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Abstract
This paper is concerned with a class of two-term fractional differential equations.
Three-point boundary value problems with mixed Riemann–Liouville fractional
differential and integral boundary conditions are discussed. The Green’s function is
investigated and the existence results are obtained based on some fixed point
theorems. The Hyers–Ulam stability is also studied for null boundary conditions. As an
auxiliary result, a Gronwall type inequality of fractional order integral is obtained.
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1 Introduction
In this paper, we consider the following boundary value problem of nonlinear fractional
differential equations:

⎧
⎨

⎩

λDα
0 x(t) + Dβ

0 x(t) = f (t, x(t)), 0 < t < T ,

x(0) = 0, μDγ1
0 x(T) + Iγ2

0 x(η) = γ3,
(1)

where Dα
0 and Dβ

0 are Riemann–Liouville fractional derivatives with 1 < α ≤ 2 and 1 ≤ β <
α, 0 < λ ≤ 1, 0 ≤ μ ≤ 1, 0 ≤ γ1 ≤ α – β , γ2 ≥ 0, 0 < η < T and f : [0, T] × R → R is a given
function satisfying some assumptions that will be verified later.

Fractional differential problems have attracted much attention in recent years due to its
wide application in many fields of science and engineering, including fractal theory, poten-
tial theory, biology, chemistry, diffusion, etc. See, e.g., [1, 2]. There are several kinds of frac-
tional derivatives used in different applied areas, such as Caputo derivative and Riemann–
Liouville derivative. Recently, Atangana et al. [3–6] presented the Caputo–Fabrizio and the
Atangana–Baleanu fractional derivatives.

In the literature, cDα
0+ u(t) + f (t, u(t)) = 0 is known as a single term equation. This kind of

fractional differential equation has many applications and has been studied widely. See,
e.g., [1, 2, 7–10]. Equations containing more than one fractional differential terms are
called multi-term fractional differential equations; they have some concrete applications
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in many fields. Due to the complexity of such a kind of equations, it seems that there has
been no result for a general multi-term fractional differential equation. Only some special
cases have been investigated. A classical example is the so-called Bagley–Torvik equation
(B–T equation for short) [11],

Ay′′(t) + BcD
3
2
0 y(t) + Cy(t) = f (t),

where A, B and C are certain constants and f is a given function. This equation arises
from the mathematical model of the motion of a thin plate in a Newtonian fluid. The B–T
equation, as well as various generalizations, has wide applications in fluid dynamics and
hence has attracted much attention. For example, Cermak et al. [12] investigated the two-
term fractional differential equation

Dα
0 y(t) + aDβ

0 y(t) + yb(t) = 0

with real coefficients a, b and positive real orders α > β , which contains some important
cases such as the B–T equation for α = 2, β = 3/2 and the Basset equation for α = 1, β = 1/2.
The analytic solution and the numerical solution for the B–T equation were studied in [13]
and [14], respectively. Various methods were introduced to investigate the approximate
solutions such as the finite difference method [15], the variational iteration method [13,
16], the homotopy perturbation method [17] and the generalized differential transform
method [18]. Boundary value problems for the B–T equations were studied in [19, 20] and
[18, 21–23] for various boundary value conditions. In [18], the authors considered the ap-
proximate solution of B–T equations with variable coefficients and three-point boundary
value,

⎧
⎨

⎩

y′′(x) + p(x)Dα
a y + q(x)y = g(x), x ∈ [a, b],

y(a) = α1, y(b) + λy(ξ ) = β1, ξ ∈ [a, b],

where 0 < α < 2, p(x), q(x) and g(x) are known functions, α1, β1, λ, μ and ξ are given
constants. In [19, 20], Ntouyas et al. studied the generalized B–T equations with multiple
integral and differential boundary conditions

⎧
⎨

⎩

λDα
0 x(t) + (1 – λ)Dβ

0 x(t) = f (t, x(t)), 0 < t < T ,

x(0) = 0, μDγ1
0 (T) + (1 – μ)Dγ2

0 (T) = γ3,

and
⎧
⎨

⎩

λDα
0 x(t) + (1 – λ)Dβ

0 x(t) = f (t, x(t)), 0 < t < T ,

x(0) = 0, μIδ1
0 x(T) + (1 – μ)Iδ2

0 x(T) = δ3.

Green functions for the corresponding problems were investigated and the existence re-
sults were obtained by using fixed point theorems. For more detailed information, we refer
the reader to [2, 24–26] and the references therein.

Stability analysis is an important respect of differential equations. Hyers–Ulam stability
for differential equations was initialed in the 1940s by Ulam [27] and Hyers [28]. Roughly
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speaking, the Hyers–Ulam stability for a differential equation is the answer to the ques-
tion whether there is an exact solution near an approximate solution (the solution to the
approximate equation) to the differential equation. So it is obviously important for the
study of numerical and approximate solutions and real world applications of differential
equations. For this reason, many researchers investigate the Hyers–Ulam stability for dif-
ferential equations of both integer and fractional order [29–32]. There are only a few works
on the Ulam stability of fractional differential equations. Recently, Wang, Lv and Zhou [33]
presented some Ulam stability results of fractional differential equations by using Hery–
Gronwall inequality. By the method of Laplace transform, Wang and Li [34] studied Ulam
stability of a fractional order linear differential equation. Later, Wang and Li [35] investi-
gated the Hyers–Ulam stability for a nonlinear fractional Langevin equation and its cor-
responding impulsive problem. The authors of [36] researched a class of new differential
equations with no instantaneous impulses. However, to the best of our knowledge, few re-
sults can be found on the Hyers–Ulam type stability for boundary value problems except
that of Kumam [37].

