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Abstract
In this paper, we propose a numerical scheme for a system of two linear singularly
perturbed parabolic convection-diffusion equations. The presented numerical
scheme consists of a classical backward-Euler scheme on a uniform mesh for the time
discretization and an upwind finite difference scheme on an arbitrary nonuniform
mesh for the spatial discretization. Then, for the time semidiscretization scheme, an a
priori and an a posteriori error estimations in the maximum norm are obtained. It
should be pointed out that the a posteriori error bound is suitable to design an
adaptive algorithm, which is used to generate an adaptive spatial grid. It is proved
that the method converges uniformly in the discrete maximum norm with first-order
time and spatial accuracy, respectively, for the fully discrete scheme. At last, some
numerical results are given to validate the theoretical results.
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1 Introduction
In this paper, we consider the following system of two linear singularly perturbed parabolic
convection-diffusion equations:

⎧
⎪⎪⎨

⎪⎪⎩

Lεu ≡ ∂u
∂t + Lx,εu = f(x, t), (x, t) ∈ Ω × (0, T] ≡ (0, 1) × (0, T],

u(x, 0) = u0(x), x ∈ Ω = [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, T],

(1)

where

Lx,ε ≡
(

–ε1
∂2

∂x2

–ε2
∂2

∂x2

)

+ A

(
∂
∂x

∂
∂x

)

+ B

and

A =

(
a11(x) a12(x)
a21(x) a22(x)

)

, B =

(
b11(x) b12(x)
b21(x) b22(x)

)

.
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Here, 0 < ε1, ε2 � 1 are two small parameters, and f(x, t) = (f1(x, t), f2(x, t))T . In addition,
we will assume that the data satisfies

aii(x) ≥ αi > 0, 1 ≤ i ≤ 2, (2)

with some constants αi (i = 1, 2), and there exists a constant β such that

bij(x) ≤ 0, i �= j,
2∑

j=1

bij(x) ≥ β > 0, 1 ≤ i ≤ 2. (3)

It is well known that the exact solution of problem (1) has a multi-scale character. That
is to say, there are thin layer(s) where the solution changes very rapidly, while away from
the layer(s) the solution varies slowly. Therefore, to obtain a reliable numerical solution
for any values of the diffusion parameters ε1 and ε2, some special precautions, like layer-
adapted meshes or adaptive meshes, are necessary to resolve these layers and achieve high
accuracy no matter how small the diffusion parameters ε1 and ε2 are.

If A ≡ 0, the above problem (1) becomes a system of singularly perturbed parabolic
reaction-diffusion equations. For these problems, some robust convergence numerical
approaches on layer-adapted meshes are available in the literature, e.g., Shishkina and
Shishkin [1, 2], Gracia et al. [3–6], Franklin et al. [7].

If A �≡ 0, the above problem (1) is said to be a system of singularly perturbed parabolic
convection-diffusion equations. Furthermore, when A is a diagonal matrix, problem (1)
is said to be a weakly coupled system (i.e., coupled only through their reaction terms).
Otherwise, problem (1) is called to be a strongly coupled system. As far as we know, sys-
tems of convection-diffusion equations are more delicate to handle, especially for the time-
dependent convection-diffusion systems. Consequently, some researchers paid attention
to the layer adapted mesh methods for some weakly coupled singularly perturbed second-
order ordinary differential equation systems of convection-diffusion type; see [8–12] and
the references therein. Recently, in [13–15], the authors considered some special strongly
coupled system of singularly perturbed convection-diffusion problems and constructed
some corresponding layer-adapted mesh approaches. Very recently, Rao and Srivastava
[16] constructed a parameter uniform numerical method for a weakly coupled linear sys-
tem of singularly perturbed parabolic convection-diffusion equations. As far as we know,
the layer-adapted mesh approach requires a priori information about the location and
width of the boundary layer. Therefore, it is very necessary to provide an adaptive moving
grid approach which only uses little or no a priori information to solve a coupled system
of singularly perturbed convection-diffusion problems.

In order to serve this purpose, Linß[17] constructed an adaptive moving grid method to
solve a strongly coupled system of singularly perturbed second-order two-point boundary
problems. However, he did not give the optimal uniform convergence analysis. For this
reason, Liu and Chen [18] also developed an adaptive moving grid approach for a weakly
coupled singularly perturbed system. They not only constructed a simple mesh monitor
function, but also proved the uniform convergence of the presented numerical method.
Furthermore, Liu and Chen [19] constructed an adaptive moving grid method for a special
strongly coupled system of two singularly perturbed convection-diffusion problems and
obtained an a posteriori error estimation in maximum norm.
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In this paper, we will use some techniques developed in [18] to devise a uniformly con-
vergent numerical scheme for (1) under the restriction that A is a diagonal matrix, which
is also first-order accurate both in time and space direction. It should be pointed out that
our adaptive grid method need not require any a priori information about the location
and width of the boundary layer. Moreover, the monitor function presented in this paper
is similar to arc length function which is easy to design a mesh generation algorithm.

Notations: Throughout this paper we use C, sometimes subscripted, to denote a generic
positive constant that is independent of all perturbation parameters εi, i = 1, 2, and mesh
parameters N , M. It may take different values in different places.

