
Bin Jebreen et al. Advances in Difference Equations        (2018) 2018:448 
https://doi.org/10.1186/s13662-018-1906-2

R E S E A R C H Open Access

Approximation by quaternion
(p, q)-Bernstein polynomials and
Voronovskaja type result on compact disk
Haifa Bin Jebreen1, Mohammad Mursaleen2* and Ambreen Naaz2

*Correspondence:
mursaleenm@gmail.com
2Department of Mathematics,
Aligarh Muslim University, Aligarh,
India
Full list of author information is
available at the end of the article

Abstract
In this paper, we define the (p,q)-Bernstein polynomials of degreem of a quaternion
variable. We obtain some approximation results, and also the Voronovskaja type result
with quantitative upper estimates is proved.

MSC: 41A10; 41A25; 41A36

Keywords: Quaternion; (p,q)-Bernstein-polynomials; Order of approximation;
Analytic functions; Voronovskaja type results; Compact disk

1 Introduction
The quaternion field is an extension of the class of complex numbers, i.e., C ⊂ H. It is a
non-commutative field defined by

H = {w = y1 + y2i + y3j + y4k : y1, y2, y3, y4 ∈R},

where the complex units i, j, k /∈R satisfy

i2 = j2 = k2 = –1, ij = –ji = k, jk = –kj = i, ki = –ik = j.

For ω = y1 + y2i + y3j + y4k, the norm is defined as ‖w‖ =
√

y2
1 + y2

2 + y2
3 + y2

4 on H.
We need to give some basic details of analyticity of a function of quaternion variable and

some properties of (p, q)-calculus for our purpose.

Definition 1.1 (see Gal [7], p. 296) A function G : DR −→ H is left Weierstrass analytic
(or left W-analytic) in DR if G(w) =

∑∞
l=0 clwl for all w ∈DR, where DR denotes the open

ball, i.e., DR = {w ∈H : ‖w‖ < R} and cl ∈ H for all l = 0, 1, 2, . . . . Similarly, G is called right
W-analytic in DR if G(w) =

∑∞
l=0 wlcl for all w ∈DR.

It is understood here that in any closed ball Dr = {ω ∈ H : ‖w‖ ≤ r}, 0 < r < R, the partial
sums

∑n
l=0 clwl and

∑n
l=0 wlcl converge to G uniformly, with respect to the metric d(w, z) =

‖w – z‖.
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Remark The two concepts given in Definition 1.1 coincide with the Weierstrass type
analyticity in the case of complex variable and that is equivalent to the holomorphy
concept given by Cauchy. Also, it is better known that the only functions of the trivial
form G(w) = Cw + D are analytic in the Cauchy sense in the case of quaternion variable
(Mejlihzon [17]), while the classic classes of left (or right) monogenic functions at each
w = y1 + y2i + y3j + y4k ∈ DR ⊂ H were introduced by Moisil [18] as the class of functions
G = G1 + G2i + G3j + G4k satisfying TG(w) = 0 (or GT(w) = 0 respectively) at each w ∈ DR,
where T = ∂

∂y1
+ ∂

∂y2
i + ∂

∂y3
j + ∂

∂y4
k does not coincide with the class of left W-analytic (or

right W-analytic, respectively) function defined in Definition 1.1. For more details con-
cerning the properties of the left (or right) W-analytic functions, see [11], [10].

Many authors have worked on q-analogue of different operators, for instance, in [9, 23,
25, 26]. Recently in several areas of mathematical sciences the (p, q)-calculus has many
interesting applications (see [5, 12, 16]). For p = 1, the notion of (p, q)-calculus is reduced
to q-calculus and the transition from the q-case to the (p, q)-case with an extra param-
eter p is fairly straightforward. One advantage of using the parameter p has been men-
tioned in approximation by (p, q) Lorentz operators in compact disk [20]. For more (p, q)-
approximation, we refer to [1–4, 13–15] and [27].

Most recently, Mursaleen et al. introduced and studied approximation properties of
the (p, q)-analogues of many well-known operators, such as Bernstein operators [19],
Lorentz operators on compact disk [20], Bleimann–Butzar–Hahn operators [21], divided-
difference and Bernstein operators [22], and many more.

Now recall some notations and definitions on (p, q)-calculus.
For 0 < q < p and any positive integer m, (p, q) integers are defined as

[m]p,q =

⎧
⎨
⎩

pm–qm

p–q , p �= q,

m, p = q = 1.

