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Abstract
In this paper, we consider the oscillation behavior of solutions of the following
fractional difference equation:

�(c(t)�(a(t)�(r(t)�αx(t)))) + q(t)G(t) = 0,

where t ∈ Nt0+1–α , G(t) =
∑t–1+α

s=t0
(t – s – 1)–αx(s), and �α denotes a Riemann–Liouville

fractional difference operator of order 0 < α ≤ 1. By using the generalized Riccati
transformation technique, we obtain some oscillation criteria. Finally we give an
example.
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1 Introduction and preliminaries
Fractional differential (or difference) equations are a more general form of differential
equations with integer order. And there is an increasing interest in the study of them due
to some important contributions [1, 2].

Many authors have been focused on various equations like ordinary and partial differen-
tial equations [3–6], difference equations [7–9], dynamic equations on time scales [10–14],
and fractional differential (difference) equations [15–31] obtaining some oscillation crite-
ria. Recently, oscillation studies have become a very hot topic. That is why, we consider
the following fractional difference equation:

�
(
c(t)�

(
a(t)�

(
r(t)�αx(t)

)))
+ q(t)G(t) = 0, (1)

where t ∈ Nt0+1–α , G(t) =
∑t–1+α

s=t0
(t – s – 1)(–α)x(s), c(t), a(t), r(t), and q(t) are positive se-

quences, and �α denotes the Riemann–Liouville fractional difference operator of order
0 < α ≤ 1.

By a solution of Eq. (1), we mean a real-valued sequence x(t) satisfying Eq. (1) for t ∈
Nt0 . A solution x(t) of Eq. (1) is called oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is called non-oscillatory. Equation (1) is called oscillatory
if all its solutions are oscillatory.
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Definition 1 ([32]) Let v > 0. The vth fractional sum f is defined by

�–vf (t) =
1

Γ (v)

t–v∑

s=a
(t – s – 1)v–1f (s), (2)

where f is defined for s ≡ amod(1), �–vf is defined for t ≡ (a+v)mod(1), and t(v) = Γ (t+1)
Γ (t–v+1) .

The fractional sum �–vf maps functions defined on Na to functions defined on Na+v,
where Nt = {t, t + 1, t + 2, . . .}.

Definition 2 ([32]) Let v > 0 and m – 1 < μ < m, where m denotes a positive integer, m =
�μ�. Set v = m – μ. The μth fractional difference is defined as

�μf (t) = �m–vf (t) = �m�–vf (t), (3)

where �μ� is the ceiling function of μ.

Lemma 1 ([33]) Assume that A and B are nonnegative real numbers. Then

λABλ–1 – Aλ ≤ (λ – 1)Bλ (4)

for all λ > 1.

2 Main results
Throughout this paper, we denote

φ(t) =
t–1∑

s=t1

1
c(s)

; ϑ(t) =
t–1∑

s=t2

φ(s)
a(s)

; δ(t) =
t–1∑

s=t3

ϑ(s)
r(s)

.

For simplification, we consider

�γ+(s) = max
{

0,�γ (s)
}

and

�β+(s) = max
{

0,�β(s)
}

.

Lemma 2 ([28]) Let x(t) be a solution of Eq. (1), and let

G(t) =
t–1+α∑

s=t0

(t – s – 1)(–α)x(s), (5)

then

�
(
G(t)

)
= Γ (1 – α)�αx(t). (6)
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Lemma 3 Assume that x(t) is an eventually positive solution of Eq. (1). If

∞∑

s=t0

1
c(s)

=
∞∑

s=t0

1
a(s)

=
∞∑

s=t0

1
r(s)

= ∞, (7)

then we have two possible cases for t ∈ [t1,∞), t1 > t0 is sufficiently large:
Case 1 �αx(t) > 0, �(r(t)�αx(t)) > 0, �(a(t)�(r(t)�αx(t))) > 0 or
Case 2 �αx(t) > 0, �(r(t)�αx(t)) < 0, �(a(t)�(r(t)�αx(t))) > 0.