In our estimates, we use the L∞ norm and the negative norm given, respectively, by

∥
∥w(t)

∥
∥∞ = ess sup

t∈[0,1]

∣
∣w(t)

∣
∣, ‖w‖∗ = min

W :W ′=w

∥
∥W (t)

∥
∥∞.

For vector-valued functions v = (v1(t), v2(t))T , set |v| = (|v1(t)|, |v2(t)|)T and ‖v‖∞ =
max{‖v1‖∞,‖v2‖∞}.

A mesh function ϕ := {ϕ(ti)}N
i=0 is a real-valued function. Define the discrete maximum

norm for such functions by ‖ϕ‖∞ = maxi=0,1,...,N |ϕ(ti)|. For vector mesh functions V :=
{(V1(ti), V2(ti))T }N

i=0, we define ‖V‖∞ = max{‖V1‖∞,‖V2‖∞}.

2 The time semidiscretization
In this section, we mainly construct the time semidiscretization scheme which is impor-
tant for the convergence analysis of the fully discrete scheme.

2.1 The semidiscrete scheme in time
First, we divide the time domain [0, T] into M equidistant meshes with uniform time step
�t such that

SM
t = {tn = n�t, n = 0, . . . , M, t0 = 0, tM = T ,�t = T/M},

where M denotes the number of mesh intervals in the time direction.
Then, by using the backward Euler formula, we can obtain the following time semidis-

crete scheme:

⎧
⎪⎪⎨

⎪⎪⎩

u0(x) = u(x, 0) = u0(x), x ∈ Ω ,

un+1(x) + �tLx,εun+1(x) = un(x) + �tf(x, tn+1),

un+1(0) = un+1(1) = 0,

(4)

where un(x) = (un
1(x), un

2(x))T is the semidiscrete numerical solution to the exact solution
u(x, t) = (u1(x, t), u2(x, t))T of the continuous problem (1) at time level tn = n�t.

2.2 Convergence analysis
In the following, to analyze the uniform convergence of the solution un(x) of (4) to the
exact solution u(x, tn) of (1), the maximum principle for equations (4) is established. Then,
using this principle, a stability result is derived.
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Theorem 2.1 (Maximum principle) Assume that (I + �tLx,ε)un+1(x) ≥ 0 in Ω and
un+1(0) ≥ 0, un+1(1) ≥ 0, then un+1(x) ≥ 0 in Ω .

Proof Let un+1
1 (p) = minx∈[0,1] un+1

1 (x) and un+1
2 (q) = minx∈[0,1] un+1

2 (x). Assume without loss
of generality that un+1

1 (p) ≤ un+1
2 (q) if the result of this theorem is not true. In other words,

un+1
1 (p) < 0.
On the one hand, from the hypothesis condition (I + �tLx,ε)un+1(x) ≥ 0, we have

(I + �tLx,ε)un+1(p)

≡
⎛

⎝
un+1

1 (p) – ε1
d2un+1

1 (p)
dx2 + a11(p) dun+1

1 (p)
dx + b11(p)un+1

1 (p) + b12(p)un+1
2 (p) ≥ 0

un+1
2 (p) – ε2

d2un+1
2 (p)

dx2 + a22(p) dun+1
2 (p)
dx + b21(p)un+1

1 (p) + b22(p)un+1
2 (p) ≥ 0

⎞

⎠ .

On the other hand, note that p �= 0, 1 and dun+1
1 (p)
dx = 0, d2un+1

1 (p)
dx2 ≥ 0, then

un+1
1 (p) – ε1

d2un+1
1 (p)

dx2 + a11(p)
dun+1

1 (p)
dx

+ b11(p)un+1
1 (p) + b12(p)un+1

2 (p)

= un+1
1 (p) – ε1

d2un+1
1 (p)

dx2 +
(
b11(p) + b12(p)

)
un+1

1 (p) +
(
un+1

2 (p) – un+1
1 (p)

)
b12(p)

< 0, (5)

which contradicts the hypothesis of the theorem. �

It follows from the above Theorem 2.1 that we can obtain the following Lemma 2.1 (one
can see the proof of Lemma 2.2 in [20]).

Lemma 2.1 If un+1(x) is a solution of problem (4), then we have

∥
∥un+1(x)

∥
∥∞ ≤ C

∥
∥(I + �tLx,ε)un+1(x)

∥
∥∞, x ∈ (0, 1).

Lemma 2.2 Let u be the solution of (1). Then there exists a constant C, independent of ε1

and ε2, such that

∣
∣
∣
∣
∂ i

∂ti uj(x, t)
∣
∣
∣
∣≤ C, (x, t) ∈ Ω × [0, T], i, j = 1, 2.

Proof The proof is similar to Lemma 3 of [16]. �

Let ûn+1(x) = (̂un+1
1 (x), ûn+1

2 (x))T be the solution obtained after one step of the semidis-
crete scheme (4) by taking the exact solution u(x, tn) instead of un(x) as the starting data.
Then we have

⎧
⎨

⎩

ûn+1(x) + �tLx,εûn+1(x) = u(x, tn) + �tf(x, tn+1),

ûn+1(0) = ûn+1(1) = 0.
(6)



Liu et al. Advances in Difference Equations        (2018) 2018:450 Page 5 of 19

Lemma 2.3 Let en+1 = u(x, tn+1)– ûn+1(x) be the local error of the time semi-discrete scheme
(6). Then we obtain

‖en+1‖∞ ≤ C(�t)2. (7)

Proof It follows from (6) that the function vector ûn+1(x) satisfies

(I + �tLx,ε )̂un+1(x) – �tf(x, tn+1) = u(x, tn), (8)

and as the solution u(x, t) is smooth enough, it holds

u(x, tn) = u(x, tn+1) + �tLx,εu(x, tn+1) – �tf(x, tn+1)

+
∫ tn+1

tn

(tn – s)
∂2u
∂s2 (x, s) ds

= (I + �tLx,ε)u(x, tn+1) – �tf(x, tn+1) + O
(
�t2). (9)

Then, from (8)–(9), we obtain

(I + �tLx,ε)en+1 = O
(
�t2),

en+1(0) = en+1(1) = 0.