The (p, q)-binomial expansion is defined as

(ax + by)m
p,q =

m∑
k=0

p
(m–k)(m–k–1)

2 q
k(k–1)

2

(
m
k

)

p,q
am–kbkxm–kyk ,

(x + y)m
p,q = (x + y)(px + qy)(px + qy)

(
p2x + q2y

) · · · (pn–1x + qn–1y
)
,

(1 – x)m
p,q = (1 – x)(p – qx)

(
p2 – q2x

) · · · (pn–1 – qn–1x
)
,

and for the integers 0 ≤ k ≤ m, (p, q)-binomial coefficients are defined by

(
m
k

)

p,q
=

[m]p,q!
[k]p,q![m – k]p,q!

,

where

[m]p,q! = [m]p,q[m – 1]p,q · · · [1]p,q.
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The (p, q)-analogue of Bernstein operators is defined as follows [22]:

Bm
p,q(f ; x) =

1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

k(k–1)
2 f

(
[k]p,q

pk–n[n]p,q

)
xk

m–k–1∏
s=0

(
ps – qsx

)
. (1.1)

The Euler identity is defined by

m–1∏
s=0

(
ps – qsx

)
=

m∑
k=0

p
(m–k)(m–k–1)

2 q
k(k–1)

2

(
m
k

)

p,q
xk . (1.2)

We introduce the following.

Definition 1.2 Let q > p ≥ 1 and R > 1. For a function G : DR −→ H, because of non-
commutativity, we define three distinct (p, q)-Bernstein polynomials of a quaternion vari-
able:

Bm
p,q(G)(w) =

1

p
m(m–1)

2

m∑
l=0

G
(

[l]p,q

pl–m[m]p,q

)(
m
l

)

p,q
p

l(l–1)
2 wl

m–1–l∏
s=0

(
ps – qsw

)
, w ∈ H,

Bm∗
p,q (G)(w) =

1

p
m(m–1)

2

m∑
l=0

(
m
l

)

p,q
p

l(l–1)
2 wl

m–1–l∏
s=0

(
ps – qsw

)
G

(
[l]p,q

pl–m[m]p,q

)
, w ∈H,

Bm∗∗
p,q (G)(w) =

1

p
m(m–1)

2

m∑
l=0

(
m
l

)

p,q
p

l(l–1)
2 wlG

(
[l]p,q

pl–m[m]p,q

) m–1–l∏
s=0

(
ps – qsw

)
, w ∈H,

by labeling them as the left (p, q)-Bernstein polynomials, the right (p, q)-Bernstein poly-
nomials, and the middle (p, q)-Bernstein polynomials, respectively.

2 Approximation results
Firstly, we show that for any continuous function G these three kinds of (p, q)-Bernstein
polynomials do not converge. For example, if we take G = iwi, we get easily

∥∥Bm
p,q(G)(w) – iwi

∥∥ =
∥∥Bm∗

p,q (G)(w) – iwi
∥∥ =

∥∥Bm∗∗
p,q (G)(w) – iwi

∥∥

= ‖–w – iwi‖ = ‖–iw + wi‖ > 0 for all w �= i.

We can obtain convergence result for the classes of functions in Definition 1.1. For this
we need some auxiliary results for (p, q)-operators in complex plane similar as done in [28]
for q-operators.

Lemma 2.1 Let q ≥ p ≥ 1 be fixed. Then, for n ≥ 2,

Bm
p,q

(
tn, w

)
= c1w + c2w2 + · · · + ciwi, i = min(n, m), (2.1)
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where cj ≥ 0 (j = 1, 2, . . . , i) and c1 + c2 + · · · + ci = 1. Besides, if m ≥ n, then

cn =
n–1∏
j=1

(
1 – pm–j [j]p,q

[m]p,q

)
,

cn–1 =
[1]p,q + [2]p,q + · · · + [n – 1]p,q

[m]p,q

n–2∏
j=1

(
1 – pm–j [j]p,q

[m]p,q

)
.

(2.2)

Also, for any r ≥ 1,

∥∥Bm
p,q

(
tn, w

)
– wn∥∥ ≤ 2(n – 1)[n – 1]p,qrn for ‖w‖ ≤ r. (2.3)

Proof The proof is simple, one can prove this lemma with the help of Lemma 3 of [24]. So
we skip it. �

Lemma 2.2 Let c1, c2, . . . , ck ∈ (0, 1). Then

1 –
k∏

i=1

(1 – ci) ≤
k∑

i=1

ci (2.4)

and

∥∥∥∥∥1 –
k∏

i=1

(1 – ci) –
k∑

i=1

ci

∥∥∥∥∥ ≤
∑

1≤i<j≤k

cicj. (2.5)

Proof For the proof, see (Wang [28], Lemma 2). �

Lemma 2.3 Let q ≥ p ≥ 1 be fixed. If m ≥ n ≥ 2 and r ≥ 1, then for any w, ‖w‖ ≤ r,