Proof From the hypothesis, there exists t1 such that x(t) > 0 on [t1,∞), so that G(t) > 0 on
[t1,∞), and from Eq. (1), we have

�
(
c(t)�

(
a(t)�

(
r(t)�αx(t)

)))
= –q(t)G(t) < 0. (8)

Then c(t)�(a(t)�(r(t)�αx(t))) is an eventually non-increasing sequence on [t1,∞). We
know that �αx(t), �(r(t)�αx(t)), and �(a(t)�(r(t)�αx(t))) are eventually of one sign. For
t2 > t1 is sufficiently large, we claim that �(a(t)�(r(t)�αx(t))) > 0 on [t2,∞). Otherwise,
assume that there exists sufficiently large t3 > t2 such that �(a(t)�(r(t)�αx(t))) < 0 on
[t3,∞). For [t3,∞) and there exists a constant l1 > 0, we have

�
(
a(t)�

(
r(t)�αx(t)

)) ≤ –
l1

c(t)
< 0.

Hence, there exist a constant l2 > 0 and sufficiently large t4 > t3 such that

�
(
r(t)�αx(t)

) ≤ –
l2

a(t)
< 0. (9)

Then there exist a constant l3 > 0 and sufficiently large t5 > t4 such that

�αx(t) ≤ –
l3

r(t)
,

that is,

�G(t) ≤ –
Γ (1 – α)l3

r(t)
< 0.

By (7), we obtain limt→∞ G(t) = –∞. This is a contradiction. If �(r(t)�αx(t)) < 0,
then �αx(t) > 0 due to

∑∞
s=t0

1
r(s) = ∞. If �(r(t)�αx(t)) > 0, then �αx(t) > 0 due to

�(a(t)�(r(t)�αx(t))) > 0. So, the proof is complete. �

Lemma 4 Assume that x(t) is an eventually positive solution of Eq. (1), which satisfies
Case 1 of Lemma 3. Then

a(t)�
(
r(t)�αx(t)

) ≥ c(t)�
(
a(t)�

(
r(t)�αx(t)

)) t–1∑

s=t0

1
c(s)

.
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If there exists a positive sequence φ such that, for t ∈ [t1,∞),

φ(t)
c(t)

∑t–1
s=t0

1
c(s)

– �φ(t) ≤ 0,

where t1 is sufficiently large, then a(t)�(r(t)�αx(t))/φ(t) is a non-increasing sequence on
[t1,∞) and

r(t)�αx(t) ≥ �
(
r(t)�αx(t)

) a(t)
φ(t)

t–1∑

s=t1

φ(s)
a(s)

.

Furthermore, if there exists a positive sequence ϑ and t2 > t1 is sufficiently large such that,
for t ∈ [t2,∞),

ϑ(t)
a(t)
φ(t)

∑t–1
s=t2

φ(s)
a(s)

– �ϑ(t) ≤ 0,

then r(t)�αx(t)/ϑ(t) is a non-increasing sequence on [t2,∞) and

G(t) ≥ �G(t)
r(t)
ϑ(t)

t–1∑

s=t2

ϑ(s)
r(s)

.

Suppose also that there exists a positive sequence δ and t3 > t2 is sufficiently large such that,
for t ∈ [t3,∞),

δ(t)
r(t)
ϑ(t)

∑t–1
s=t2

ϑ(s)
r(s)

– �δ(t) ≤ 0.

Then G(t)/δ(t) is a non-increasing sequence on [t3,∞).

Proof Assume that x is an eventually positive solution of Eq. (1). Then we have that
�(r(t)�αx(t)) > 0 and �(c(t)�(a(t)�(r(t)�αx(t)))) < 0 on [t0,∞). So,

a(t)�
(
r(t)�αx(t)

)
= a(t0)�

(
r(t0)�αx(t0)

)

+
t–1∑

s=t0

c(s)�(a(s)�(r(s)�αx(s)))
c(s)

≥ c(t)�
(
a(t)�

(
r(t)�αx(t)

)) t–1∑

s=t0

1
c(s)

,

and then

�

(
a(t)�(r(t)�αx(t))

φ(t)

)

=
�(a(t)�(r(t)�αx(t)))φ(t) – a(t)�(r(t)�αx(t))�φ(t)

φ(t)φ(t + 1)

≤ �(a(t)�(r(t)�αx(t)))
φ(t)φ(t + 1)

