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Abstract
In this paper, we consider fast convergent average consensus based on community
detection algorithm. Generally, we know that a small network can have a faster
convergence speed than a big one at the same condition. So we divide a multiagent
network into several small networks. Firstly, let every small network reach own
consensus, and then entire network reach the average consensus. Based on this idea,
we present FCWAC Algorithm. For the FCWAC Algorithm, we obtain the results on the
average consensus of first-, second-, and high-order continuous-time multiagent
systems. Finally, simulation examples illustrate our theoretical results.

Keywords: Consensus; Multiagent systems; Community detection algorithm;
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1 Introduction
In the last twenty years the distributed consensus problem of multiagent systems has at-
tracted extensive interest of many scholars, owing to many its important practical ap-
plications, such as satellite configuration, unmanned aerial vehicle formation, and so on.
The distributed consensus (we refer to it as consensus in this paper) means that agents in
a communication network reach a common state by exchanging information with their
neighbor agents.

In fact the consensus problem has already received attention in management science
and statistics since the 1960s. Borkar and Varaiya [1] and Tsitsiklis [2] wrote some pio-
neering works on distributed computation of systems and control theory. Specifically, for
the first time, Vicsek et al. [3] presented an analysis of the alignment problem based on a
model about flocking, which was a milestone in development of the consensus theory of
multiagent systems. A classical consensus model of continuous-time multiagent systems
was presented by Olfati-Saber and Murray [4]. Subsequently, many scholars began to study
consensus from first-order to second-order or even high-order multi-gent systems [5–17].

In 2018, the consensus problem of multiagent systems is still a hot area of research.
Many scholars obtained a lot of significant results. For example, Lin et al. [18] consid-
ered a distributed consensus algorithm for the second-order multiagent systems with non-
convex velocity and control input constraints, which is introduced based on the union of
the communication graphs has directed spanning trees among each time interval of cer-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1901-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1901-7&domain=pdf
http://orcid.org/0000-0002-4086-5805
mailto:xinlfeng@126.com


Feng and Yang Advances in Difference Equations        (2018) 2018:440 Page 2 of 13

tain bounded length in the presence of arbitrarily bounded communication delays. Xu
et al. [19] obtained the output consensus problem of discrete-time heterogeneous linear
multiagent systems with switching topology and time delays by introducing a distributed
predictor-based controller. Wu et al. [20] discussed the leader-following consensus prob-
lem of high-order multiagent systems via a novel distributed event-triggered communica-
tion protocol based on state estimates of neighboring agents, which can greatly reduce the
communication load of multiagent networks. Zhang et al. [21] considered the distributed
optimal cooperative control for continuous-time nonlinear multiagent systems (MASs)
with completely unknown dynamics via adaptive dynamic programming (ADP) technol-
ogy, which introduces predesigned extra compensators. A novel online iterative scheme
was also proposed, which runs based on the data sampled from the augmented system
and the gradient of the value function. Neural networks were employed to implement the
algorithm, which yields approximated optimal consensus protocols. Rehan et al. [22] con-
sidered a distributed consensus controller design approach for one-sided Lipschitz non-
linear multiagents by employing relative state feedback. The proposed consensus control
approach is less conservative for robustness against disturbances owing to its ability to
handle amplitude-bounded disturbances and due to the relaxation of a balanced commu-
nication topology.

For multiagent systems, especially for those having a complicated network, improving
their convergence speed is a very significant work. At present, two major approaches to
improve the convergence speed to consensus are optimizing the weight of the commu-
nication topology [5–7, 12] and incorporating memory into the distributed algorithms
[8–10], respectively. For multiagent systems, the algebraic connectivity or spectral radius
of the communication topology determines their convergence speed. Therefore, we can
improve the convergence speed to consensus by optimizing the weight of the communica-
tion topology. For example, Zhu et al. [12] obtained that the maximum convergence speed
of multiagent systems with double-integrator dynamics can be achieved by choosing suit-
able gains in a periodic consensus protocol. Meanwhile, Aysal et al. [9] presented a linear
local iterative protocol, which can obtain asymptotically distributed average consensus by
using a linear predictor to predict subsequent states of agents. For the first time Oreshkin
et al. [10] presented a theoretical demonstration, which, by adding a local predictor in
distributed average consensus protocol, can effectively improve the convergence speed of
multiagent systems.