Inspired by the above comments, in this paper, we consider the three points boundary
value problem of a two-term fractional differential equation, with mixed integral and dif-
ferential boundary conditions (1). Equation (1) with Riemann–Liouville fractional deriva-
tives of order α and β is a generalization of the B–T equation. To compare with the discus-
sion in [11, 19], there is no coefficient (1 – λ) or (1 – μ) here, and the boundary conditions
with mixed derivatives and integrals are different from the boundary value conditions in
[11, 19]. So, our results can be regarded as an extension of B–T equation and partially ex-
tend the results in [11, 19, 38] and [20]. We also investigate the Hyers–Ulam stability for
Eq. (1) with the boundary value conditions x(0) = 0 and x(T) = γ . To deal with the Hyers–
Ulam stability, we prove a fractional Gronwall-type integral inequality by the method of
iteration, which is a generalization of the main result in [39] and Lemma 3.4 in [10].

2 Preliminaries
Let C([0, T], R) be the Banach space of all continuous functions from [0, T] into R with
the norm ‖x‖∞ = maxt∈[0,T] |x(t)|, and L1([0, T], R) denotes the Banach space of functions
x : [0, T] → R that are Lebesgue integrable with norm ‖x‖L1 =

∫ T
0 |x(t)|dt.

Definition 2.1 ([1]) The Riemann–Liouville fractional integral of order α > 0 of a function
f : [a, b] → R at the point t is defined by

Iα
a f (t) =

∫ t

a

(t – s)α–1

Γ (α)
f (s) ds,

provided the right side is point-wisely defined, where Γ is the Gamma function.

Definition 2.2 ([1]) The Riemann–Liouville fractional derivative of order α > 0 of a func-
tion f : [a, b] → R at the point t is defined by

Dα
a f (t) =

1
Γ (n – α)

dn

dtn

∫ t

a
(t – s)n–α–1f (s) ds,

provided the right side is point-wisely defined, where n = [α] + 1, [α] denotes the integer
part of α.
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Lemma 2.3 ([1]) Let α > 0, and x ∈ C[0, T]∩L[0, T]. Then the fractional differential equa-
tion Dα

0 x(t) = 0 has the unique solution

x(t) = c1tα–1 + c2tα–2 + · · · + cntα–n, ci ∈ R, i = 0, 1, 2, . . . , n – 1, n = [α] + 1.

Lemma 2.4 ([1]) Let α > 0. Then for x ∈ C(0, T) ∩ L(0, T), we have

Iα
0 Dα

0 x(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

for some ci ∈ R, i = 0, 1, 2, . . . , n – 1, n = [α] + 1.

Lemma 2.5 The solution of the boundary value problem (1) satisfies the integral equation

x(t) =
γ3

Θ
tα–1 +

∫ T

0
G1(t, s)x(s) ds +

∫ T

0
G2(t, s)f

(
s, x(s)

)
ds,

where

Θ =
μΓ (α)Tα–γ1–1

Γ (α – γ1)
+

Γ (α)ηα+γ2–1

Γ (α + γ2)
, 0 < t < T , (2)

G11(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– 1
λΓ (α–β) (t – s)α–β–1

+ tα–1

Θλ
[ μ

Γ (α–β–γ1) (T – s)α–β–γ1–1

+ 1
Γ (α–β+γ2) (η – s)α–β+γ2–1], 0 < s ≤ t ≤ η < T ,

tα–1

Θλ
[ μ

Γ (α–β–γ1) (T – s)α–β–γ1–1

+ 1
Γ (α–β+γ2) (η – s)α–β+γ2–1], 0 < t ≤ s ≤ η < T ,

μtα–1

ΘλΓ (α–β–γ1) (T – s)α–β–γ1–1, 0 < t ≤ η ≤ s < T ,

(3)

G12(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– 1
λΓ (α–β) (t – s)α–β–1

+ tα–1

Θλ
[ μ

Γ (α–β–γ1) (T – s)α–β–γ1–1

+ 1
Γ (α–β+γ2) (η – s)α–β+γ2–1], 0 < s ≤ η ≤ t < T ,

– 1
λΓ (α–β) (t – s)α–β–1 + μtα–1

ΘλΓ (α–β–γ1) (T – s)α–β–γ1–1, 0 < η ≤ s ≤ t < T ,
μtα–1

ΘλΓ (α–β–γ1) (T – s)α–β–γ1–1, 0 < η ≤ t ≤ s < T ,

(4)

G21(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λΓ (α) (t – s)α–1 – tα–1

Θλ
[ μ

Γ (α–γ1) (T – s)α–γ1–1

+ 1
Γ (α+γ2) (η – s)α+γ2–1], 0 < s ≤ t ≤ η < T ,

– tα–1

Θλ
[ μ

Γ (α–γ1) (T – s)α–γ1–1

+ 1
Γ (α+γ2) (η – s)α+γ2–1], 0 < t ≤ s ≤ η < T ,

– μtα–1

ΘλΓ (α–γ1) (T – s)α–γ1–1, 0 < t ≤ η ≤ s < T ,

(5)

G22(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
λΓ (α) (t – s)α–1 – tα–1

Θλ
[ μ

Γ (α–γ1) (T – s)α–γ1–1

+ 1
Γ (α+γ2) (η – s)α+γ2–1], 0 < s ≤ η ≤ t < T ,

1
λΓ (α) (t – s)α–1 – μtα–1

ΘλΓ (α–γ1) (T – s)α–γ1–1, 0 < η ≤ s ≤ t < T ,

– μtα–1

ΘλΓ (α–γ1) (T – s)α–γ1–1, 0 < η ≤ t ≤ s < T ,

(6)
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G1(t, s) =

⎧
⎨

⎩

G11(t, s), 0 < t ≤ η < T ,

G12(t, s), 0 < η ≤ t < T ,
(7)