Therefore, the result of this lemma can be obtained by Lemmas 2.1 and 2.2. �

Finally, based on the above Theorem 2.1, Lemmas 2.1, 2.2, and 2.3, we can obtain the
following convergence result.

Theorem 2.2 Under the hypotheses of Lemmas 2.2 and 2.3, we obtain

sup
n≤T/�t

∥
∥u(x, tn) – un(x)

∥
∥∞ ≤ C�t. (10)

Thus, scheme (4) is uniformly convergent of first order.

3 The spatial discretization and adaptive spatial grid algorithm
3.1 The upwind finite difference scheme
Firstly, for each time level tn = n�t, we construct an arbitrary nonuniform spatial mesh
Ω

n
x as follows:

Ω
n
x =

{
0 = xn

0 < xn
1 < · · · < xn

N = 1
}

,

where n and hn
i = xn

i – xn
i–1 (i = 1, . . . , N ) denote the time level and the spatial step size, re-

spectively. Then, for a given mesh function v(xi, tn) = vn
i , we define the forward, backward,

and center difference operators D+
x , D–

x , and Dx as follows:

D+
x vn

i =
vn

i+1 – vn
i

hn
i+1

, D–
x vn

i =
vn

i – vn
i–1

hn
i

, Dxvn
i =

D+
x vn

i – D–
x vn

i
�

n
i

,

where �
n
i = hn

i +hn
i+1

2 .
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Finally, on Ω
n
x , the upwind finite difference spatial discretization of (4) takes the form

⎧
⎨

⎩

Un+1
i + �tLN

x,εUn+1
i = Un

i + �tf(xn+1
i , tn+1), i = 1, . . . , N – 1,

Un+1
0 = Un+1

N = 0,
(11)

where

LN
x,εUn+1

i = –EDxUn+1
i + An+1

i D–
x Un+1

i + Bn+1
i Un+1

i

is the discretization of the differential operator Lx,ε . Here, Un
i = (Un

1,i, Un
2,i)T is the numer-

ical solution of exact solution u(xi, tn), E = diag(ε1, ε2), An+1
i = A(xn+1

i ), and Bn+1
i = B(xn+1

i ).
Let I be a unit matrix of order two, then scheme (11) can be expanded in the form

⎧
⎨

⎩

r–
i,n+1Un+1

i–1 + rc
i,n+1Un+1

i + r+
i,n+1Un+1

i+1 = ηn
i , i = 1, . . . , N – 1,

Un+1
0 = Un+1

N = 0,
(12)

where

r–
i,n+1 = –

E
hn+1

i �
n+1
i

–
an+1

i �t
hn+1

i
I, r+

i,n+1 = –E
�t

hn+1
i+1 �

n+1
i

,

rc
i,n+1 = I + �tbn+1

i I – r–
i,n+1 – r+

i,n+1, ηn
i = Ũ

(
xn+1

i , tn
)

+ �tf
(
xn+1

i , tn+1
)
,

Ũ(x, tn) = (Ũ1(x, tn), Ũ2(x, tn))T and Ũj(x, tn) is the linear interpolant function through
points (xn

i , Un
j,i), j = 1, 2, i = 0, 1, . . . , N .

3.2 Adaptive spatial grid algorithm
It is well known that a common approach to construct an adaptive grid is the use of a
positive monitor function M(x) and the mesh equidistribution principle. That is to say, a
grid {xi}N

i=0 is chosen to satisfy the following equations:

∫ xi

xi–1

M(s) ds =
1
N

∫ 1

0
M(s) ds, i = 1, . . . , N . (13)

In the literature, for a single singularly perturbed differential equation, a simple monitor
function is the arc-length function M(x) =

√
1 + [u′(x)]2 or its discrete analogue [21–26],

where u(x) is the exact solution of the singularly perturbed problem. Recently, Liu and
Chen [18] presented an adaptive grid method to solve a weakly coupled system of two
singularly perturbed convection-diffusion equations, in which they developed a monitor
function as follows:

M̃(x) =
√

1 + max
x∈[0,1]

{[
Ũ ′

1(x)
]2,

[
Ũ ′

2(x)
]2}, (14)

where Ũj(x) is the piecewise linear interpolant function passing through knots (xi, Uj,i),
j = 1, 2, i = 0, 1, . . . , N . Here, in this paper, similar to (14), we choose the following monitor
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function:

M(x) =

√

1 + max
x∈[0,1]

{[
∂u1(x, tn)

∂x

]2

,
[

∂u2(x, tn)
∂x

]2}

. (15)