However, the methods mentioned are limited when applied to high-order systems. So
accelerating the consensus convergence of high-order multiagent systems is very difficult.
Either it is difficult to extract the roots of a high-order equation, or there no effective
methods to process a high-order equation.

However, Zhang et al. [23] presented a new community detection algorithm to accelerate
consensus convergence by introducing a local modularity into the algorithm in [24–26].
The main idea of [23], which introduces the new community detection algorithm, is, firstly,
dividing the entire communication topology graph of a multiagent system into several lay-
ers of connected subgraphs, where every subgraph is seen as a community and, secondly,
letting all communities to reach group consensus in every layer; finally, the hierarchical
groups reach the final consensus of a multiagent system.

However, the consensus in [23] has also a shortcoming; namely, it is not an average con-
sensus. Meanwhile, the authors in [23] also only considered consensus of first-order sys-
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tems. Therefore, due to these shortcomings, we present average consensus of first-order
systems based on community detection algorithm and also consider the average consensus
of second- and high-order systems based on community detection algorithm.

The remainder part of this paper is organized as follows. In Sect. 2, we describe pre-
liminary definitions and results. In Sect. 3, we present FCWAC Algorithm based on the
community detection algorithm [23] and consider average consensus of first-order multia-
gent systems according to the FCWAC Algorithm. In Sect. 4, we consider average consen-
sus of second- and high-order mult-agent systems according to the FCWAC Algorithm.
Moreover, in Sect. 5, we present numerical examples to illustrate our theoretical results.
Conclusions are drawn in Sect. 6.

2 Preliminaries
A directed graph (digraph) G = (V , E) consists of a set of nodes V = {1, . . . , n} and a set of
edges E = V × V . A pair (i, j) is an edge of G if and only if (i, j) is an arc from node i to
node j of G. Likewise, agent j is called a neighbor of agent i. The set of all neighbors of
agent i is written as Ni(t). Suppose that there exist n nodes in a graph G. The adjacency
matrix A ∈ R

n×n of G is defined as aij = 1 if (i, j) ∈ E and aij = 0 otherwise. If a graph has
the property that (i, j) ∈ E implies (j, i) ∈ E, then it is said to be undirected. The Laplacian
matrix L ∈ R

n×n is defined as lii =
∑

j �=i aij and lij = –aij for i �= j. Meanwhile, a matrix L
is called symmetric if its corresponding undirected graph has symmetric weights, that is,
aij = aji. In a directed graph, a directed path is a sequence of edges (v1, v2), (v2, v3), . . . , where
vi ∈ V . A directed graph has a directed spanning tree if at least one node has a directed
path to all other nodes. A strongly connected graph means that each node has a directed
path to all other nodes. In this paper, for convenience, we suppose that the weight of all
edges is 1 and graphs are undirected.

The community detection algorithm can be referred to the following idea based on [23]:
The agent with the highest degree of importance will be selected as the cluster point of
community in each iteration; the agent included in community neighbor set and making
the largest increase for local module degree should be contained in community; next, the
neighbor set and local modularity of community are further updated. The new community
is formed until the local modularity does not increase or neighbor set is null.

Lemma 2.1 ([4]) (i) All the eigenvalues of the Laplacian matrix L have nonnegative real
parts; (ii) Zero is an eigenvalue of L with 1n (where 1n is the n × 1 column vector of all ones)
as the corresponding right eigenvector. Furthermore, zero is a simple eigenvalue of L if and
only if the graph G has a directed spanning tree.

3 The average consensus of first-order multiagent systems with FCWAC
Algorithm

To obtain fast average consensus, we present FCWAC Algorithm. We will provide it fur-
ther.

3.1 Fast convergent weighted average consensus algorithm—FCWAC Algorithm
The first step: according to the community detection algorithm [23], we divide the com-
munication topology network into several communities.

The second step: let every community to reach consensus (information exchange only
among the internal agents of every community).
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The third step: let every community be an agent. Finally, the new system reaches the
weighted average consensus.

According to the FCWAC Algorithm, multiagent systems can reach average consensus.
We will further analyze the reason in Remark 3.1.

3.2 The weighted average consensus of first-order multiagent systems
Let m denote the number of agents, n denote the number of communities, and ni denote
the number of agents in the community i = 1, 2, . . . , n. We provide the following dynamics
equations:

wiẋi(t) = ui(t), i = 1, 2, . . . , n, (1)

where xi(t) and ui(t) denote the position and control input of agent i, respectively. The
consensus protocol ui(t) is given as

ui(t) =
∑

j∈Ni

aij
(
xj(t) – xi(t)

)
, (2)

where aij ≥ 0, W = Diag(w1, w2, . . . , wn), wi = ni
m , ni �= 0.