(
φ(t)

c(t)
∑t–1

s=t1
1

c(s)

– �φ(t)
)

≤ 0.
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Hence, a(t)�(r(t)�αx(t))/φ(t) is a non-increasing sequence on [t1,∞) where t1 > t0 is suf-
ficiently large. Then we have

r(t)�αx(t) = r(t1)�αx(t1) +
t–1∑

s=t1

a(s)�(r(s)�αx(s))
φ(s)

φ(s)
a(s)

≥ a(t)�(r(t)�αx(t))
φ(t)

t–1∑

s=t1

φ(s)
a(s)

and

�

(
r(t)�αx(t)

ϑ(t)

)

=
�(r(t)�αx(t))ϑ(t) – r(t)�αx(t)�ϑ(t)

ϑ(t)ϑ(t + 1)

≤ r(t)�αx(t)
ϑ(t)ϑ(t + 1)

(
ϑ(t)

a(t)
φ(t)

∑t–1
s=t1

φ(s)
a(s)

– �ϑ(t)
)

≤ 0.

So r(t)�αx(t)/ϑ(t) is a non-increasing sequence on [t2,∞) where t2 > t1 is sufficiently large.
Then we have

G(t) = G(t2) + Γ (1 – α)
t–1∑

s=t2

r(s)�αx(s)
ϑ(s)

ϑ(s)
r(s)

≥ r(t)Γ (1 – α)�αx(t)
ϑ(t)

t–1∑

s=t2

ϑ(s)
r(s)

= �G(t)
r(t)
ϑ(t)

t–1∑

s=t2

ϑ(s)
r(s)

,

and then

�

(
G(t)
δ(t)

)

=
(�G(t))δ(t) – G(t)�δ(t)

δ(t)δ(t + 1)

≤ G(t)
δ(t)δ(t + 1)

(
δ(t)

r(t)
ϑ(t)

∑t–1
s=t2

ϑ(s)
r(s)

– �δ(t)
)

≤ 0.

Then G(t)/δ(t) is a non-increasing sequence on [t3,∞) where t3 > t2 is sufficiently large.
So the proof is complete. �

Theorem 1 Assume that (7) holds and there exists a positive sequence γ such that, for all
sufficiently large t,

lim
t→∞ sup

t–1∑

s=t3

(
Γ (1 – α)γ (s)q(s)

ϑ(s)φ(s + 1)

s–1∑

u=t2

ϑ(u)
r(u)

s–1∑

u=t1

φ(u)
a(u)

–
c(s)(�γ+(s))2

4γ (s)

)

= ∞. (10)

If there exist positive sequences β , λ such that, for all sufficiently large t,

λ(t)
r(t)

∑t–1
s=t1

1
r(s)

– �λ(t) ≤ 0 (11)
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and

lim
t→∞ sup

t–1∑

ζ=t2

(
β(ζ )λ(ζ )

λ(ζ + 1)a(ζ )

∞∑

s=ζ

(
1

c(s)

∞∑

v=s
q(v)

)

–
r(ζ )(�β+(ζ ))2

4Γ (1 – α)β(ζ )

)

= ∞. (12)

Then every solution of Eq. (1) is oscillatory.

Proof Suppose to the contrary that x(t) is a non-oscillatory solution of Eq. (1). Then, with-
out loss of generality, we may assume that there is a solution x(t) of Eq. (1) such that x(t) > 0
on [t0,∞), where t0 is sufficiently large. From Lemma 3, x(t) satisfies Case 1 or Case 2.
Firstly, let Case 1 hold. Then we define the following function:

ω(t) = γ (t)
c(t)�(a(t)�(r(t)�αx(t)))

a(t)�(r(t)�αx(t))
.

For t ∈ [t0,∞), we have

�ω(t) = �γ (t)
ω(t + 1)
γ (t + 1)

+ γ (t)�
(

c(t)�(a(t)�(r(t)�αx(t)))
a(t)�(r(t)�αx(t))

)

= �γ (t)
ω(t + 1)
γ (t + 1)

– γ (t)
q(t)G(t)

a(t + 1)�(r(t + 1)�αx(t + 1))

– γ (t)
c(t)�(a(t)�(r(t)�αx(t)))�(a(t)�(r(t)�αx(t)))
a(t)�(r(t)�αx(t))a(t + 1)�(r(t + 1)�αx(t + 1))

.