In practical computation, the above monitor function (15) may be changed into the fol-
lowing discrete form:

M̃(x) =
√

1 + max
x∈[0,1]

{[(
Ũn

1 (x)
)′]2,

[(
Ũn

2 (x)
)′]2}, (16)

where Ũn
j (x) ∈ C[0, 1] (j = 1, 2) is the piecewise linear interpolant function through the

knots (xn
i , Un

j,i) (i = 0, 1, . . . , N , n = 1, . . . , M).
Therefore, to obtain an adaptive equidistribution grid and the corresponding numerical

solution, we construct the following iteration algorithm:
Step 1. Let n = 1.
Step 2. For k = 0, let {xn,(k)

i = i/N , i = 0, 1, . . . , N} be the initial uniform spatial mesh for
n = 1, otherwise, choose {xn–1

i } for the initial mesh.
Step 3. Compute the discrete solution {Un,(k)

i } satisfying (12) on {xn,(k)
i }. Let hn,(k)

i = xn,(k)
i –

xn,(k)
i–1 for each i. Let

ln,(k)
i = hn,(k)

i

√

1 + max
[(

D–
x Un,(k)

1,i
)2,

(
D–

x Un,(k)
2,i

)2]

=
√
(
hn,(k)

i
)2 + max

[(
Un,(k)

1,i – Un,(k)
1,i–1

)2,
(
Un,(k)

2,i – Un,(k)
2,i–1

)2]

be the max arc-length between the points (xn,(k)
i–1 , Un,(k)

j,i–1 ) and (xn,(k)
i , Un,(k)

j,i ) in the piecewise
linear computed solutions Ũn,(k)

j (x), where j = 1, 2. Then the total max arc-length of the
solution curve Ũn,(k)

j (x) is

Ln,(k) =
N∑

i=1

ln,(k)
i =

N∑

i=1

√
(
hn,(k)

i
)2 + max

[(
Un,(k)

1,i – Un,(k)
1,i–1

)2,
(
Un,(k)

2,i – Un,(k)
2,i–1

)2].

Step 4. Test mesh: Let C0 > 1 be a given constant. If the stopping criterion

max
1≤i≤N

ln,(k)
i

Ln,(k) ≤ C0

N
(17)

holds true, then go to Step 7. Otherwise, continue to Step 5.
Step 5. Generate a new mesh by equidistributing monitor function (16): Choose points

{0 = xn,(k+1)
0 < xn,(k+1)

1 < · · · < xn,(k+1)
N = 1} such that

∫ xn,(k+1)
i

xn,(k+1)
i–1

√

1 + max
x∈[0,1]

{[(
Ũn,k

1 (x)
)′]2,

[(
Ũn,k

2 (x)
)′]2}dx =

Ln,(k)

N
,

where i = 1, . . . , N .
Step 6. Let k = k + 1 and go to Step 3.
Step 7. Choose {xn,k–1

i } as the final mesh {xn
i } and let Un,k–1

j,i = Un
j,i.
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Step 8. Let n = n + 1, return to Step 2.
Step 9. If n = M, go to Step 10.
Step 10. Stop. Un

j,i is the numerical solution, grid for each time level given by {xn
i }.

4 Error analysis
4.1 Preliminary results
For the time semi-discretization scheme (6), the maximum principle implies ‖̂un+1(x)‖∞ ≤
C. Now, we consider the following auxiliary boundary value problem:

(I + �tLx,ε)δn+1(x) = –Lx,εu(x, tn) + f(x, tn+1),

δn+1(0) = δn+1(1) = 0,

whose solution is given by

δn+1(x) =
ûn+1(x) – u(x, tn)

�t
.

From ‖Lx,εu(x, tn)‖∞ ≤ C and the maximum principle, we can obtain

∥
∥δn+1(x)

∥
∥∞ ≤ C, x ∈ [0, 1], n = 0, 1, . . . , M – 1.

Rewriting (6) in the form

⎧
⎨

⎩

Lx,εûn+1(x) = –δn+1(x) + f(x, tn+1),

ûn+1(0) = ûn+1(1) = 0,
(18)

and using Lemma 3.1 of [18], we obtain the following stability result.

Lemma 4.1 Let ûn+1(x) be the solution of problem (18), then we have

∥
∥̂un+1(x)

∥
∥∞ ≤ C

∥
∥Lx,εûn+1(x)

∥
∥∗. (19)

In addition, the simple upwind finite difference scheme of (18) can be written into the
following matrix form:

LN
x,εÛn+1

i = –δn+1(xn+1
i

)
+ f

(
xn+1

i , tn+1
)
, (20)

Ûn+1(0) = 0, Ûn+1(1) = 0, (21)

where Ûn+1
i = (Ûn+1

1,i , Ûn+1
2,i )T is the approximation solution of ûn+1(xn+1

i ). Furthermore,
from Lemma 4.1, we can obtain the following result.

Corollary 4.1 Let ûn+1(x) be the solution of problem (18), Ûn+1
i be the solution of (20) on an

arbitrary nonuniform mesh and Ûn+1(x) be the piecewise linear interpolant function vector
through knots (xn+1

i , Ûn+1
i ). Then we have

∥
∥̂un+1(x) – Ûn+1(x)

∥
∥∞ ≤ C

∥
∥Lx,εûn+1(x) – Lx,εÛn+1(x)

∥
∥∗. (22)
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4.2 A priori error analysis
Based on Corollary 4.1, we get the following a priori error estimation.

