). Suppose g , f 0,
and u are the observed image, the ideal image, and the restored image, respectively. Then,
the BSNR, MSE, PSNR, and SSIM are defined as follows:

BSNR = 20 log10
‖g‖2

‖η‖2
,

MSE =
1
n2

n2–1∑

i=0

(
f 0(i) – u(i)

)2,
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PSNR = 20 log10
MAXf 0√

MSE
,

SSIM =
(2μf 0μu + c1)(2σf 0u + c2)

(μ2
f 0 + μ2

u + c1)(σ 2
f 0 + σ 2

u + c2)
,

where η is the additive noise vector, n2 is the number of pixels of image, MAXf 0 is the
maximum possible pixel value of the f 0, f̄ is the mean intensity value of f 0, μf 0 is the
mean value of the f 0, μu is the mean value of u, σ 2

f 0 and σ 2
u are the variances of f 0 and u,

respectively, and σf 0u is the covariance of f 0 and u, and c1 and c2 are stabilizing constants
for near-zero denominator values. We will also use the SSIM index map to reveals areas
of high/low similarity between two images; the whiter the SSIM index map, the closer the
two images. Further details on SSIM can be founded in the pioneer work [49].

Four test images, “Cameraman”, “Lena”, “Baboon”, and “Man”, which are commonly used
in the literature, are shown in Fig. 1. We test three kinds of blur, that is, Gaussian blur,
average blur, and motion blur. These different blurring kernels can be builded by the func-
tion “fspecial” in the Matlab. The additive noise is a Gaussian noise in all experiments. In
all tests, we add the Gaussian white noise of different BSNR to the blurred images. In our
experiments, the stopping criterion is that the relative difference between the successive
iteration of the restored image should satisfy the inequality

‖f k+1 – f k‖2

‖f k‖2
≤ 1 × 10–4,

where f k is the computed image at the kth iteration of the tested method. In the following
experiments, for our proposed method, we fixed the parameter α2 = 1.3e–2 for all exper-
iments, α1 = 1e–4 (for Gaussian blur and average blur), 3e–4 (for motion blur), α3 = 1e–4
(for Gaussian blur and average blur), 2e–4 (for motion blur). For the parameters of FastTV
and FNDTV, we refer to [29, 30]. The parameters for every compared method are selected
from many experiments until we obtain the best PSNR values.

Figure 2 shows the experiment for Gaussian blur. We select the “Cameraman” image
(256 × 256) as the test image, which is shown in Figure 1(a). The “Cameraman” image de-
graded by Gaussian blur with blur nucleus 9 ∗ 9 and a noise with BSNR = 35 is shown
in Fig. 2(a). The recovered images by FastTV, FNDTV, and our method are shown in
Fig. 2(b)–(d). To demonstrate the effectiveness of our method more intuitively, we en-
large some part of the three restored images, and the results of enlarged parts are shown
in Fig. 2(e)–(h). We also show the SSIM index maps of the restored images recovered by

Figure 1 Test images
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Figure 2 Results of different methods when restoring blurred and noisy image “Cameraman” degraded by
Gaussian blur with Gaussian blur nucleus 9 ∗ 9 and a noise with BSNR = 35: (a) blurred and noisy image;
(b) restored image by FastTV; (c) restored image by FNDTV; (d) restored image by our method; (e) zoomed
part of (a); (f) zoomed part of (b); (g) zoomed part of (c); (h) zoomed part of (d); (i) SSIM index map of the
corrupted image; (j) SSIM index map of the recovered image by FastTV; (k) SSIM index map of the recovered
image by FNDTV; (l) SSIM index map of the recovered image by our method

the three methods in Fig. 2(i)–(l). The SSIM map of the restored image by the proposed
method is slightly whiter than the SSIM map by FastTV and FNDTV. The values of PSNR
and SSIM by these methods are shown in Table 1. We see that both PSNR and SSIM val-
ues of the restored image by our proposed method are higher than FastTV and FNDTV.
We also plot the changing curve of SSIM versus iterations with three different methods in
Fig. 3. It is not difficult to see that our method can achieve a high SSIM over the other two
methods with a few iterations. In addition, for the restoration effect of other images, we
depict them by PSNRs and SSIMs; see Table 1. It is easy to detect that both of PSNR and
SSIM of the restored image by our method are higher than others obtained by FastTV and
FNDTV.