Since a(t)�(r(t)�αx(t))/φ(t) is a non-increasing sequence on [t1,∞), we have

a(t + 1)�(r(t + 1)�αx(t + 1))
φ(t + 1)

≤ a(t)�(r(t)�αx(t))
φ(t)

.

From Lemma 4, we obtain

G(t)
a(t + 1)�(r(t + 1)�αx(t + 1))

=
1

a(t + 1)
G(t)

�G(t)
�G(t)

�(r(t)�αx(t))
�(r(t)�αx(t))

�(r(t + 1)�αx(t + 1))

≥ 1
a(t + 1)

(
r(t)
ϑ(t)

t–1∑

s=t2

ϑ(s)
r(s)

)(
Γ (1 – α)

r(t)
a(t)
φ(t)

t–1∑

s=t1

φ(s)
a(s)

)
φ(t)a(t + 1)
φ(t + 1)a(t)

=
Γ (1 – α)

ϑ(t)φ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

( t–1∑

s=t1

φ(s)
a(s)

)

and

�ω(t) ≤ �γ+(t)
ω(t + 1)
γ (t + 1)

– γ (t)q(t)
Γ (1 – α)

ϑ(t)φ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

( t–1∑

s=t1

φ(s)
a(s)

)

–
γ (t)
c(t)

ω2(t + 1)
γ 2(t + 1)

.
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Setting λ = 2, A = ( γ (t)
c(t) )1/2 ω(t+1)

φ(t+1) , and B = 1
2 ( c(t)

γ (t) )1/2�γ+(t) using Lemma 1, we obtain

�ω(t) ≤ –γ (t)q(t)
Γ (1 – α)

ϑ(t)φ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

( t–1∑

s=t1

φ(s)
a(s)

)

+
c(t)

4γ (t)
(
�γ+(t)

)2.

Summing both sides of the above inequality from t3 to t – 1, we get

t–1∑

s=t3

(
Γ (1 – α)γ (s)q(s)

ϑ(s)φ(s + 1)

s–1∑

u=t2

ϑ(u)
r(u)

( s–1∑

u=t1

φ(u)
a(u)

)

–
c(s)(�γ+(s))2

4γ (s)

)

≤ ω(t3) – ω(t) ≤ ω(t3).

This contradicts (10). Now we consider Case 2. Then we define the following function:

ω2(t) = β(t)
r(t)�αx(t)

G(t)
.

Then

�ω2(t) = �β(t)
ω(t + 1)
β(t + 1)

+ β(t)�
(

r(t)�αx(t)
G(t)

)

= �β(t)
ω(t + 1)
β(t + 1)

+ β(t)
(

�(r(t)�αx(t))G(t) – r(t)�αx(t)�G(t)
G(t)G(t + 1)

)

= �β(t)
ω(t + 1)
β(t + 1)

+ β(t)
�(r(t)�αx(t))

G(t + 1)
– β(t)

r(t)�αx(t)�G(t)
G(t)G(t + 1)

.

Hence we have

G(t) = G(t1) + Γ (1 – α)
t–1∑

s=t1

r(s)�αx(s)
r(s)

≥ Γ (1 – α)r(t)�αx(t)
t–1∑

s=t1

1
r(s)

.

That is,

G(t)
r(t)

∑t–1
s=t1

1
r(s)

≥ Γ (1 – α)�αx(t) = �G(t)

and

�

(
G(t)
λ(t)

)

=
�G(t)λ(t) – G(t)�λ(t)

λ(t)λ(t + 1)

≤ G(t)
λ(t)λ(t + 1)

(
λ(t)

r(t)
∑t–1

s=t1
1

r(s)

– �λ(t)
)

≤ 0.

Thus we have G(t)/λ(t) is eventually non-increasing and

G(t)
G(t + 1)

≥ λ(t)
λ(t + 1)

. (13)
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Using the fact that r(t)�αx(t) is strictly decreasing, we have

r(t)�αx(t) ≥ r(t + 1)�αx(t + 1)

and �G(t) > 0, then G(t + 1) > G(t), it follows that

�ω2(t) ≤ �β+(t)
ω(t + 1)
β(t + 1)

+ β(t)
�(r(t)�αx(t))

G(t + 1)

–
Γ (1 – α)β(t)

r(t)
ω2

2(t + 1)
β2(t + 1)

.