Lemma 4.2 For a fixed tn+1 ∈ (0, T], let ûn+1(x) be the solution of problem (18) and Ûn+1
i

be the solution of (20) on an arbitrary nonuniform mesh. Then we have

max
1≤i≤N

∣
∣̂un+1(xn+1

i
)

– Ûn+1
i

∣
∣≤ C max

1≤i≤N

∫ xn+1
i

xn+1
i–1

(
1 + max

1≤j≤2

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx. (23)

Proof It follows from Theorem 5 of [17] that

max
1≤i≤N

∣
∣̂un+1(xn+1

i
)

– Ûn+1
i

∣
∣≤ C max

1≤i≤N

∫ xn+1
i

xn+1
i–1

(

1 +
2∑

j=1

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx

≤ C max
1≤i≤N

∫ xn+1
i

xn+1
i–1

(
1 + max

1≤j≤2

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx, (24)

which completes the proof of this lemma. �

Lemma 4.3 Let ûn+1(x) = (̂un+1
1 (x), ûn+1

2 (x))T be the solution of problem (18). Then there
exists a constant C such that, for all x ∈ [0, 1], we obtain

∣
∣
(
ûn+1

1 (x)
)′∣∣≤ C

(

1 + ε–1
1 exp

(

–
αx
ε1

)

+ ε–1
2 exp

(

–
αx
ε2

))

, (25)

∣
∣
(
ûn+1

2 (x)
)′∣∣≤ C

(

1 + ε–1
2 exp

(

–
αx
ε2

))

, (26)

where α = min(α1,α2) > 0.

Proof Using the results given in Lemmas 3–4 of [8], we can obtain the desired results. �

Based on the above Lemmas 4.2 and 4.3, we can obtain the following convergence result.

Theorem 4.1 For a fixed tn+1 ∈ (0, T], let ûn+1(x) be the solution of (18), Ûn+1
i be the solu-

tion of (20) on a suitable mesh. Then we have

max
1≤i≤N

∣
∣̂un+1(xn+1

i
)

– Ûn+1
i

∣
∣≤ CN–1. (27)

Proof At first, from Lemma 4.3, we have

∫ 1

0

∣
∣
(
ûn+1

1 (x)
)′∣∣dx ≤ C

∫ 1

0

(

1 + ε–1
1 exp

(

–
αx
ε1

)

+ ε–1
2 exp

(

–
αx
ε2

))

dx

= C
(

1 +
1
α

(

1 – exp

(

–
α

ε1

))

+
1
α

(

1 – exp

(

–
α

ε2

)))

≤ C. (28)

Similarly, we have

∫ 1

0

∣
∣
(
ûn+1

2 (x)
)′∣∣dx ≤ C. (29)
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Therefore, for each ûn+1
j (x), j = 1, 2, it follows from (28)–(29) that

1
N

∫ 1

0

(
1 + max

1≤j≤2

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx ≤ CN–1. (30)

Assume that a mesh {xn+1
i }N

i=0 is constructed such that

∫ xn+1
i

xn+1
i–1

(
1 + max

1≤j≤2

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx =
1
N

∫ 1

0

(
1 + max

1≤j≤2

∣
∣
(
ûn+1

j (x)
)′∣∣
)

dx (31)

for i = 1, . . . , N .
Finally, the desired estimate (27) follows from Lemma 4.2, (30) and (31). �

Remark 1 Theorem 4.1 gives the optimal first-order convergence of the upwind finite dif-
ference scheme uniformly in the perturbation parameters εi (i = 1, 2). However, it is hard
to obtain the adaptive mesh {xn+1

i }N
i=0 by using mesh equidistribution formula (31) since

this requires the prior information about the exact solution. Thus, in practical compu-
tation, we often utilize an a posteriori error estimation and the corresponding monitor
function to design a mesh generation algorithm.

4.3 A posteriori error analysis
Based on the above Lemma 4.1, we can obtain an a posteriori error estimation for the
numerical scheme (20) at time level tn+1 = (n + 1)�t.

Theorem 4.2 For a fixed tn+1 ∈ (0, T], let ûn+1(x) be the solution of (18), Ûn+1
i be the so-

lution of (20) on an arbitrary nonuniform mesh and Ûn+1(x) be the piecewise linear inter-
polant function vector through knots (xn+1

i , Ûn+1
i ). Then we have

∥
∥̂un+1(x) – Ûn+1(x)

∥
∥∞ ≤ C

{
max

1≤i≤N
hn+1

i max
1≤j≤2

∣
∣D–

x Ûn+1
j,i

∣
∣ + max

1≤i≤N
hn+1

i

}
. (32)

Proof From the proof of Theorems 3 and 6 in [17], an easy derivation gives

∥
∥̂un+1(x) – Ûn+1(x)

∥
∥∞ ≤ C max

1≤i≤N
hn+1

i

(

1 +
2∑

j=1

∣
∣D–

x Ûn+1
j,i

∣
∣

)

. (33)

It is clear that

2∑

j=1

∣
∣D–

x Ûn+1
j,i

∣
∣≤ 2 max

1≤j≤2

∣
∣D–

x Ûn+1
j,i

∣
∣. (34)

From (33)–(34), we can complete the proof of this theorem. �

Furthermore, similar to Theorem 4.1 of [18], we obtain the following result.