Furthermore, these equations can be rewritten in the vector form:

ẋ(t) = –W –1Lx(t). (3)

For the multiagent system (3), we have the following result.

Theorem 3.1 Let G be a strongly connected graph. Then under protocol (2) system (1)
(every community is seen as an agent) can reach the weighted average consensus, and

x(t) = 1n
1T

n W
‖1T

n W‖1
x(0),

where 1n is the vector of all ones.

Proof In terms of Lemma 2.1, L has a simple zero eigenvalue. Because all the diagonal
entries of W are positive, W is also an invertible matrix. For the Laplacian matrix L, all the
Getschgorin disks lie at the right region of the y-axis of the rectangular plane coordinate
system. Thus all the eigenvalues of L are positive except 0. Next, let us multiply the matrix
L by W –1 from the left side of L. Thus these Getschgorin disks still lie at the right region
of the y-axis. So the eigenvalues of W –1L are also positive except 0. Moreover, W –1L also
has a simple zero eigenvalue. Thus system (3) is asymptotically stable. Obviously, we can
obtain that 1n is a right eigenvector of W –1L corresponding to the zero eigenvalue, and
1T

n W is a left eigenvector of W –1L corresponding to the zero eigenvalue.
Meanwhile, W –1L can be rewritten as the Jordan canonical form SJS–1, where J is the

Jordan block matrix with its eigenvalues being the diagonal entries. For the columns of S,
sk , k = 1, . . . , n, can be chosen to be the right eigenvectors or generalized right eigenvectors
associated with eigenvalues of W –1L. Similarly, hT

k , k = 1, . . . , n, which are the rows of S–1

satisfying hT
k sk = 1, hT

k sl = 0 (k �= l), can be chosen to be the left eigenvectors or generalized
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left eigenvectors associated with eigenvalues of W –1L. Furthermore, we choose s1 = 1n,
hT

1 = 1T
n W

‖1T
n W‖1

as the eigenvectors corresponding to the zero eigenvalue.
So we have

lim
t→∞ x(t) = e–W –1Ltx(0)

=
(

s1 · · · sn

)
·
(

1 01×(n–1)

0(n–1)×1 0(n–1)×(n–1)

)

·

⎛

⎜
⎜
⎝

hT
1
...

hT
n

⎞

⎟
⎟
⎠x(0)

= 1nhT
1 x(0) = 1n

1T
n W

‖1T
n W‖1

x(0),

which implies xi(t) → 1T
n W

‖1T
n W‖1

x(0), i = 1, 2, . . . , n. Therefore the weighted average consensus
can be obtained. �

Remark 3.1 In terms of the third step of our FCWAC Algorithm, every community is con-
sidered as an agent (the subsystem formed by one single community has already reached
consensus, and every agent in the same community has the same state). Therefore we have
ni agents with the same state in the community i. Due to wi = ni

m , i = 1, 2, . . . , n, we can eas-
ily obtain 1T

n W
‖1T

n W‖1
x(0) = 1T

n x′(0), where x(0) is the initial condition of agents in the third
step of the FCWAC Algorithm, and x′(0) is the initial condition of the second step in the
FCWAC Algorithm. Therefore our algorithm can indeed reach average consensus.

4 The average consensus of second- and high-order multiagent systems using
the FCWAC Algorithm

For the average consensus of second- and high-order systems, we still use our FCWAC
algorithm to process it. The weighted consensus of second-order multiagent systems is
considered in the following section.

4.1 The average consensus of second-order multiagent systems using the FCWAC
Algorithm

Similarly, let m still denote the number of agents, n denote the number of communities,
and ni denote the number of agents in the community i = 1, 2, . . . , n. We present the fol-
lowing dynamics equations:

wiẋi(t) = vi(t), i = 1, 2, . . . , n, (4)

wiv̇i(t) = ui(t), i = 1, 2, . . . , n, (5)

where xi(t), vi(t), and ui(t) denote the position, velocity, and control input of agent i, re-
spectively. The consensus protocol ui(t) is given as

ui(t) =
∑

j∈Ni

aij
(
xj(t) – xi(t)

)
+

∑

j∈Ni

aij
(
vj(t) – vi(t)

)
, (6)

where aij ≥ 0, W = Diag(w1, w2, . . . , wn), wi = ni
m .