∥∥[m]p,q
(
Bm

p,q
(
tn, w

)
– wn) –

(
[1]p,q + [2]p,q + · · · + [n – 1]p,q

)(
wn–1 – wn)∥∥

≤ 4pm–n+1(n – 1)2[n – 1]2
p,q

[m]p,q
rn. (2.6)

Proof It follows from (2.1) and (2.2) that, for ‖w‖ ≤ r,

K =
∥∥[m]p,q

(
Bm

p,q
(
tn, w

)
– wn) –

(
[1]p,q + [2]p,q + · · · + [n – 1]p,q

)(
wn–1 – wn)∥∥

≤ rn[m]p,q

n–2∑
i=1

ci + rn

∥∥∥∥∥[m]p,qcn–1 –
n–1∑
i=1

[i]p,q

∥∥∥∥∥ +

∥∥∥∥∥[m]p,q(1 – cn) –
n–1∑
i=1

[i]p,q

∥∥∥∥∥

= rn[m]p,q(1 – cn – cn–1) + rn

∥∥∥∥∥[m]p,qcn–1 –
n–1∑
i=1

[i]p,q

∥∥∥∥∥ +

∥∥∥∥∥[m]p,q(1 – cn) –
n–1∑
i=1

[i]p,q

∥∥∥∥∥

≤ 2rn

∥∥∥∥∥[m]p,qcn–1 –
n–1∑
i=1

[i]p,q

∥∥∥∥∥ +

∥∥∥∥∥[m]p,q(1 – cn) –
n–1∑
i=1

[i]p,q

∥∥∥∥∥

= 2rn

( n–1∑
i=1

[i]p,q

)(
1 –

n–2∏
i=1

(
1 – pm–i [i]p,q

[m]p,q

))
)
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+ 2rn[m]p,q

∥∥∥∥∥1 –
n–2∏
i=1

(
1 – pm–i [i]p,q

[m]p,q

)
) –

n–1∑
i=1

[i]p,q

[m]p,q

∥∥∥∥∥.

Using (2.4) and (2.5), we get

K ≤ 2rn

( n–1∑
i=1

[i]p,q

)( n–2∑
i=1

pm–i[i]p,q

[m]p,q

)
+ 2rn

∑
1≤i<j≤n–1

pm–i[i]p,q

[m]p,q

[j]p,q

[m]p,q

≤ 4pm–n+1(n – 1)2[n – 1]2
p,q

[m]p,q
rn.

Hence the lemma is proved. �

Theorem 2.4 Let q > p ≥ 1. Suppose that G : DR −→ H such that G(w) ∈ R for all w ∈
[0, 1]. We have the following representation formula:

Bm
p,q(G)(w) =

1

p
m(m–1)

2

m∑
n=0

(
m
n

)

p,q
p

(m–n)(m–n–1)
2

[
�n G(0)

]
p,qwn for all w ∈H,

where [�k G(0)]p,q =
∑n

k=0(–1)kp
(n–k)(n–k–1)

2 q
k(k–1)

2
(n

k
)

p,qG(n – k).

Proof In the expression of Bm
p,q(G)(w), the real values G( [l]p,q

pl–m[m]p,q
) commute with the

other terms. As we take the condition on G , so that wl ∏m–1–l
s=0 (ps – qsw) =

∏m–1–l
s=0 (ps –

qsw)wl,αw = wα, for all α ∈ R, w ∈ D and that we can interchange the order of terms in
the product

∏m–1–l
s=0 (ps – qsw). By the same reason in the case of (p, q)-Bernstein polynomi-

als of real variable [22], we obtain that the coefficient of wm in the expression of Bm
p,q(G)(w)

is

Bm
p,q(G)(w) =

1

p
m(m–1)

2

m∑
n=0

(
m
n

)

p,q
p

(n)(n–1)
2 G

(
[l]p,q

pl–m[m]p,q

)
wn

m–n–l∏
s=0

(
ps – qsw

)
.

By using the Euler identity based on (p, q)-analogue, we get the required result. �

Remark Clearly, Theorem 2.4 holds also for middle (p, q)-Bernstein operators Bm∗∗
p,q (G)(w)

and right (p, q)-Bernstein operators Bm∗
p,q (G)(w). In [7] and [8] upper estimates by q-

Bernstein operators, q ≥ 1, of quaternion variable were proved.

Theorem 2.5 (Gal [7]) Suppose that G : DR −→ H is left W-analytic in DR. Then, for all
1 ≤ r < R,‖w‖ ≤ r, and m ∈N, we have

∥∥Bm(G)(w) – G(w)
∥∥ ≤ 2

m

∞∑
k=2

‖ck‖k(k – 1)rk = O(1/m).