Figure 4 shows the experiment about the “Lenna” image with size 256 × 256 degraded
by the average blur with length 9 and a noise with BSNR = 35. The degraded “Lenna” im-
age is shown Fig. 4(a). The recovered images by FastTV, FNDTV, and our method are
shown in Fig. 4(b)–(d). More precisely, Fig. 4(e)–(h) displays the same regions of special
interest, which are zoomed in for comparing the performance of the three methods. It is
not difficult to observe that the proposed method can alleviate the staircase phenomenon
better. In addition, the SSIM map of the restored images recovered by the three meth-
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Table 1 Experimental results for different images and different blur kernels, BSNR = 35

Image Blur kernels Fast-TV [26] FNDTV [27] Our

PSNR SSIM PSNR SSIM PSNR SSIM

Cameraman Gaussian(5, 5) 27.0656 0.4399 27.2341 0.4417 27.8678 0.4562
Gaussian(7, 7) 26.1232 0.3992 26.8021 0.4155 27.0689 0.4383
Gaussian(9, 9) 24.9719 0.3807 25.6502 0.4024 26.4150 0.4057

Couple Gaussian(5, 5) 31.3219 0.7337 31.6776 0.7595 32.8470 0.7889
Gaussian(7, 7) 29.9460 0.6767 30.7103 0.6989 31.3003 0.7321
Gaussian(9, 9) 29.2731 0.6694 29.8778 0.6739 30.6027 0.6963

Lenna average(7) 31.3460 0.6673 31.8335 0.6916 32.6287 0.7256
average(9) 30.5242 0.6415 31.0531 0.6541 31.6273 0.6737
average(11) 29.5574 0.6134 30.4395 0.6376 30.9392 0.6481

Goldhill average(7) 28.3139 0.6077 29.2712 0.6188 30.0464 0.6330
average(9) 28.1314 0.5816 28.3268 0.5990 28.5740 0.6023
average(11) 26.8336 0.5244 27.4211 0.5576 27.8857 0.5744

Man motion(20, 20) 29.8667 0.6258 30.1235 0.6622 30.8716 0.6864
motion(10, 100) 30.5363 0.6839 31.2202 0.7130 32.5163 0.7314

Baboon motion(20, 20) 27.4672 0.7968 27.8722 0.8334 28.5560 0.8508
motion(10, 100) 28.8783 0.8213 28.9383 0.8621 29.3343 0.8778

Figure 3 Changes of SSIM value versus iteration number for the three methods about Gaussian blur

ods is shown in Fig. 4(i)–(l). It is easy to see that the SSIM map obtained by the pro-
posed method is slightly whiter than the maps by the other two methods. In Fig. 5, we plot
the changes of SSIM value versus iteration number for the three methods. It can also be
found from the relationship between SSIM values and iteration numbers that our method
requires fewer iterations and the values are superior to the other two methods. These
experiments demonstrate the outstanding performance of our proposed method to over-
come the blocky images while preserving edge details. We also report the PSNR and SSIM
values by these methods in Table 1. The PSNR and SSIM values of the restored image by
our proposed method are higher than those of FastTV and FNDTV.

The experiments about the motion blur are shown in Figs. 6 and 8. On the motion blur,
we do two groups of experiments for different thetas. one group of experiment is added
serious degree of blur that is shown in Fig. 8, the other group of experiment is added
slight degree of blur that is shown in Fig. 6. The recovered images by the three methods
are shown in Figs. 6 and 8(b)–(d), and the enlarged parts are shown in Figs. 6 and 8(e)–
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Figure 4 Results of different methods when restoring blurred and noisy image “Lenna” degraded by average
blur with length 9 and a noise with BSNR = 35: (a) blurred and noisy image; (b) restored image by Fast-TV;
(c) restored image by FNDTV; (d) restored image by our method; (e) zoomed part of (a); (f) zoomed part of (b);
(g) zoomed part of (c); (h) zoomed part of (d); (i) SSIM index map of the corrupted image; (j) SSIM index map
of the recovered image by FastTV; (k) SSIM index map of the recovered image by FNDTV; (l) SSIM index map of
the recovered image by our method