Feng and Yang Advances in Difference Equations        (2018) 2018:440 Page 6 of 13

Furthermore, these equations can be rewritten in the vector form:

˙(
x(t)
v(t)

)

= Φ

(
x(t)
v(t)

)

, (7)

where Φ = ( 0 W –1

–W –1L –W –1L
).

For system (6), we have the following result.

Theorem 4.1 Let G be a strongly connected graph. If (8) has only real roots or all the
nonreal complex roots of (8) have negative real parts, then, under protocol (6), system (7)
(every community is seen as an agent) can reach the weighted average consensus given by

(
x(t)
v(t)

)

=

⎛

⎜
⎝

1n
1T

n W
‖1T

n W‖1
x(0) + t1n

1T
n W

‖1T
n W‖1

v(0)

1n
1T

n W
‖1T

n W‖1
v(0)

⎞

⎟
⎠ .

Proof According to the characteristic equation

(
0 W –1

–W –1L –W –1L

)(
x(t)
v(t)

)

= λ

(
x(t)
v(t)

)

,

we get

(
W –1LW –1 + λW –1L + λ2In

)
Wx(t) = 0.

To obtain the eigenvalues of Φ , we only need to solve

∣
∣L + λLW + λ2W 2∣∣ = 0.

Further, we only need to solve

∣
∣L(In + λW ) + λ2W 2∣∣ = 0. (8)

If λ ∈ R and λ > 0, then we get

∣
∣(In + λW )T ∣

∣
∣
∣L(In + λW ) + λ2W 2∣∣ =

∣
∣(In + λW )T L(In + λW ) + λ2(In + λW )T W 2∣∣ �= 0.

So |L(In + λW ) + λ2W 2| �= 0. Furthermore, we can get that the real eigenvalues of Φ are
not positive.

From (8) we can also obtain that 0 is an eigenvalue of Φ and its algebraic multiplicity
is 2.

If (8) has nonreal complex roots or negative real roots and if all nonreal complex eigen-
values of (8) have negative real parts, then we can prove that e system (7) can reach con-
sensus, which will be proved in the following paragraph.

Furthermore, Φ can also be written as the Jordan canonical form SJS–1, where the
columns of S, denoted by sk , k = 1, . . . , 2n, can be chosen to be the right eigenvectors or gen-
eralized right eigenvectors associated with eigenvalues of Φ ; hT

k , k = 1, . . . , 2n, which are
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the rows of S–1 and satisfy hT
k sk = 1, hT

k sl = 0 (k �= l), can be chosen to be the left eigenvec-
tors or generalized left eigenvectors of Φ , and J is the Jordan block matrix with its eigen-
values being the diagonal entries. We get that s1 = ( 1n

0 ), s2 = ( 0
1n

) are the right eigenvectors
or the generalized right eigenvectors, hT

1 = 1
‖1T

n W –1‖1
( 1T

n
0

)T W –1 and hT
2 = 1

‖1T
n W –1‖1

( 0
1T

n
)W –1

are the left eigenvectors or the generalized left eigenvectors corresponding to the Jordan
block ( 0 1

0 0). Thus we obtain

lim
t→∞

(
x(t)
v(t)

)

= eΦt

(
x(0)
v(0)

)

=
(

s1 · · · s2n

)
·
⎛

⎜
⎝

(
1 t
0 1

)

02×(2n–2)

0(2n–2)×2 0(2n–2)×(2n–2)

⎞

⎟
⎠ ·

⎛

⎜
⎜
⎝

hT
1
...

hT
2n

⎞

⎟
⎟
⎠

(
x(0)
v(0)

)

=
(
s1hT

1 + ts1hT
2 + s2hT

2
)
(

x(0)
v(0)

)

=

⎛

⎜
⎝

1n1T
n W –1x(0)

‖1T
n W –1‖1

+ t 1n1T
n W –1v(0)

‖1T
n W –1‖1

1n1T
n W –1v(0)

‖1T
n W –1‖1

⎞

⎟
⎠ ,

which implies that xi(t) → 1T
n W –1x(0)

‖1T
n W –1‖1

+ t 1T
n W –1v(0)

‖1T
n W –1‖1

and vi(t) → 1T
n W –1v(0)

‖1T
n W –1‖1

. So the weighted
average consensus can be obtained. �

Remark 4.1 According to our FCWAC Algorithm, the second-order multiagent system
can reach the average consensus. The reason is similar to the explanation in Remark 3.1.