Theorem 2.6 (Gal [8]) Let 1 < q < R and suppose that G : DR −→H is left W-analytic in
DR. Then, for all 1 ≤ r < R

q ,‖w‖ ≤ r, and m ∈ N, we have

∥∥Bm
q (G)(w) – G(w)

∥∥ ≤ 2
(q – 1)[m]q

∞∑
k=1

‖ck‖k(qr)k = O
(
1/qm)

.
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Remark By the right Bernstein polynomials Bm∗
q (G)(w), a similar upper estimate in ap-

proximation can be obtained if G is supposed to be right W-analytic for q ≥ 1.

Theorem 2.7 Let R > q > p > 1 and G : DR −→ H be left W-analytic in DR, i.e., G(w) =∑∞
i=0 ciwi for all w ∈DR, where ci ∈H for all i = 0, 1, 2, . . . . Then, for all 1 < r < pR

q , ‖w‖ ≤ r,
and m ∈N, we have

∥∥Bm
p,q(G)(w) – G(w)

∥∥ ≤ 2pm

[m]p,q

∞∑
i=0

‖ci‖i[i – 1]p,qri = O(p/q)m.

Proof Denoting ei(w) = wi. Firstly we will show that

Bm
p,q(G)(w) =

∞∑
i=0

ciBm
p,q(ei)(w) for all ‖w‖ ≤ r. (2.7)

Here Gn(w) =
∑n

i=0 ciei(w), n ∈ N, is the partial sum of the expansion of G , due to the lin-
earity of Bm

p,q, we get

Bm
p,q(Gn)(w) =

n∑
i=0

ciBm
p,q(ei)(w) for all ‖w‖ ≤ r,

it is enough to prove that limn−→∞ Bm
p,q(Gn)(w) = Bm

p,q(G)(w) for all ‖w‖ ≤ r and m ∈N.
By Theorem 2.4 we have

Bm
p,q(Gn)(w) =

1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

[
�k Gn(0)

]
p,qek(w),

for all m, n ∈ N and ‖w‖ ≤R, it follows

∥∥Bm
p,q(Gn)(w) – Bm

p,q(G)(w)
∥∥

≤ 1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

∥∥[(
�k Gn – G

)
(0)

]
p,q

∥∥.
∥∥ek(w)

∥∥

≤ 1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

×
k∑

j=0

(–1)jp
(k–j)(k–j–1)

2 q
j(j–1)

2

(
k
j

)

p,q

∥∥∥∥(Gn – G)
(

pm–k+j[k – j]p,q

[m]p,q

)∥∥∥∥.
∥∥em(w)

∥∥

≤ 1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

k∑
j=0

p
(k–j)(k–j–1)

2 q
j(j–1)

2

(
k
j

)

p,q
Cp,q

j,β
∥∥(Gn – G)

∥∥
r .
∥∥ek(w)

∥∥

≤ Zp,q
m,j

∥∥(Gn – G)
∥∥

r ,

which by limn−→∞ ‖(Gn – G)‖r = 0 implies the desired conclusion.
Here ‖(Gn – G)‖r = max‖(Gn(w) – G(w)‖;‖w‖ ≤ r.
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Consequently, we obtain

∥∥Bm
p,q(Gn)(w) – (G)(w)

∥∥

≤
∞∑
i=0

‖ci‖.
∥∥Bm

p,q(ei)(w) – ei(w)
∥∥

=
m∑

i=0

‖ci‖.
∥∥Bm

p,q(ei)(w) – ei(w)
∥∥ +

∞∑
i=m+1

‖ci‖.
∥∥Bm

p,q(ei)(w) – ei(w)
∥∥.

It remains to estimate ‖Bm
p,q(ei)(w) – ei(w)‖, firstly for all 0 ≤ i ≤ m and secondly for i ≥

m + 1, where

Bm
p,q(ei)(w) =

1

p
m(m–1)

2

m∑
k=0

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

[
�k ei(0)

]
p,qek(w).

Set

Am,k,i
p,q =

1

p
m(m–1)

2

(
m
k

)

p,q
p

(m–k)(m–k–1)
2

[
�k ei(0)

]
p,q,

by relationship given in [22], we can write

Am,k,i
p,q = p

(m–k)(m–k–1)
2 q

k(k–1)
2

(
m
k

)

p,q

[k]p,q!
[m]p,q

[
0,

pm–1[1]p,q

[m]p,q
, . . . ,

pm–k[k]p,q

[m]p,q
; ei

]
, (2.8)

where [0, pm–1[1]p,q
[m]p,q

, . . . , pm–k [k]p,q
[m]p,q

; ei] denotes the divided difference of ei(w) = wi.
Recall that the divided difference of a function F on the knots y0, y1, . . . , yj is given by

[y0, y1, . . . , yj;F ] =
j∑

i=0

F (yi)
(yi – y0) . . . (yi – yi–1)(yi – yi+1) . . . (yi – yj)

,

therefore it follows

Bm
p,q(ei)(w) =

m∑
k=0

Am,k,i
p,q ek(w). (2.9)

However, by the relationship given in [22], we get the formula

(
m
k

)

p,q

[k]p,q!
[m]p,q

p
(m–k)(m–k–1)

2 q
k(k–1)

2

=
(

1 –
pm–1[1]p,q

[m]p,q

)(
1 –

pm–2[2]p,q

[m]p,q

)
. . .