Figure 5 Changes of SSIM value versus iteration number for the three methods about average blur
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Figure 6 Results of different methods when restoring blurred and noisy image “Man” degraded by motion
blur with len = 20 and theta = 20 and a noise with BSNR = 35: (a) blurred and noisy image; (b) restored
image by Fast-TV; (c) restored image by FNDTV; (d) restored image by our method; (e) zoomed part of (a);
(f) zoomed part of (b); (g) zoomed part of (c); (h) zoomed part of (d); (i) SSIM index map of the corrupted
image; (j) SSIM index map of the recovered image by FastTV; (k) SSIM index map of the recovered image by
FNDTV; (l) SSIM index map of the recovered image by our method

(h). We also show the SSIM index maps of the restored images recovered by the three
methods in Figs. 6 and 8(j)–(l). It is easy to see that the SSIM map of the restored image
by the proposed method is slightly whiter than the SSIM map by FastTV and FNDTV. In
Figs. 7 and 9, we plot the changes of SSIMs with iteration number for FastTV method,
FNDTV method, and our method. From Figs. 7 and 9, we can see that our method can get
higher image visual quality and more details than Fast-TV method and FNDTV method.
The values of PSNR and SSIM are listed in Tables 1 and 2. We see that both the PSNR and
SSIM values of the restored image by the proposed method are much better than those
provided by FastTV and FNDTV.

The numerical results of three different methods in terms of PSNR and SSIM are shown
in the following tables. From Tables 1 and 2 it is not difficult to see that the PSNR and
SSIM of the restored image by our proposed method are higher than those obtained by
FastTV and FNDTV.

4 Conclusion
In this paper, we propose a hybrid total variation model. In addition, we employ the alter-
nating direction method of multipliers to solve it. Experimental results demonstrate that
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Figure 7 Changes of SSIM value versus iteration number for the three methods about motion blur with
theta = 20

Figure 8 Results of different methods when restoring blurred and noisy image “Baboon” degraded by
motion blur with len = 10 and theta = 100 and a noise with BSNR = 35: (a) blurred and noisy image;
(b) restored image by FastTV; (c) restored image by FNDTV; (d) restored image by our method; (e) zoomed
part of (a); (f) zoomed part of (b); (g) zoomed part of (c); (h) zoomed part of (d); (i) SSIM index map of the
corrupted image; (j) SSIM index map of the recovered image by FastTV; (k) SSIM index map of the recovered
image by FNDTV; (l) SSIM index map of the recovered image by our method
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Figure 9 Changes of SSIM value versus iteration number for the three methods about motion blur with
theta = 100

Table 2 Experimental results for different images and different blur kernels, BSNR = 40

Image Blur kernels Fast-TV [26] FNDTV [27] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM

cameraman Gaussian(5, 5) 28.6897 0.4841 29.2310 0.5061 29.6541 0.5208
Gaussian(7, 7) 27.4559 0.4427 27.0594 0.4369 27.6590 0.4568
Gaussian(9, 9) 25.6219 0.4068 26.2835 0.4128 27.3563 0.4435

couple Gaussian(5, 5) 32.0301 0.7718 32.8019 0.7942 33.5144 0.8202
Gaussian(7, 7) 31.4577 0.7401 32.0764 0.7610 32.6735 0.7797
Gaussian(9, 9) 30.1657 0.6786 30.9071 0.7011 31.5687 0.7426

lenna average(7) 32.0735 0.7049 32.5344 0.7279 33.3416 0.7526
average(9) 31.0432 0.6500 31.8694 0.6853 32.7793 0.7312
average(11) 30.7127 0.6404 31.0552 0.6586 31.3851 0.6724

goldhill average(7) 30.3156 0.6356 31.1560 0.6576 32.0284 0.6920
average(9) 29.4280 0.6183 30.2251 0.6301 31.4493 0.6656
average(11) 28.3722 0.6082 29.5978 0.6202 30.6778 0.6464

man motion(20, 10) 30.7569 0.6720 31.3522 0.7031 32.6930 0.7559
motion(11, 100) 31.6579 0.7234 32.1598 0.7398 33.3935 0.8044

baboon motion(20, 10) 30.3003 0.8837 30.6833 0.8993 31.5710 0.9128
motion(11, 100) 31.4377 0.9082 31.9844 0.9245 32.5230 0.9323

the proposed model can obtain better results than those restored by some existing restora-
tion methods. It also shows that the new model can obtain a better visual resolution than
the other two methods.
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