G2(t, s) =

⎧
⎨

⎩

G21(t, s), 0 < t ≤ η < T ,

G22(t, s), 0 < η ≤ t < T ,
(8)

Proof From Eq. (1), we have

Dα
0 x(t) = –

1
λ

Dβ
0 x(t) +

1
λ

f
(
t, x(t)

)
, t ∈ [0, T]. (9)

Taking the Riemann–Liouville fractional integral of order α on both sides of (9), we get

x(t) = –
1

λΓ (α – β)

∫ t

0
(t – s)α–β–1x(s) ds +

1
λΓ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

+ C1tα–1 + C2tα–2.

Then, x(0) = 0 implies C2 = 0. Hence

x(t) = –
1

λΓ (α – β)

∫ t

0
(t – s)α–β–1x(s) ds +

1
λΓ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

+ C1tα–1. (10)

Applying the Riemann–Liouville fractional derivative of order γ1 to both sides of (10), we
deduce that

Dγ1
0 x(t) = –

1
λΓ (α – β – γ1)

∫ t

0
(t – s)α–β–γ1–1x(s) ds

+
1

λΓ (α – γ1)

∫ t

0
(t – s)α–γ1–1f

(
s, x(s)

)
ds

+ C1
Γ (α)

Γ (α – γ1)
tα–γ1–1.

Taking the Riemann–Liouville integral of order γ2 to both sides of (10), we obtain

Iγ2
0 x(t) = –

1
λΓ (α – β + γ2)

∫ t

0
(t – s)α–β+γ2–1x(s) ds

+
1

λΓ (α + γ2)

∫ t

0
(t – s)α+γ2–1f

(
s, x(s)

)
ds

+ C1
Γ (α)

Γ (α + γ2)
tα+γ2–1.

Let

Θ :=
μΓ (α)Tα–γ1–1

Γ (α – γ1)
+

Γ (α)ηα+γ2–1

Γ (α + γ2)
.
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By using the second condition of (1), we get

γ3 = –
μ

λΓ (α – β – γ1)

∫ T

0
(T – s)α–β–γ1–1x(s) ds

+
μ

λΓ (α – γ1)

∫ T

0
(T – s)α–γ1–1f

(
s, x(s)

)
ds

+ C1
μΓ (α)

Γ (α – γ1)
Tα–γ1–1 –

1
λΓ (α – β + γ2)

∫ η

0
(η – s)α–β+γ2–1x(s) ds

+
1

λΓ (α + γ2)

∫ η

0
(η – s)α+γ2–1f

(
s, x(s)

)
ds + C1

Γ (α)
Γ (α + γ2)

ηα+γ2–1,

which leads to

C1 =
1
Θ

[

γ3 +
μ

λΓ (α – β – γ1)

∫ T

0
(T – s)α–β–γ1–1x(s) ds

–
μ

λΓ (α – γ1)

∫ T

0
(T – s)α–γ1–1f

(
s, x(s)

)
ds

+
1

λΓ (α – β + γ2)

∫ η

0
(η – s)α–β+γ2–1x(s) ds

–
1

λΓ (α + γ2)

∫ η

0
(η – s)α+γ2–1f

(
s, x(s)

)
ds

]

.

Substituting the value of C1 into (10), we have

x(t) = –
1

λΓ (α – β)

∫ t

0
(t – s)α–β–1x(s) ds +

1
λΓ (α)

∫ t

0
(t – s)α–1f

(
s, x(s)

)
ds

+
tα–1

Θ

[

γ3 +
μ

λΓ (α – β – γ1)

∫ T

0
(T – s)α–β–γ1–1x(s) ds

–
μ

λΓ (α – γ1)

∫ T

0
(T – s)α–γ1–1f

(
s, x(s)

)
ds

+
1

λΓ (α – β + γ2)

∫ η

0
(η – s)α–β+γ2–1x(s) ds

–
1

λΓ (α + γ2)

∫ η

0
(η – s)α+γ2–1f

(
s, x(s)

)
ds

]

.

In the two cases of 0 < t ≤ η < T and 0 < η ≤ t < T , we can verify

x(t) =
γ3

Θ
tα–1 +

∫ T

0
G1(t, s)x(s) ds +

∫ T

0
G2(t, s)f

(
s, x(s)

)
ds,

which completes the proof. �

It is easily seen that G2 is continuous, and hence is bounded on [0, T] × [0, T]. When
α – β – 1 < 0 or α – β – γ1 – 1 < 0, G1 is unbounded. Fortunately, we have

∫ T

0

∣
∣G1(t, s)

∣
∣ds ≤ 1

|λΓ (α – β)|
∫ t

0
(t – s)α–β–1 ds
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+
tα–1

Θλ

[
μ

|Γ (α – β – γ1)|
∫ T

0
(T – s)α–β–γ1–1 ds

+
1

|Γ (α – β + γ2)|
∫ η

0
(η – s)α–β+γ2–1 ds

]

=
1

λΓ (α – β + 1)
tα–β

+
tα–1

Θλ

[
μ

Γ (α – β – γ1 + 1)
Tα–β–γ1

+
1

Γ (α – β + γ2 + 1)
ηα–β+γ2

]

≤ 1
λΓ (α – β + 1)

Tα–β

+
Tα–1

Θλ

[
μ

Γ (α – β – γ1 + 1)
Tα–β–γ1

+
1

Γ (α – β + γ2 + 1)
ηα–β+γ2

]

,

which means
∫ T

0 |G1(t, s)|ds is uniformly bounded for t ∈ [0, T]. We denote

M1 := max
t∈(0,T)

∫ T

0

∣
∣G1(t, s)

∣
∣ds

and

M2 := max
t∈(0,T)

∫ T

0

∣
∣G2(t, s)

∣
∣ds.