From 8, we have

c(u)�
(
a(u)�

(
r(u)�αx(u)

))
– c(t)�

(
a(t)�

(
r(t)�αx(t)

))

= –
u–1∑

s=t
q(s)G(s)

for �G(t) > 0, and letting u → ∞, we get

–c(t)�
(
a(t)�

(
r(t)�αx(t)

)) ≤ –G(t)
∞∑

s=t
q(s)

or

�
(
a(t)�

(
r(t)�αx(t)

)) ≥ G(t)
c(t)

∞∑

s=t
q(s).

And so

a(u)�
(
r(u)�αx(u)

)
– a(t)�

(
r(t)�αx(t)

) ≥ G(t)
u–1∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

.

Letting u → ∞, we have

�
(
r(t)�αx(t)

) ≤ –G(t)
1

a(t)

∞∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

due to limu→∞ a(u)�(r(u)�αx(u)) = k < 0. Then, by (13), we obtain

�(r(t)�αx(t))
G(t + 1)

≤ –
G(t)

G(t + 1)
1

a(t)

∞∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

≤ –
λ(t)

λ(t + 1)
1

a(t)

∞∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

.

So,

�ω2(t) ≤ �β+(t)
ω2(t + 1)
β(t + 1)

– β(t)
λ(t)

λ(t + 1)
1

a(t)

∞∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

–
Γ (1 – α)β(t)

r(t)
ω2

2(t + 1)
β2(t + 1)

.



Adiguzel Advances in Difference Equations        (2018) 2018:445 Page 9 of 13

Setting λ = 2, A = ( Γ (1–α)β(t)
r(t) )1/2 ω2(t+1)

β(t+1) , and B = 1
2 ( r(t)

Γ (1–α)β(t) )1/2�β+(t) using Lemma 1, we
obtain

�ω2(t) ≤ –β(t)
λ(t)

λ(t + 1)
1

a(t)

∞∑

s=t

(
1

c(s)

∞∑

v=s
q(v)

)

+
r(t)(�β+(t))2

4Γ (1 – α)β(t)
.

Summing both sides of the above inequality from t2 to t – 1, we have

t–1∑

ζ=t2

(

β(ζ )
λ(ζ )

λ(ζ + 1)
1

a(ζ )

∞∑

s=ζ

(
1

c(s)

∞∑

v=s
q(v)

)

–
r(ζ )(�β+(ζ ))2

4Γ (1 – α)β(ζ )

)

≤ ω2(t2) – ω2(t) ≤ ω2(t2) < ∞,

which contradicts (12). So, the proof is complete. �

Theorem 2 Let (7) hold. Assume that there exists a positive sequence γ such that, for all
sufficiently large t,

lim
t→∞ sup

t–1∑

s=t3

(

γ (s)q(s)
Γ (1 – α)
ϑ(s + 1)

s–1∑

u=t2

ϑ(u)
r(u)

–
a(s)ϑ(s + 1)(�γ+(s))2

4γ (s)ϑ(s)
∑s–1

u=t0
1

c(u)

)

= ∞. (14)

If there exist positive sequences β , λ such that (11) and (12) hold, then Eq. (1) is oscillatory.

Proof Suppose to the contrary that x(t) is a non-oscillatory solution of (1). Then, without
loss of generality, we may assume that there is a solution x(t) of Eq. (1) such that x(t) > 0 on
[t0,∞) where t0 is sufficiently large. From Lemma 3, x(t) satisfies Case 1 or Case 2. Firstly,
let Case 1 hold. Then we define the following function:

π (t) = γ (t)
c(t)�(a(t)�(r(t)�αx(t)))

r(t)�αx(t)
.

For t ∈ [t0,∞), we have

�π (t) = �γ (t)
π (t + 1)
γ (t + 1)

+ γ (t)�
(

c(t)�(a(t)�(r(t)�αx(t)))
r(t)�αx(t)

)

= �γ (t)
π (t + 1)
γ (t + 1)

– γ (t)
q(t)G(t)

r(t + 1)�αx(t + 1)

– γ (t)
c(t)�(a(t)�(r(t)�αx(t)))�(r(t)�αx(t))

r(t)�αx(t)r(t + 1)�αx(t + 1)
.