Theorem 4.3 Let ûn+1(x) be the solution of problem (18) and Ûn+1
i be the solution of discrete

system (20). Then we have the following bounds:

max
1≤i≤N

∣
∣̂un+1(xi) – Ûn+1

i
∣
∣≤ CN–1, n = 0, 1, . . . , M – 1. (35)
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At last, we give the ε-uniform convergence of the fully discrete scheme (11) on the adap-
tive mesh produced by equidistributing the monitor function (16).

Theorem 4.4 Let u(x, t) be the exact solution of (1), and {Un
i } be the discrete solution of

the fully discrete scheme (11) at time level t = n�t. Assume that N–q ≤ C�t with 0 < q < 1.
Then the error associated to the fully discrete scheme (11) at time level tn satisfies

max
1≤i≤N

max
0≤n≤M

∣
∣u
(
xn

i , tn
)

– Un
i
∣
∣≤ C

(
�t + N–1+q). (36)

Proof The proof is similar to Theorem 4.7 of [27]. �

5 Numerical examples and discussion
In this section, we show the numerical results of two examples to verify the theoretical
results. For comparison purposes, we use the presented full discretization scheme (11) on
the piecewise-uniform Shishkin mesh, which is constructed as follows.

We define the transition parameters τε1 and τε2 as

τε2 = min

{
1
2

,
2ε2

α
ln N

}

and τε1 = min

{
1
4

,
τε2

2
,

2ε1

α
ln N

}

, (37)

where we assume that the perturbation parameters ε1, ε2 satisfy 0 < ε1 ≤ ε2. A piecewise-
uniform Shishkin mesh is obtained by dividing the spatial domain [0, 1] into three intervals
such as [0, 1 – τ2], [1 – τ2, 1 – τ1], and [1 – τ1, 1]. Then divide [1 – τ1, 1] into N/2 mesh
intervals, and divide each of the other two intervals into N/4 mesh intervals, respectively.

For all the numerical experiments below, we will fix C0 = 1.2, which is defined in (17).
Furthermore, we begin with N = 32 and �t = 0.05, and we multiply N by two and divide
�t by two. As the exact solution of the following two examples are known, for each ε1 and
ε2, the maximum pointwise error is given by

EN ,M
ε1,ε2 =

∥
∥u

(
xn

i , tn
)

– Un
i
∥
∥∞, (38)

where u(xn
i , tn) and Un

i respectively indicate the exact and the numerical solution at xi and
tn = n�t. From these values, we compute the corresponding order of convergence by

rN ,M
ε1,ε2 = log2

( EN ,M
ε1,ε2

E2N ,2M
ε1,ε2

)

. (39)

Example 5.1 Consider the following constant coefficient problem:

⎧
⎨

⎩

∂u1
∂t – ε1

∂2u1
∂x2 + ∂u1

∂x + u1 – u2 = f1(x, t),
∂u2
∂t – ε2

∂2u2
∂x2 + 2 ∂u2

∂x – u1 + u2 = f2(x, t),
(40)

with the initial boundary value conditions

u1(x, 0) = u2(x, 0) = 0, 0 < x < 1,

ui(0, t) = ui(1, t) = 0, 0 ≤ t ≤ 1, i = 1, 2.
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We choose the source functions f1(x, t) and f2(x, t) to fit with the exact solution

u1(x, t) = t(C1 + C2x – exp
(
–(1 – x)/ε1

)
,

u2(x, t) = t(C3 + C4x – exp
(
–(1 – x)/ε2

)
,

where C1 = exp(–1/ε1), C2 = 1 – C1, C3 = exp(–1/ε2), C4 = 1 – C3.
For different ε1 and ε2, the maximum pointwise errors EN ,M

ε1,ε2 and the corresponding or-
ders of convergence rN ,M

ε1,ε2 for Example 5.1 are listed in Tables 1–4, respectively. It is shown
from the numerical results of Tables 1–4 that the presented adaptive grid approach is
uniform first-order convergence. These numerical results are also in agreement with the
theoretical estimation.

Table 1 Maximum error EN,Mε1,ε2 for Example 5.1 using the adaptive grid method with ε1 = 10–2

ε2 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160 512/ 1
320

10–2 1.4250e–01 7.9154e–02 4.0946e–02 1.9700e–02 1.0618e–02
10–3 1.1938e–01 7.1365e–02 4.0316e–02 2.1692e–02 1.1134e–02
10–4 1.6654e–01 9.3826e–02 5.4498e–02 2.7184e–02 1.3513e–02
10–5 1.8941e–01 1.1599e–01 6.5234e–02 3.2013e–02 1.7915e–02
10–6 2.1617e–01 1.4118e–01 7.4591e–02 3.9796e–02 2.0694e–02
10–7 2.4067e–01 1.3939e–01 7.0974e–02 4.2329e–02 2.3750e–02

Table 2 Rate of convergence rN,Mε1,ε2 for Example 5.1 using the adaptive grid method with ε1 = 10–2

ε2 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160

10–2 0.8482 0.9509 1.0555 0.8917
10–3 0.7423 0.8239 0.8942 0.9622
10–4 0.8278 0.7838 1.0034 1.0084
10–5 0.7075 0.8303 1.0270 0.8375
10–6 0.6146 0.9205 0.9064 0.9434
10–7 0.7879 0.9738 0.7456 0.8337