Next, we introduce an integral inequality which can be regarded as a generalization
of the Gronwall inequality. It is also the generalization of the main result in [39] and
Lemma 3.4 of [10].

Lemma 2.6 Suppose α > 0, a > 0, g(t, s) is a nonnegative continuous function defined on
[0, T] × [0, T] with g(t, s) ≤ M, and g(t, s) is nondecreasing w.r.t. the first variable and non-
increasing w.r.t. the second variable. Assume that u(t) is nonnegative and integrable on
[0, T] with

u(t) ≤ a +
∫ t

0
g(t, s)(t – s)α–1u(s) ds, t ∈ [0, T].

Then

u(t) ≤ a + a
∫ t

0

∞∑

n=1

(g(t, s)Γ (α))n

Γ (nα)
(t – s)nα–1 ds. (11)

Proof Let Au(t) =
∫ t

0 g(t, s)(t – s)α–1u(s) ds, where u(t) is nonnegative and locally integrable
on t ∈ [0, T]. It follows that u(t) ≤ a + Au(t), which implies

u(t) ≤
n–1∑

k=0

Aka + Anu(t)
(
A0a = a

)
. (12)
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We now prove that

Anu(t) ≤
∫ t

0

(g(t, s)Γ (α))n

Γ (nα)
(t – s)nα–1u(s) ds (13)

by induction. For n = 1, the proof is trivial. Assume that Eq. (13) holds for n = k. Then, for
n = k + 1, we obtain

Ak+1u(t) = A
(
Aku(t)

)
=

∫ t

0
g(t, s)(t – s)α–1Aku(s) ds

≤
∫ t

0
g(t, s)(t – s)α–1

∫ s

0

(g(s, τ )Γ (α))k

Γ (kα)
(s – τ )kα–1u(τ ) dτ ds

≤
∫ t

0
g(t, τ )

∫ s

0

(g(t, τ )Γ (α))k

Γ (kα)
(t – s)α–1(s – τ )kα–1u(τ ) dτ ds

=
∫ t

0
g(t, τ )k+1

[∫ t

τ

Γ (α)k

Γ (kα)
(t – s)α–1(s – τ )kα–1 ds

]

u(τ ) dτ

=
∫ t

0

g(t, τ )k+1(Γ (α))k

Γ (kα)
B(α, kα)(t – τ )(k+1)α–1u(τ ) dτ

=
∫ t

0

(g(t, s)Γ (α))k+1

Γ ((k + 1)α)
(t – s)(k+1)α–1u(s) ds.

By mathematical induction, the inequality (13) holds for all n ∈ N. Replaced u(t) by a in
(13) we deduce that Aka ≤ a

∫ t
0

(g(t,s)Γ (α))k

Γ (kα) (t – s)kα–1 ds, k = 1, 2, . . . . Similar to the proof of
Lemma 3.4 of [10] we can verify that

Anu(t) ≤
∫ t

0

(MΓ (α))n

Γ (nα)
(t – s)nα–1u(s) ds → 0

as n → ∞ uniformly in t ∈ [0, T]. Finally, letting n → ∞ in (12), we get

u(t) ≤
∞∑

n=0

Ana ≤ a + a
∫ t

0

∞∑

n=1

(g(t, s)Γ (α))n

Γ (nα)
(t – s)nα–1 ds,

i.e., the inequality (11) holds. The lemma is proved. �

3 Existence results
In this section, we investigate the existence for BVP (1). For convenience we list the hy-
pothesis.

(H1) f : [0, T] × R → R is continuous.
(H2) There exists a constant L > 0 such that

∣
∣f (t, x1) – f (t, x2)

∣
∣ ≤ L|x1 – x2|

for all x1, x2 ∈ R and t ∈ [0, T].
(H3) There exists u ∈ C([0, T], R+) such that

∣
∣f (t, x)

∣
∣ ≤ u(t)

for each t ∈ [0, T] and x ∈ R.
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(H4) There exist a continuous function φ1(t) ∈ C([0, T], R+) and a nondecreasing func-
tion φ2 ∈ C([0, T], R+) such that

∣
∣f (t, x)

∣
∣ ≤ φ1(t)φ2

(|x|)

for each t ∈ [0, T] and x ∈ R.

Theorem 3.1 Assume that (H1) and (H2) hold. If

M1 + LM2 < 1,

then the boundary value problem (1) has a unique solution in C([0, T], R).

Proof We define an operator S : C([0, T], R) → C([0, T], R) by

Sx(t) =
γ3

Θ
tα–1 +

∫ T

0
G1(t, s)x(s) ds +

∫ T

0
G2(t, s)f

(
s, x(s)

)
ds,

for each t ∈ (0, T).
By Lemma 2.3, x ∈ C([0, T], R) is a solution of problem (1) if and only if x is a fixed point

of S. We now prove that S has a fixed point. Taking x1, x2 ∈ C([0, T], R) arbitrary, according
to (H2), we find

∣
∣Sx1(t) – Sx2(t)

∣
∣

≤
∫ T

0

∣
∣G1(t, s)

∣
∣
∣
∣x1(s) – x2(s)

∣
∣ds +

∫ T

0

∣
∣G2(t, s)

∣
∣
∣
∣f

(
s, x1(s)

)
– f

(
s, x2(s)

)∣
∣ds

≤ ‖x1 – x2‖
∫ T

0

∣
∣G1(t, s)

∣
∣ds + L‖x1 – x2‖

∫ T

0

∣
∣G2(t, s)

∣
∣ds

≤ (M1 + LM2)‖x1 – x2‖,

and hence

‖Sx1 – Sx2‖ ≤ (M1 + LM2)‖x1 – x2‖.