From Lemma 4, we obtain

�
(
r(t)�αx(t)

) ≥
∑t–1

s=t0
1

c(s)

a(t)
c(t)�

(
a(t)�

(
r(t)�αx(t)

))
,

1 ≤ r(t + 1)�αx(t + 1)
r(t)�αx(t)

≤ ϑ(t + 1)
ϑ(t)

,

ϑ(t)
ϑ(t + 1)

≤ r(t + 1)�αx(t + 1)
r(t)�αx(t)
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or

r(t + 1)ϑ(t)
r(t)ϑ(t + 1)

≤ �G(t)
�G(t + 1)

and

G(t)
r(t + 1)�αx(t + 1)

=
Γ (1 – α)
r(t + 1)

G(t)
�G(t)

�G(t)
�G(t + 1)

≥ Γ (1 – α)
r(t + 1)

(
r(t)
ϑ(t)

t–1∑

s=t2

ϑ(s)
r(s)

)
r(t + 1)ϑ(t)
r(t)ϑ(t + 1)

=
Γ (1 – α)
ϑ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

.

Hence,

�π (t) ≤ �γ+(t)
π (t + 1)
γ (t + 1)

– γ (t)q(t)
Γ (1 – α)
ϑ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

–
γ (t)ϑ(t)
ϑ(t + 1)

∑t–1
s=t0

1
c(s)

a(t)
π2(t + 1)
γ 2(t + 1)

.

In Lemma 1, choosing λ = 2, A = ( γ (t)ϑ(t)
ϑ(t+1)

∑t–1
s=t1

1
c(s)

a(t) )1/2 π (t+1)
γ (t+1) , and B = 1

2 ( a(t)ϑ(t+1)
γ (t)ϑ(t)

∑t–1
s=t0

1
c(s)

)1/2 ×
�γ+(t), we obtain

�π (t) ≤ –γ (t)q(t)
Γ (1 – α)
ϑ(t + 1)

t–1∑

s=t2

ϑ(s)
r(s)

+
a(t)ϑ(t + 1)(�γ+(t))2

4γ (t)ϑ(t)
∑t–1

s=t0
1

c(s)

.

Summing both sides of the above inequality from t3 to t – 1, we have

t–1∑

s=t3

(

γ (s)q(s)
Γ (1 – α)
ϑ(s + 1)

s–1∑

u=t2

ϑ(u)
r(u)

–
a(s)ϑ(s + 1)(�γ+(s))2

4γ (s)ϑ(s)
∑s–1

u=t0
1

c(u)

)

≤ π (t1) – π (t)

≤ π (t2) < ∞,

which contradicts (14). And the proof of Case 2 is the same as that of Theorem 1 and hence
is omitted. This completes the proof. �

Theorem 3 Let (7) hold. Assume that there exists a positive sequence γ such that, for all
sufficiently large t,

lim
t→∞ sup

t–1∑

s=t2

(

γ (s)q(s)
δ(s)

δ(s + 1)
–

r(s)φ(s)(�γ+(s))2

4γ (s)
∑u–1

s=t1
φ(u)
a(u)

∑s–1
u=t0

1
c(u)

)

= ∞. (15)

If there exist positive sequences β , λ such that (11) and (12) hold, then Eq. (1) is oscillatory.
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Proof Suppose to the contrary that x(t) is a non-oscillatory solution of (1). Then, without
loss of generality, we may assume that there is a solution x(t) of Eq. (1) such that x(t) > 0 on
[t0,∞), where t0 is sufficiently large. From Lemma 3, x(t) satisfies Case 1 or Case 2. Firstly,
let Case 1 hold. Then we define the following function:

ν(t) = γ (t)
c(t)�(a(t)�(r(t)�αx(t)))

G(t)
.