(
1 –

pm–k+1[k – 1]p,q

[m]p,q

)
,

which combined with the above relationship (2.8) implies

Am,k,i
p,q =

(
1 –

pm–1[1]p,q

[m]p,q

)(
1 –

pm–2[2]p,q

[m]p,q

)
· · ·
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×
(

1 –
pm–k+1[k – 1]p,q

[m]p,q

)[
0,

pm–1[1]p,q

[m]p,q
, . . . ,

pm–k[k]p,q

[m]p,q
; ei

]
. (2.10)

Since each ei is convex of any order and Bm
p,q(ei)(1) = ei(1) = 1 for all i, it follows that all

Am,k,i
p,q ≥ 0 and

∑m
k=0 Am,k,i

p,q = 1 for all i and m.

Also, note that Am,i,i
p,q = (1 – pm–1[1]p,q

[m]p,q
)(1 – pm–2[2]p,q

[m]p,q
) . . . (1 – pm–i+1[i–1]p,q

[m]p,q
) for all i ≥ 1 and

that Am,0,0
p,q = 1.

In the estimation of ‖Bm
p,q(ei)(w) – ei(w)‖, we distinguish two cases: (1) 0 ≤ i ≤ m; (2) i >

m.
Case 1. We have

∥∥Bm
p,q(ei)(w) – ei(w)

∥∥ ≤ ∥∥ei(w)
∥∥.

∣∣1 – Am,i,i
p,q

∣∣ +
i–1∑
k=0

Am,k,i
p,q

∥∥ek(w)
∥∥.

Since ‖ek(w)‖ ≤ rk for all ‖w‖ ≤ r and k ≥ 0, by [24] we immediately get

∥∥Bm
p,q(ei)(w) – ei(w)

∥∥ ≤ 2
[
1 – Am,i,i

p,q
]
ri

≤ 2pm–i+1 (i – 1)[i – 1]p,q

[m]p,q
ri

≤ 2pm–i+1 i[i – 1]p,q

[m]p,q
ri

≤ 2pm i[i – 1]p,q

[m]p,q
ri

for all ‖z‖ < r.
Case 2. Here we have

∥∥Bm
p,q(ei)(w) – ei(w)

∥∥ ≤ ∥∥Bm
p,q(ei)(w)

∥∥ +
∥∥ei(w)

∥∥

≤ 2ri

≤ 2pm–i+1 (i – 1)[i – 1]p,q

[m]p,q
ri

≤ 2pm i[i – 1]p,q

[m]p,q
ri.

From both of the above cases we conclude

∥∥Bm
p,q(G)(w) – G(w)

∥∥ ≤ 2pm

[m]p,q
.

∞∑
i=0

‖ci‖i[i – 1]p,qri,

where ‖w‖ ≤ r, m ∈N, which proves the desired result. �

Remark Our results generalize the results of Gal [8] (see also [9]), which can be obtained
by taking p = 1 in our results. Taking an extra parameter p gives more flexibility to study
a general class of positive linear operators. By taking q > p = 1 in Theorem 2.7, we get the
estimate of Theorem 2.6.
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3 Voronovskaja type result
Theorem 3.1 Suppose that 1 ≤ p ≤ q < R and G : DR −→H is left W-analytic in DR, i.e.,
G(w) =

∑∞
k=0 ckwk , for all w ∈ DR, where ck ∈ H for all k = 0, 1, 2, . . . . Also, denote S i

p,q =
[1]p,q + [2]p,q + · · · + [i – 1]p,q, i ≥ 2.

(i) If q > p ≥ 1, 1 < r < pR
q2 ,‖w‖ ≤ r, and m ∈ N, then the following upper estimate

∥∥∥∥∥B
m
p,q(G)(w) – G(w) –

∞∑
i=2

ci.
S i

p,q

[m]p,q

[
wi–1 – wi]

∥∥∥∥∥ ≤ Cr
p,q(G)

[m]2
p,q

holds, where Cr
p,q(G) = max{ pm–n+1

(q–p)(q–1) , pm–n+1

(q–p)2(q–1) }
∑∞

i=2 ‖ci‖.(i – 1)2(q2r)i.
(ii) If q ≥ p ≥ 1, then for any 1 < r < pR

q , we have

lim
m−→∞[m]p,q

(
Bm

p,q(G)(w) – G(w)
)

= Ep,q(G)(w),

uniformly in Dr , where Ep,q(G)(w) =
∑∞

i=2 ciS i
p,q[wi–1 – wi], w ∈H.