Since M1 + LM2 < 1, S is a contraction. By Banach contraction principle, S has a unique
fixed point in C([0, T], R), i.e., the boundary value problem (1) has a unique solution. This
completes the proof. �

Theorem 3.2 Assume that (H1) and (H3) hold. If

M1 < 1,

then the boundary value problem (1) has at least one solution in C([0, T], R).

Proof We define mappings A and B from C((0, T), R) into itself by

Ax(t) =
γ3

Θ
tα–1 +

∫ T

0
G1(t, s)x(s) ds
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and

Bx(t) =
∫ T

0
G2(t, s)f

(
s, x(s)

)
ds.

It is easy to verify that B is continuous on C([0, T], R), since G2 and f are contin-
uous. Further, since M1 < 1, we can choose a constant r > 0 large enough such that
M1 + M2‖u‖

r + γ3Tα–1

rΘ < 1, i.e., rM1 + M2‖u‖ + γ3Tα–1

Θ
< r, where u belongs to C([0, T], R+)

such that |f (t, x)| ≤ u(t), according to (H3). Set Br = {x ∈ C((0, T), R) : ‖x‖ ≤ r}. Then Br is
nonempty, bounded, closed and convex. Moreover, for any x, y ∈ Br and t ∈ [0, T], we have

∣
∣Ax(t)

∣
∣ ≤

∣
∣
∣
∣
γ3tα–1

Θ

∣
∣
∣
∣ +

∫ T

0

∣
∣G1(t, s)

∣
∣
∣
∣x(s)

∣
∣ds

≤ rM1 +
γ3Tα–1

Θ

and

∣
∣By(t)

∣
∣ ≤

∫ T

0

∣
∣G2(t, s)

∣
∣
∣
∣f

(
s, x(s)

)∣
∣ds

≤ M2‖u‖.

Thus, |Ax(t) + By(t)| ≤ rM1 + M2‖u‖ + γ3Tα–1

Θ
< r, i.e., Ax + By ∈ Br .

Next we prove that A is a contraction. In fact, for any x, y ∈ C((0, T), R) and t ∈ [0, 1],

∣
∣Ax(t) – Ay(t)

∣
∣ ≤

∫ T

0

∣
∣G1(t, s)

∣
∣
∣
∣x(t) – y(t)

∣
∣ds ≤ M1‖x – y‖.

It follows that ‖Ax – Ay‖ ≤ M1‖x – y‖. Since M1 < 1, we know that A is a contraction.
Finally, we have to show that B is compact. Take any bounded subset U ⊆ C([0, T], R).

Then there exists a constant r0 > 0 such that U = {u ∈ U : ‖u‖ ≤ r0}. We prove that BU is
bounded and equicontinuous. In fact, for any x ∈ U , we have

∣
∣Bx(t)

∣
∣ ≤

∫ T

0

∣
∣G2(t, s)

∣
∣
∣
∣f

(
s, x(s)

)∣
∣ds ≤ M2‖u‖ ≤ M2r0

for each t ∈ (0, T). Hence BU is bounded. Further, for any 0 ≤ t1 < t2 ≤ T and x ∈ U , we
have

∣
∣Bx(t2) – Bx(t1)

∣
∣ =

∣
∣
∣
∣

∫ T

0
G2(t2, s)f

(
s, x(s)

)
–

∫ T

0
G2(t1, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

μ

ΘλΓ (α – γ1)
(
tα–1
1 – tα–1

2
)
(T – s)α–γ1–1f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ η

0

1
ΘλΓ (α + γ2)

(
tα–1
1 – tα–1

2
)
(η – s)α+γ2–1f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t1

0

1
λΓ (α)

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t2

t1

1
λΓ (α)

(t2 – s)α–1f
(
s, x(s)

)
ds

∣
∣
∣
∣
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≤ μ(tα–1
2 – tα–1

1 )
ΘλΓ (α – γ1)

∫ T

0
(T – s)α–γ1–1 ds‖u‖

+
tα–1
2 – tα–1

1
ΘλΓ (α + γ2)

∫ η

0
(η – s)α+γ2–1 ds‖u‖

+
1

λΓ (α)

∫ t1

0

∣
∣(t2 – s)α–1 – (t1 – s)α–1∣∣ds‖u‖

+
1

λΓ (α)

∫ t2

t1

(t2 – s)α–1 ds‖u‖

=
μTα–γ1 (tα–1

2 – tα–1
1 )

ΘλΓ (α – γ1 + 1)
r0

+
ηα+γ2 (tα–1

2 – tα–1
1 )

ΘλΓ (α + γ2 + 1)
r0

+
1

λΓ (α + 1)
[
tα
2 – tα

1 + 2(t2 – t1)α
]
r0.

We can see from the above inequality that |Bx(t2) – Bx(t1)| → 0 as t2 – t1 → 0, and the
convergence is independent on x, t1 and t2. This shows that BU is equicontinuous. An
employment of Arzelà–Ascoli theorem shows that B is compact. Now, we apply Kras-
noselskii’s fixed point theorem on operator A and B to deduce that there exists at least one
x such that Ax + Bx = x, which is the solution of the boundary value problem (1). �

Theorem 3.3 Assume that (H1) and (H4) hold. If

M1 + M2‖φ1‖ lim sup
r→∝

φ2(r)
r

< 1,

then the boundary value problem (1) has at least one solution in C([0, T], R).