Table 3 Maximum error EN,Mε for Example 5.1 using the adaptive grid method with ε2 = 10–2

ε1 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160 512/ 1
320

10–3 1.5659e–01 9.0728e–02 4.9472e–02 2.5685e–02 1.3157e–02
10–4 1.6708e–01 9.6715e–02 5.2283e–02 2.7677e–02 1.4250e–02
10–5 1.8039e–01 9.7457e–02 5.2987e–02 2.8267e–02 1.5248e–02
10–6 1.7981e–01 9.7493e–02 5.3310e–02 2.8267e–02 1.6714e–02
10–7 1.8023e–01 1.0099e–01 5.3679e–02 2.8865e–02 1.6969e–02

Table 4 Rate of convergence rN,Mε1,ε2 for Example 5.1 using the adaptive grid method with ε2 = 10–2

ε1 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
60 256/ 1

160

10–3 0.7874 0.8749 0.9457 0.9651
10–4 0.7887 0.8874 0.9177 0.9577
10–5 0.8883 0.8791 0.9065 0.8905
10–6 0.8831 0.8709 0.9153 0.7581
10–7 0.8356 0.9118 0.8950 0.7664
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Figure 1 Grid movement of the algorithm for Example 5.1 with N = 32, M = 20, ε1 = 10–2, and ε2 = 10–4

Figure 2 Numerical solution of Example 5.1 for N =M = 64, ε1 = 10–4, and ε2 = 10–6

Again, to illustrate the mesh generation algorithm presented in this paper, Fig. 1 shows
the final mesh obtained by the above algorithm at every time level, where Fig. 1 should be
read from bottom to top. The numerical solution and exact solution of Example 5.1 for
N = M = 64, ε1 = 10–4, and ε2 = 10–6 are plotted in Figs. 2–3, respectively. These figures
show the existence of the boundary layer near x = 1. Furthermore, the maximum pointwise
errors are plotted in log-log scale in Fig. 4, which reflect the fact of first-order convergence
independent of ε1 and ε2.

Finally, in order to illustrate the advantage of our presented adaptive grid method, we
have also compared the numerical results using adaptive grid to the numerical results of
the Shishkin mesh, which is shown in Table 5 for Example 5.1. Here, to obtain the com-
putational results of Shishkin mesh, we choose α = 1. Obviously, one can see from Table 5
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Figure 3 Exact solution of Example 5.1 for N =M = 64, ε1 = 10–4, and ε2 = 10–6

Figure 4 Loglog plot of the maximum error of the solution for Example 5.1 with ε1 = 10–2

Table 5 Comparison of numerical results of Example 5.1 with Shishkin mesh with ε2 = 10–2

N/�t ε1 = 10–4 ε1 = 10–6

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh

32/ 1
20 4.8924e–01 1.6708e–01 4.9039e–01 1.7981e–01

0.0917 0.7887 0.0920 0.8831
64/ 1

40 4.5911e–01 9.6715e–02 4.6011e–01 9.7493e–02
0.0354 0.8874 0.0357 0.8709

128/ 1
80 4.4799e–01 5.2283e–02 4.4885e–01 5.3310e–02

0.0151 0.9177 0.0154 0.9153
256/ 1

160 4.4334e–01 2.7677e–02 4.4409e–01 2.8267e–02
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that the maximum errors and the corresponding convergence orders calculated on our
presented adaptive grid are lower than those calculated by using Shishkin mesh.

Example 5.2 Consider the following variable coefficient problem:

⎧
⎨

⎩

∂u1
∂t – ε1

∂2u1
∂x2 + x ∂u1

∂x + 2(1 + x)2u1 – (1 + x3)u2 = f1(x, t),
∂u2
∂t – ε2

∂2u2
∂x2 + x2 ∂u2

∂x – 2xu1 + 4 exp(1 – x)u2 = f2(x, t),
(41)

with the initial boundary value conditions

u1(x, 0) = C1 + C2x – exp
(
–(1 – x)/ε1

)
, 0 < x < 1,

u2(x, 0) = C3 + C4x – exp
(
–(1 – x)/ε2

)
, 0 < x < 1,

ui(0, t) = ui(1, t) = 0, 0 ≤ t ≤ 1, i = 1, 2.

We choose the source functions f1(x, t) and f2(x, t) to fit with the exact solution

u1(x, t) = exp(–t)(C1 + C2x – exp
(
–(1 – x)/ε1

)
,

u2(x, t) = exp(–t)(C3 + C4x – exp
(
–(1 – x)/ε2

)
,

where C1 = exp(–1/ε1), C2 = 1 – C1, C3 = exp(–1/ε2), C4 = 1 – C3.
For different values of ε1 and ε2, the maximum pointwise errors EN ,M

ε1,ε2 for Example 5.2
are given in Tables 6 and 8, and the corresponding orders of convergence rN ,M

ε1,ε2 are listed
in Tables 7 and 9, respectively.