Proof First we recall some important relationship for our proof. Let 1 < r < pR
q .

S i
p,q =

i(i – 1)
2

, for p = q = 1,

S i
p,q =

qi – i(q – 1) – 1
(q – 1)2 , for p = 1 and q > 1, (3.1)

S i
p,q =

1
(q – p)

[
qi – q
(q – 1)

–
pi – p
(p – 1)

]
, for q > p > 1.

From Theorem 2.7, we get

Bm
p,q(ei)(w) =

m∑
k=0

Am,k,i
p,q ek(w),

where

Am,k,i
p,q =

(
m
k

)

p,q

[k]p,q!
[m]p,q

p
(m–k)(m–k–1)

2 q
k(k–1)

2

[
0,

pm–1[1]p,q

[m]p,q
, . . . ,

pm–k[k]p,q

[m]p,q
; ei

]
,

here we know Am,k,i
p,q ≥ 0 for all 0 ≤ k ≤ m, i ≥ 0 and

∑i
k=0 Am,k,i

p,q = 1 for all 0 ≤ i ≤ m

Am,i,i
p,q =

i–1∏
l=1

(
1 –

pm–i+1[l]p,q

[m]p,q

)
,

Am,i–1,i
p,q =

S i
p,q

[m]p,q
.

i–2∏
l=1

(
1 –

pm–i+2[l]p,q

[m]p,q

)
, i ≤ m.

(3.2)

First, we need to prove that Ep,q(G)(w) is left W-analytic in Dr , where

Ep,q(G)(w) =
∞∑
i=2

ci.S i
p,q.

[
wi–1 – wi]
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for 1 < r < pR
q , using the inequality

∥∥Ep,q(G)(w)
∥∥ ≤

∞∑
i=0

‖ci‖.S i
p,q.

[∥∥wi–1∥∥ +
∥∥wi∥∥]

.

By (3.1), S i
p,q ≤ qi

(q–p)(q–1) for q > p > 1, it immediately follows

∥∥Ep,q(G)(w)
∥∥ ≤ 2

(q – p)(q – 1)

∞∑
i=0

‖ci‖(qr)i < ∞, if q > p > 1,

∥∥Ep,q(G)(w)
∥∥ ≤ 2

(q – 1)2

∞∑
i=0

‖ci‖(qr)i < ∞, if q > 1 and p = 1,

∥∥Ep,q(G)(w)
∥∥ ≤

∞∑
i=0

‖ci‖i(i – 1)(qr)i < ∞, if q = p = 1,

for all w ∈ Dr . These show that, for q ≥ p ≥ 1, the function Ep,q(G)(w) is well-defined and
left W-analytic in Dr .

By (2.7) we obtain

∥∥∥∥∥B
m
p,q(G)(w) – G(w) –

∞∑
i=2

ci.
S i

p,q

[m]p,q

[
wi–1 – wi]

∥∥∥∥∥ ≤
∞∑
i=0

‖ci‖.
∥∥Li,m

p,q (w)
∥∥,

where

Li,m
p,q = Bm

p,q(ei)(w) – wi –
S i

p,q

[m]p,q

[
wi–1 – wi]

and

L0,m
p,q = L1,m

p,q = L2,m
p,q = 0.

We have to estimate the expression

∞∑
i=3

‖ci‖.
∥∥Li,m

p,q (w)
∥∥ =

m∑
i=3

‖ci‖.
∥∥Li,m

p,q (w)
∥∥ +

∞∑
i=m+1

‖ci‖.
∥∥Li,m

p,q (w)
∥∥.

To estimate ‖Li,m
p,q (w)‖, we discuss two cases: 1) 3 ≤ i ≤ m; 2) i ≥ m + 1.

Case (1). We obtain

[m]p,q
∥∥Li,m

p,q (w)
∥∥ =

∥∥[m]p,q
(
Bm

p,q(ei)(w) – wi) – S i
p,q.