For t ∈ [t0,∞), we get

�ν(t) = �γ (t)
ν(t + 1)
γ (t + 1)

+ γ (t)�
(

c(t)�(a(t)�(r(t)�αx(t)))
G(t)

)

= �γ (t)
ν(t + 1)
α(t + 1)

– γ (t)
q(t)G(t)
G(t + 1)

– γ (t)
c(t)�(a(t)�(r(t)�αx(t)))�G(t)

G(t)G(t + 1)
.

From Lemma 4, we have

�G(t) ≥ 1
r(t)

(
a(t)
φ(t)

t–1∑

s=t1

φ(s)
a(s)

)∑t–1
s=t0

1
c(s)

a(t)
c(t)�

(
a(t)�

(
r(t)�αx(t)

))

and

G(t)
G(t + 1)

≥ δ(t)
δ(t + 1)

.

Thus we obtain

�ν(t) ≤ �γ+(t)
ν(t + 1)
γ (t + 1)

– γ (t)p(t)
δ(t)

δ(t + 1)

–
γ (t)

r(t)φ(t)

t–1∑

s=t1

φ(s)
a(s)

t–1∑

s=t0

1
c(s)

ν2(t + 1)
γ 2(t + 1)

.

Then, setting λ = 2,

A =

(
γ (t)

r(t)φ(t)

t–1∑

s=t1

φ(s)
a(s)

t–1∑

s=t0

1
c(s)

)1/2
ν(t + 1)
γ (t + 1)

, and

B =
1
2

(
r(t)φ(t)

γ (t)
∑t–1

s=t1
φ(s)
a(s)

∑t–1
s=t0

1
c(s)

)1/2

�γ+(t)

using Lemma 1, we obtain

�ν(t) ≤ –γ (t)q(t)
δ(t)

δ(t + 1)
+

r(t)φ(t)(�γ+(t))2

4γ (t)
∑t–1

s=t1
φ(s)
a(s)

∑t–1
s=t0

1
c(s)

.
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Summing both sides of the above inequality from t2 to t – 1, we have

t–1∑

s=t2

(

γ (s)q(s)
δ(s)

δ(s + 1)
–

r(s)φ(s)(�γ+(s))2

4γ (s)
∑u–1

s=t1
φ(u)
a(u)

∑s–1
u=t0

1
c(u)

)

≤ ν(t2) – ν(t)

≤ ν(t2) < ∞,

which contradicts (15). The proof of Case 2 is the same as that of Theorem 1 and hence is
omitted. This completes the proof. �

3 Applications
Example 1 Consider the following fractional difference equation for t ≥ 2:

�3+αx(t) + t–2

(t–1+α∑

s=t0

(t – s – 1)(–α)x(s)

)

= 0. (16)

This corresponds to Eq. (1) with α ∈ (0, 1], t0 = 2, c(t) = a(t) = r(t) = 1, and q(t) = t–2. Then
φ(t) = λ(t) = t – t1, ϑ(t) =

∑t–1
s=t2

(s – t1), γ (t) = β(t) = t. For k ∈ (0, 1), it can be written
kt ≤ φ(t) ≤ t, k2t2/2 ≤ ϑ(t) ≤ t2/2, k3t3/3 ≤ ∑t–1

s=t3
k2s2 ≤ t3/3. So,

lim
t→∞ sup

t–1∑

s=t3

(
Γ (1 – α)γ (s)q(s)

ϑ(s)φ(s + 1)

s–1∑

u=t2

ϑ(u)
r(u)

s–1∑

u=t1

φ(u)
a(u)

–
c(s)(�γ+(s))2

4γ (s)

)

≥ lim
t→∞ sup

t–1∑

s=t3

(
Γ (1 – α)k5s2

6(s + 1)
–

1
4s

)

= ∞

and

lim
t→∞ sup

t–1∑

ζ=t2

(
β(ζ )λ(ζ )

λ(ζ + 1)a(ζ )

∞∑

s=ζ

(
1

c(s)

∞∑

v=s
q(v)

)

–
r(ζ )(�β+(ζ ))2

4Γ (1 – α)β(ζ )

)

≥ lim
t→∞ sup

t–1∑

ζ=t2

(
ζ 2

(ζ + 1)

∞∑

s=ζ

( ∞∑

v=s
v–2

)

–
1

4Γ (1 – α)ζ

)

= ∞.

Thus, (16) is oscillatory from Theorem 1.
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