Again, to illustrate the characteristic of our adaptive grid approach, the grid movement
of the algorithm for Example 5.2 with N = 32, M = 20, ε1 = 10–2, and ε2 = 10–4 is shown in

Table 6 Maximum error EN,Mε for Example 5.2 using the adaptive grid method with ε1 = 10–2

ε2 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160 512/ 1
320

10–2 7.5287e–02 4.7758e–02 2.7686e–02 1.5234e–02 7.9016e–03
10–3 8.0020e–02 4.9508e–02 2.9305e–02 1.6339e–02 8.6897e–03
10–4 1.1255e–01 6.8986e–02 3.9675e–02 2.1337e–02 1.0733e–02
10–5 1.2378e–01 8.0042e–02 4.5942e–02 2.6356e–02 1.5532e–02
10–6 1.2592e–01 8.2114e–02 4.8879e–02 2.7391e–02 1.5791e–02
10–7 1.2119e–01 7.6072e–02 4.8654e–02 2.8021e–02 1.7446e–02

Table 7 Rate of convergence rN,Mε1,ε2 for Example 5.2 using the adaptive grid method with ε1 = 10–2

ε2 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160

10–2 0.6567 0.7866 0.8619 0.9471
10–3 0.6927 0.7566 0.8428 0.9109
10–4 0.7062 0.7981 0.8949 0.9913
10–5 0.6289 0.8009 0.8017 0.7629
10–6 0.6168 0.7484 0.8355 0.7946
10–7 0.6718 0.6448 0.7960 0.6836



Liu et al. Advances in Difference Equations        (2018) 2018:450 Page 16 of 19

Table 8 Maximum error EN,Mε for Example 5.2 using the adaptive grid method with ε2 = 10–2

ε1 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160 512/ 1
320

10–3 8.5765e–02 5.4978e–02 3.2185e–02 1.7851e–02 9.4792e–03
10–4 1.0625e–01 6.7554e–02 3.9103e–02 2.1170e–02 1.0681e–02
10–5 1.1804e–01 7.8694e–02 4.5355e–02 2.6197e–02 1.4536e–02
10–6 1.1955e–01 8.0068e–02 4.7762e–02 2.7255e–02 1.5683e–02
10–7 1.1639e–01 7.4345e–02 4.9340e–02 2.8595e–02 1.7408e–02

Table 9 Rate of convergence rN,Mε1,ε2 for Example 5.2 using the adaptive grid method with ε2 = 10–2

ε1 Number of intervals N/time size �t

32/ 1
20 64/ 1

40 128/ 1
80 256/ 1

160

10–3 0.6415 0.7725 0.8504 0.9132
10–4 0.6533 0.7888 0.8853 0.9870
10–5 0.5850 0.7950 0.7919 0.8498
10–6 0.5783 0.7454 0.8093 0.7973
10–7 0.6467 0.5915 0.7870 0.7360

Figure 5 Grid movement of the algorithm for Example 5.2 with N = 32, M = 20, ε1 = 10–2, and ε2 = 10–4

Fig. 5. In Figs. 6–7, the numerical solution and exact solution of Example 5.2 for N = M =
64, ε1 = 10–2, and ε2 = 10–4 are plotted, respectively. Moreover, the maximum pointwise
errors for Example 5.2 are plotted in Fig. 8, which shows that the order of convergence of
our adaptive grid method is first-order.

Similarly, Table 10 also gives the maximum errors and the corresponding convergence
orders obtained using the adaptive mesh approach, while we also list the results computed
on Shishkin mesh, where we choose α = 1. It is shown from these results that the adaptive
mesh method produces better results than those produced by using the Shishkin mesh. In
summary, the adaptive grid method is quite successful for solving a system of singularly
perturbed parabolic convection-diffusion equations.
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Figure 6 Numerical solution of Example 5.2 for N =M = 64, ε1 = 10–2, and ε2 = 10–4

Figure 7 Exact solution of Example 5.2 for N =M = 64, ε1 = 10–2, and ε2 = 10–4

6 Concluding
In this paper, we have discussed an adaptive grid method for a coupled system of two sin-
gularly perturbed parabolic convection-diffusion equations. We first apply the backward-
Euler scheme to discretize problem (1) with respect to time derivative and the upwind
finite difference scheme on an arbitrary nonuniform mesh to approximate the spatial
derivative. Then, at each time level tn = n�t, a positive monitor function given in (16)
is used to design an adaptive grid generation algorithm. An a posteriori error estimate for
the proposed numerical scheme is obtained. We also establish that the presented adaptive
grid approach is of first-order rate of convergence in both the spatial and temporal vari-
ables. Finally, some numerical results are conducted to support the theoretical results and
also, to demonstrate the effectiveness of the adaptive spatial grid obtained by the above
mesh generation algorithm.
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Figure 8 Loglog plot of the maximum error of the solution for Example 5.2 with ε1 = 10–2

Table 10 Comparison of numerical results of Example 5.2 with Shishkin mesh with ε2 = 10–2

N/�t ε1 = 10–4 ε1 = 10–6

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh

32/ 1
20 9.1770e–02 1.0625e–01 9.2836e–02 1.7981e–01

0.5076 0.6533 0.4936 0.5783
64/ 1

40 6.4546e–02 6.7754e–02 6.5938e–02 9.7493e–02
0.6481 0.7888 0.6587 0.7454

128/ 1
80 4.1187e–02 3.9103e–02 4.1769e–02 5.3310e–02

0.7238 0.8853 0.7118 0.8093
256/ 1

160 2.4938e–02 2.1170e–02 2.5503e–02 2.8267e–02
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