(
wi–1 – wi)∥∥

≤ ri[m]p,q

i–2∑
l=1

Am,l,i
p,q +

∣∣[m]p,qAm,i–1,i
p,q – S i

p,q
∣∣ri

+
∣∣[m]p,q

(
1 – Am,i,i

p,q
)

– S i
p,q

∣∣ri.
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Taking into account (3.1), (3.2) and following Lemma 2.3, we arrive at

∥∥Li,m
p,q (w)

∥∥ ≤ 4pm–n+1(i – 1)2[i – 1]2
p,q

[m]2
p,q

.ri (3.3)

m∑
i=3

‖ci‖.
∥∥Li,m

p,q (w)
∥∥ ≤ 4pm–n+1

[m]2
p,q

.
m∑

i=3

‖ci‖(i – 1)2[i – 1]2
p,qri (3.4)

for all w ∈Dr and m ∈N.
In the case of complex variable, the estimate in (3.4) remains exactly the same, with ‖.‖

replaced by |.|, because all the calculations and estimates are made with real numbers as
calculated in [6].

Case (2). Here we get

∞∑
i=m+1

‖ci‖.
∥∥Li,m

p,q (w)
∥∥ ≤

∞∑
i=m+1

‖ci‖.
∥∥Bm

p,q(ei)(w)
∥∥ +

∞∑
i=m+1

‖ci‖.
∥∥wi∥∥

+
1

[m]p,q

∞∑
i=m+1

‖ci‖.S i
p,q.

∥∥wi–1∥∥ +
1

[m]p,q

∞∑
i=m+1

‖ci‖.S i
p,q.

∥∥wi∥∥

= D1
p,q(w) + D2

p,q(w) + D3
p,q(w) + D4

p,q(w). (3.5)

By (3.2), for all w ∈Dr , it follows

D1
p,q(w) ≤

∞∑
i=m+1

‖ci‖.
m∑

k=0

Am,k,i
p,q

∥∥wk∥∥

≤
∞∑

i=m+1

‖ci‖.ri

≤ 1
[m]2

p,q

∞∑
i=m+1

‖ci‖[i – 1]2
p,q.ri

≤ 1
(q – p)2[m]2

p,q

∞∑
i=m+1

‖ci‖.
(
q2r

)i

and similarly

D2
p,q(w) ≤

∞∑
i=m+1

‖ci‖.ri

≤ 1
[m]2

p,q

∞∑
i=m+1

‖ci‖[i – 1]2
p,q.ri

≤ 1
(q – p)2[m]2

p,q

∞∑
i=m+1

‖ci‖.
(
q2r

)i.
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Also, by (3.1) we get S i
p,q ≤ qi

(q–p)(q–1) , for all w ∈Dr it follows

D3
p,q(w) ≤ 1

(q – p)(q – 1)[m]p,q

∞∑
i=m+1

‖ci‖.qiri

=
1

(q – p)(q – 1)[m]p,q

∞∑
i=m+1

‖ci‖.(qr)i

≤ 1
(q – p)2(q – 1)[m]2

p,q

∞∑
i=m+1

‖ci‖.
(
q2r

)i

and similarly

D4
p,q(w) ≤ 1

[m]p,q

∞∑
i=m+1

‖ci‖.qiri

≤ 1
(q – p)2(q – 1)[m]2

p,q

∞∑
i=m+1

‖ci‖.
(
q2r

)i.

By (3.5) we obtain

∞∑
i=m+1

|ci|.
∣∣Li,m

p,q (w)
∣∣ ≤ Cr

p,q(G)
[m]2

p,q
(3.6)

for all w ∈Dr , where

Cr
p,q(G) = max

{
1

(q – p)(q – 1)
,

1
(q – p)2(q – 1)

} ∞∑
i=m+1

‖ci‖.
(
q2r

)r .

Since [i – 1]2
p,q ≤ [i]2

p,q ≤ q2i

(q–p)2(q–1)2 for w ∈ Dr with 1 < r < pR
q , we obtain by (3.4)

m∑
i=3

‖ci‖.
∥∥Li,m

p,q (w)
∥∥ ≤ 4pm–n+1

(q – p)2(q – 1)2[m]2
p,q

.
m∑

i=3

‖ci‖(i – 1)2(q2r
)i. (3.7)

We immediately obtain the upper estimate in (i) by collecting (3.6) and (3.7).
(ii) For the case 1 < r < pR

q2 and q > p ≥ 1, we can get the desired conclusion by multi-
plying (i) with [m]p,q and passing the limit m −→ ∞. But (ii) holds under a more general
condition 1 < r < pR

q .

∥∥[m]p,q
(
Bm

p,q(G)(w) – G(w)
)

– Ep,q(G)(w)
∥∥

≤
m0∑
i=2

‖ci‖.
∥∥[m]p,q

(
Bm

p,q(ei)(w) – ei(w)
)

– S i
p,q

(
wi–1 – wi)∥∥

+
∞∑

i=m0+1

‖ci‖.
(
[m]p,q

∥∥Bm
p,q(ei)(w) – wi∥∥ + S i

p,q
∥∥wi–1 – wi∥∥)

≤
m0∑
i=2

‖ci‖.
4(i – 1)2[i – 1]2

p,q

[m]p,q
.ri
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+
∞∑

i=m0+1

‖ci‖.
(
[m]p,q

∥∥Bm
p,q(ei)(w) – wi∥∥ + S i

p,q
∥∥wi–1 – wi∥∥)

.