Proof Define a mapping S : C([0, T], R) → C([0, T], R) by

Sx(t) =
γ3

Θ
tα–1 +

∫ T

0
G1(t, s)x(s) ds +

∫ T

0
G2(t, s)f

(
s, x(s)

)
ds

for t ∈ [0, T]. It is easy to prove that S is continuous. In order to apply Schauder’s fixed
point theorem, we only need to show that S is compact.

Firstly, we take any bounded subset Q ⊆ C([0, T], R). Then there exists q (q > 0) sat-
isfying that Q ⊆ Bq = {x ∈ C([0, T], R) : ‖x‖ ≤ q}. Notice that Bq is a closed convex and
bounded subset. For any x ∈ Bq, we have

∣
∣Sx(t)

∣
∣ ≤

∣
∣
∣
∣
γ3tα–1

Θ

∣
∣
∣
∣ +

∫ T

0

∣
∣G1(t, s)

∣
∣
∣
∣x(s)

∣
∣ds +

∫ T

0

∣
∣G2(t, s)

∣
∣
∣
∣f

(
s, x(s)

)∣
∣ds

≤ γ3Tα–1

Θ
+ ‖x‖

∫ T

0

∣
∣G1(t, s)

∣
∣ds + ‖φ1‖φ2

(‖x‖)
∫ T

0

∣
∣G2(t, s)

∣
∣ds,

≤ γ3Tα–1

Θ
+ TM1q + TM2‖φ1‖φ2(q),
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which means SBq, and therefore SQ, is uniformly bounded in C((0, T), R). For 0 ≤ t1 < t2 ≤
T and any x ∈ Bq,

∣
∣Sx(t1) – Sx(t2)

∣
∣ ≤ γ3

Θ

(
tα–1
2 – tα–1

1
)

+
∣
∣
∣
∣

∫ T

0
G1(t2, s)x(s) –

∫ T

0
G1(t1, s)x(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0
G2(t2, s)x(s) –

∫ T

0
G2(t1, s)x(s) ds

∣
∣
∣
∣

= P1 + P2 + P3;

P1 =
γ3

Θ

(
tα–1
2 – tα–1

1
)
,

P2 =
∣
∣
∣
∣

∫ T

0
G1(t2, s)x(s) –

∫ T

0
G1(t1, s)x(s) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

μ

ΘλΓ (α – β – γ1)
(
tα–1
2 – tα–1

1
)
(T – s)α–β–γ1–1x(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ η

0

1
ΘλΓ (α – β + γ2)

(
tα–1
2 – tα–1

1
)
(η – s)α–β+γ2–1x(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t1

0

1
λΓ (α – β)

[
(t2 – s)α–β–1 – (t1 – s)α–β–1]x(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t2

t1

1
λΓ (α – β)

(t2 – s)α–β–1x(s) ds
∣
∣
∣
∣

≤ μ(tα–1
2 – tα–1

1 )
ΘλΓ (α – β – γ1)

∫ T

0
(T – s)α–β–γ1–1 ds‖x‖

+
tα–1
2 – tα–1

1
ΘλΓ (α – β + γ2)

∫ η

0
(η – s)α–β+γ2–1 ds‖x‖

+
1

λΓ (α – β)

∫ t1

0

∣
∣(t2 – s)α–β–1 – (t1 – s)α–β–1∣∣ds‖x‖

+
1

λΓ (α – β)

∫ t2

t1

(t2 – s)α–β–1 ds‖x‖

=
μ(tα–1

2 – tα–1
1 )Tα–β–γ1 q

ΘλΓ (α – β – γ1)

+
(tα–1

2 – tα–1
1 )ηα–β–γ1 q

ΘλΓ (α – β + γ2)

+
q

λΓ (α – β)
[
tα–β
2 – tα–β

1 + 2(t2 – t1)α–β
]
,

P3 =
∣
∣
∣
∣

∫ T

0
G2(t2, s)f

(
s, x(s)

)
–

∫ T

0
G2(t1, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

μ

ΘλΓ (α – γ1)
(
tα–1
1 – tα–1

2
)
(T – s)α–γ1–1f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ η

0

1
ΘλΓ (α + γ2)

(
tα–1
1 – tα–1

2
)
(η – s)α+γ2–1f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t1

0

1
λΓ (α)

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s, x(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t2

t1

1
λΓ (α)

(t2 – s)α–1f
(
s, x(s)

)
ds

∣
∣
∣
∣



Xu et al. Advances in Difference Equations        (2018) 2018:458 Page 13 of 17

≤ μ(tα–1
2 – tα–1

1 )
ΘλΓ (α – γ1)

[∫ T

0
(T – s)α–γ1–1 ds

]

‖φ1‖φ2
(‖x‖)

+
(tα–1

2 – tα–1
1 )

ΘλΓ (α + γ2)

[∫ η

0
(η – s)α+γ2–1 ds

]

‖φ1‖φ2
(‖x‖)

+
1

λΓ (α)

[∫ t1

0

∣
∣(t2 – s)α–1 – (t1 – s)α–1∣∣ds

]

‖φ1‖φ2
(‖x‖)

+
1

λΓ (α)

∫ t2

t1

(t2 – s)α–1 ds‖φ1‖φ2
(‖x‖)

=
μTα–γ1 (tα–1

2 – tα–1
1 )

ΘλΓ (α – γ1 + 1)
‖φ1‖φ2(q)

+
ηα+γ2 (tα–1

2 – tα–1
1 )

ΘλΓ (α + γ2 + 1)
‖φ1‖φ2(q)

+
1

λΓ (α + 1)
[
tα
2 – tα

1 + 2(t2 – t1)α
]‖φ1‖φ2(q).