But by Theorem 2.7,

∥∥Bm
p,q

(
ei)(w) – wi∥∥ ≤ i[i – 1]p,q

[m]p,q
.ri,

while for i > m, using (3.2), we have

∥∥Bm
p,q

(
ei)(w) – wi∥∥ ≤ ∥∥Bm

p,q
(
ei)(w)

∥∥ +
∥∥wi∥∥

≤
m∑

k=0

Am,k,i
p,q

∥∥wk∥∥ +
∥∥wi∥∥

≤ rm + ri ≤ 2ri ≤ 2
i[i – 1]p,q

[m]p,q
.ri

for all w ∈Dr .
Also, since S i

p,q ≤ (i – 1)[i – 1]p,q, it is immediate that

S i
p,q.

∥∥wi–1 – wi∥∥ ≤ S i
p,q.

∥∥wi–1∥∥ +
∥∥wi∥∥ ≤ 2(i – 1)[i – 1]p,qri.

Therefore, we easily obtain

∞∑
i=m0+1

‖ci‖.
(
[m]p,q

∥∥Bm
p,q(ei)(w) – wi∥∥ + S i

p,q
∥∥wi–1 – wi∥∥)

≤ 2
∞∑

i=m0+1

‖ci‖.(i – 1)[i – 1]p,qri,

valid for all w ∈Dr .
For all w ∈Dr and m > m0, we have

∥∥[m]p,qBm
p,q(G)(w) – G(w) – Ep,q(G)(w)

∥∥

≤
m0∑
i=2

‖ci‖.
4(i – 1)2[i – 1]2

p,q

[m]p,q
.ri

+ 2
∞∑

i=m0+1

‖ci‖.(i – 1)[i – 1]p,qri

≤ 4
[m]t

p,q
.

m0∑
i=2

‖ci‖.i2[i – 1]1+t
p,q .ri

+ 2
∞∑

i=m0+1

‖ci‖.i2qiri

≤ 4
[m]t

p,q
.

m0∑
i=2

‖ci‖.i4q(1+t)i
.ri + 2ε.
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Now, since 4
[m]t

p,q
−→ 0 as m −→ ∞ and

∑m0
i=2 ‖ci‖.i4q(1+t)i .ri < ∞, for given ε > 0, there

exists an index m1 such that 4
[m]t

p,q
.
∑m0

i=2 ‖ci‖.i4q(1+t)i .ri < ε for all m > m1.

Finally, for all m > max{m0, m1} and w ∈Dr , we get

∥∥[m]p,qBm
p,q(G)(w) – G(w) – Ep,q(G)(w)

∥∥ ≤ 3ε,

which shows that

lim
m−→∞[m]p,q

(
Bm

p,q(G)(w) – G(w)
)

= Ep,q(G)(w), uniformly in Dr .

The theorem is proved. �

Corollary 3.2 Let 1 < p < q < R and G : DR −→H be right W-analytic in DR, i.e., G(w) =∑∞
k=0 wkck , for all w ∈DR, where ck ∈H for all k = 0, 1, 2, . . . . Then, for all 1 ≤ r < pR

q ,‖w‖ ≤
r, and n ∈N, we have

∥∥Bm∗
p,q (G)(w) – G(w)

∥∥ ≤ 2pm

[m]p,q
.

∞∑
i=1

‖ci‖i[i – 1]p,qri.

Remarks (i) However, it is easy to observe that the middle (p, q)-Bernstein type polyno-
mials Bm∗∗

p,q (G)(w) cannot be obtained as an estimate of the form in Theorem 2.7, because
when G is right W-analytic or left W-analytic, it cannot be written for the middle (p, q)-
Bernstein type polynomials Bm∗∗

p,q (G)(w) =
∑∞

k=0 ckBm∗∗
p,q (ek)(w).

(ii) Since the choice of p > 1 assures that pR
q > R

q , this implies that the approximation
estimated by (p, q)-Bernstein operators in Theorem 2.7 holds in larger disks than those in
the case when p = 1.

For the case p = q = 1, the ordinary Bernstein operators for quaternion variable have
order of approximation 1

m (see Gal [6]), which is weaker than the case of q > p = 1, i.e., 1
qm

(see [8]).
However, pm

[m]p,q
= (q–p) pm

qm–pm implies that the order of approximation of (p, q)-Bernstein
operators for quaternion variable is ( p

q )m, which is also weaker than 1
qm .
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