It is trivial that P1, P2 and P3 all tend to 0 as t2 – t1 → 0. Hence, |Sx(t2) – Sx(t1)| → 0
(t2 – t1 → 0). Notice that the convergence is independent on x, t1 and t2. It follows that
SBq is equicontinuous. An application of the Arzelà–Ascoli Theorem yields that SBq is
compact. Therefore, we have shown that S maps bounded subsets into compact subset,
i.e., S is a compact mapping.

Now, from the condition M1 + M2‖φ1‖ limr→∝ sup φ2(r)
r < 1, we can choose a positive r

large enough, such that

M1 + M2‖φ1‖φ2(r)
r

+
γ3Tα–1

rΘ
< 1,

i.e., M1r + M2‖φ1‖φ2(r) + γ3Tα–1

Θ
< r. Hence, we can take C > 0 such that M1C +

M2‖φ1‖φ2(C) + γ3Tα–1

Θ
< C. Let U = {x ∈ C((0, T), R) : ‖x‖ ≤ C}. Then S : U → C((0, T), R)

is compact and continuous. If there exist λ ∈ (0, 1) and x ∈ U such that x = λSx, then, for
every t ∈ (0, T),

∣
∣x(t)

∣
∣ =

∣
∣λSx(t)

∣
∣ ≤ ∣

∣Sx(t)
∣
∣

≤
∣
∣
∣
∣
γ3tα–1

Θ

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0
G1(t, s)x(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0
G2(t, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤ γ3Tα–1

Θ
+ M1C + M2‖φ1‖φ2

(‖x‖)

≤ M1C + M2‖φ1‖φ2(C) +
γ3Tα–1

Θ
.

It then follows that C = ‖x‖ ≤ M1C + M2‖φ1‖φ2(C) + γ3Tα–1

Θ
< C, which contradict to the

fact that x ∈ U . Thus, x �= λSx for each λ ∈ (0, 1) and x ∈ U . By the Leray Schauder alter-
native, S has at least one fixed point, which is the solution to the boundary value problem
(1). This completes the proof. �
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4 Stability analysis
In this section, we study Hyers–Ulam stability of the boundary value problem

⎧
⎨

⎩

λDα
0 x(t) + Dβ

0 x(t) = f (t, x(t)), 0 ≤ t ≤ T ,

x(0) = 0, x(T) = γ .
(14)

Definition 4.1 The boundary value problem (14) is Hyers–Ulam stable if there exists a
real constant c > 0, such that for any ε > 0, and for every solution y(t) ∈ C([0, T], R) of the
inequality

∣
∣λDα

0 y(t) + Dβ
0 y(t) – f

(
t, y(t)

)∣
∣ ≤ ε, t ∈ [0, T],

there exists a solution x(t) ∈ C([0, T], R) of problem (14) with

∣
∣y(t) – x(t)

∣
∣ ≤ cε, t ∈ [0, T].

Theorem 4.2 Assume that (H1) and (H2) hold. Then the solution of the boundary value
problem (14) is Hyers–Ulam stable.

Proof For ε > 0, and each solution y(t) ∈ C([0, T], R) of the inequality

∣
∣λDα

0 y(t) + Dβ
0 y(t) – f

(
t, y(t)

)∣
∣ ≤ ε, t ∈ [0, T],

we can find a function g(t) satisfying λDα
0 y(t) + Dβ

0 y(t) = f (t, y(t)) + g(t) and |g(t)| ≤ ε. It
follows that

y(t) = –
1
λ

Iα–β
0 y(t) +

1
λ

Iα
0 f

(
t, y(t)

)
+

1
λ

Iα
0 g(t)

+
tα–1

Tα–1

[

y(T) +
1
λ

Iα–β
0 y(T) –

1
λ

Iα
0 f

(
T , y(T)

)
–

1
λ

Iα
0 g(T)

]

.

Let x(t) ∈ C([0, T], R) be the unique solution of (14). Then x(t) is given by

x(t) = –
1
λ

Iα–β
0 x(t) +

1
λ

Iα
0 f

(
t, x(t)

)
+

tα–1

Tα–1

[

x(T) +
1
λ

Iα–β
0 x(T) –

1
λ

Iα
0 f

(
T , x(T)

)
]

.

Then we have

∣
∣y(t) – x(t)

∣
∣ ≤ 1

λ
Iα–β

0
∣
∣y(t) – x(t)

∣
∣ +

1
λ

Iα
0
∣
∣f

(
t, y(t)

)
– f

(
t, x(t)

)∣
∣

+
tα–1

Tα–1

[
1
λ

Iα–β
0

∣
∣y(T) – x(T)

∣
∣ +

1
λ

Iα
0
∣
∣f

(
T , y(T)

)
– f

(
T , x(T)

)∣
∣

]

+
1
λ

Iα
0
∣
∣g(t)

∣
∣ +

tα–1

λTα–1 Iα
0
∣
∣g(T)

∣
∣

≤ 1
λ

∫ t

0

[
(t – s)α–β–1

Γ (α – β)
+ L

(t – s)α–1

Γ (α)

]
∣
∣y(s) – x(s)

∣
∣ds

+
tα–1

λTα–1

∫ T

0

[
(T – s)α–β–1

Γ (α – β)
+ L

(T – s)α–1

Γ (α)

]
∣
∣y(s) – x(s)

∣
∣ds
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+
1
λ

∫ t

0

(t – s)α–1

Γ (α)
∣
∣g(s)

∣
∣ds +

tα–1

λTα–1

∫ T

0

(T – s)α–1

Γ (α)
∣
∣g(s)

∣
∣ds

≤ 1
λ

∫ t

0

[
(t – s)α–β–1

Γ (α – β)
+ L

(t – s)α–1

Γ (α)

]
∣
∣y(s) – x(s)

∣
∣ds

+
1
λ

∫ T

0

[
(T – s)α–β–1

Γ (α – β)
+ L

(T – s)α–1

Γ (α)

]
∣
∣y(s) – x(s)

∣
∣ds

+ 2ε
1
λ

∫ T

0

(T – s)α–1

Γ (α)
ds

≤ 1
λ

∫ t

0

[
(t – s)α–β–1

Γ (α – β)
+ L

(t – s)α–1

Γ (α)

]
∣
∣y(s) – x(s)

∣
∣ds

+ M(ε)ε +
2Tα

λΓ (α + 1)
ε,

where 1
λ

∫ T
0 [ (T–s)α–β–1

Γ (α–β) + L (T–s)α–1

Γ (α) ]|y(s) – x(s)|ds ≤ M(ε)ε and M(ε) is a constant dependent

on ε. Let g(t, s) = 1
λΓ (α–β) + L (t–s)β

λΓ (α) and M = M(ε) + 2Tα

λΓ (α+1) . Then

∣
∣y(t) – x(t)

∣
∣ ≤ Mε +

∫ t

0
g(t, s)(t – s)α–β–1∣∣y(s) – x(s)

∣
∣ds.

We note that g(t, s) ≤ 1
λΓ (α–β) + L Tβ

λΓ (α) (= M). Hence, in view of Lemma 3.4,

∣
∣y(t) – x(t)

∣
∣ ≤ Mε + Mε

∫ t

0

∞∑

n=1

(g(t, s)Γ (α – β))n

Γ (n(α – β))
(t – s)n(α–β)–1 ds

≤ Mε + Mε

∫ t

0

∞∑

n=1

(MΓ (α – β))n

Γ (n(α – β))
(t – s)n(α–β)–1 ds

= Mε + Mε

∞∑

n=1

(MΓ (α – β))n

Γ (n(α – β) + 1)
Tn(α–β)

≤ MεEα–β

(
MT (α–β)Γ (α – β)

)
.

Let c = MEα–β (MT (α–β)Γ (α – β)). The inequality

∣
∣y(t) – x(t)

∣
∣ ≤ cε

holds. Thus, the boundary value problem (14) is Hyers–Ulam stable. �

5 Examples
Example 5.1 Let us consider the following multiply three-term fractional differential
equation

⎧
⎨

⎩

4
5 D

3
2
0 x(t) + D

5
4
0 x(t) = t2 sin(x(t)), 0 < t < 1

4 ,

x(0) = 0, 1
8 D

1
8
0 x( 1

4 ) + I
3
4

0 x( 1
8 ) = 1

16 .
(15)

Here α = 3
2 , β = 5

4 , λ = 4
5 , μ = 1

8 , γ1 = 1
8 < α – β , γ2 = 3

4 , γ3 = 1
16 , T = 1

4 , η = 1
8 and

f (t, x) = t2 sin x. It is evident that |f (t, x1) – f (t, x2)| < ( 1
4 )2|x1 – x2| < |x1 – x2|, which sat-

isfies condition (H2). So, we can select L = 1. We can calculate that Θ = 0.9090913801766,
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M1 ≤ 0.4588930235784, M2 ≤ 0.0465184974808. So, M1 + LM2 ≤ 0.5054115210592 < 1.
Therefore, by applying Theorem 3.1, we deduce that the boundary value problem (15) has
a unique solution on (0, 1

4 ).
Let g(t, s) = 1

λΓ (α–β) + L (t–s)β
λΓ (α) . Noting that g(t, s) ≤ 1

λΓ (α–β) + L Tβ

λΓ (α) ≈ 4.7314835278026
(= M). Let x( 1

4 ) = 1. By Theorem 4.2, the problem (15) with x( 1
4 ) = 1 is Hyers–Ulam stable.

Example 5.2 Considering the following boundary value problem which contains Rie-
mann–Liouville fractional derivatives of two orders in a differential equation and the con-
dition

⎧
⎨

⎩

4
5 D

3
2
0 x(t) + D

5
4
0 x(t) = t2x 1

2 , 0 < t < 1
8 ,

x(0) = 0, 1
16 D

1
8
0 x( 1

4 ) + I
3
4

0 x( 1
16 ) = 1

24 .
(16)

Here α = 3
2 , β = 5

4 , λ = 4
5 , μ = 1

16 , γ1 = 1
8 < α – β , γ2 = 3

4 , γ3 = 1
24 , T = 1

8 and
η = 1

16 . By direct computation, we have Θ ≈ 0.053013292298, M1 ≤ 0.2209565547363,
M2 ≤ 0.0111290158488. Choosing φ1(t) = t2 and φ2 = x 1

2 , we can show that M1 +
M2‖φ1‖ limr→∝ sup φ2(r)

r < 1. Hence, by Theorem 3.3, the problem (16) has at least one
solution on (0, 1

8 ).

6 Conclusion
In this paper, we study a class of two-term fractional differential equations. We first in-
vestigate the Green function of a three-point boundary value problems with mixed frac-
tional differential and integral boundary conditions. Existence results are obtained based
on some fixed point theorems. We also study the Hyers–Ulam stability for null boundary
conditions. Our results improve and generalize the results in [11, 19, 38] and [20]. More-
over, we present a Gronwall type inequality of fractional order integral by the method of
iteration.
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