4.2 Fast average consensus of high-order multiagent systems
In the following part, we consider a high-order weighted dynamical consensus of multia-
gent system.

Let m denote the number of agents, n denote the number of communities, and ni denote
the number of agents in the community i = 1, 2, . . . , n. Consider the multiagent systems
with lth-order dynamics (l ≥ 3) given by

wiẋi(t) = x(1)
i (t),

...

wiẋ(l–2)
i (t) = x(l–1)

i (t),

wiẋ(l–1)
i (t) = ui(t),

where x(d)
i (t), d = 0, . . . , l – 1, are the states of agents, ui(t) is the control input, and x(d)

i (t)
denotes the kth derivative of xi(t) with x(0)

i (t) = xi(t), i = 1, . . . , n. Meanwhile, aij ≥ 0, W =
Diag(w1, w2, . . . , wn), wi = ni

m . Next, we consider the following dynamical protocol:

ui(t) =
l–1∑

d=0

∑

j∈Ni

aij(t)
(
x(d)

j (t) – x(d)
i (t)

)
. (9)
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Furthermore, we can rewritten these equations as follows:

W ẋ(t) = x(1)(t),

...

W ẋ(l–2)(t) = x(l–1)(t),

W ẋ(l–1)(t) = –
l–1∑

d=o

Lx(d)(t).

(10)

Finally, they can be rewritten as

Ẋ(t) = Ψ X(t), (11)

where X(t) = (x(t) x(1)(t) · · · x(l–1)(t))T and

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 · · · 0
0 0 I · · · 0
0 0 0 · · · 0

· · · · · · · · · · · · · · ·
–W –1L –W –1L –W –1L · · · –W –1L

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For high-order multiagent systems, similarly, we have the following theorem.

Theorem 4.2 Let G be a strongly connected graph. If Ψ has only real eigenvalues or all the
nonreal complex eigenvalues of Ψ have negative real parts, then, under protocol (6), system
(11) (every community is seen as an agent) can reach the weighted average consensus given
by

⎛

⎜
⎜
⎜
⎝

x(t)
x(1)(t)
· · ·

x(l–1)(t)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1n
1T

n W
‖1T

n W‖1
x(0) + · · · + tl–1

(l–1)! 1n
1T

n W
‖1T

n W‖1
xl–1(0)

1n
1T

n W
‖1T

n W‖1
x1(0) + · · · + tl–2

(l–2)! 1n
1T

n W
‖1T

n W‖1
xl–1(0)

· · ·
1n

1T
n W

‖1T
n W‖1

xl–1(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Remark 4.2 According to our FCWAC Algorithm, the high-order multiagent system still
can reach average consensus.

5 Simulation
In this section, we present two simulation examples to illustrate our consensus protocols.
In the following examples, we consider a multiagent system consisting of 20 agents with
topology in Fig. 1 and initial condition x(0) = (0.2, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.8, 2.1,
2.3, 2.5, 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.9)T . For comparison, we choose the same topology graph
of the example in [23]. The multiagent system is divided into four communities: commu-
nity 1 [1–5], community 2 [6–8], community 3 [9–13], and community 4 [14–20]. Thus
the weighted matrix is equal to Diag(1/4, 3/20, 1/4, 7/20). The Laplacian matrices of each
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Figure 1 Topology graph

community are

L1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 –1 0 –1 –1
–1 3 –1 –1 0
0 –1 3 –1 –1

–1 –1 –1 3 0
–1 0 –1 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L2 =

⎛

⎜
⎝

2 –1 –1
–1 2 –1
–1 –1 2

⎞

⎟
⎠ ,

L3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 –1 –1 0
0 2 –1 –1 0

–1 –1 4 –1 –1
–1 –1 –1 4 –1
0 0 –1 –1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and

L4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 –1 –1 –1 –1 0 0
–1 3 0 –1 0 –1 0
–1 0 2 –1 0 0 0
–1 –1 –1 6 –1 –1 –1
–1 0 0 –1 3 –1 0
0 –1 0 –1 –1 4 –1
0 0 0 –1 0 –1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

respectively. In the third step of the FCWAC Algorithm, the weighted Laplacian matrix is
equal to

L5 =

⎛

⎜
⎜
⎜
⎝

4 –3 –1 0
–3 6 –1 –2
–1 –1 3 –1
0 –2 –1 3

⎞

⎟
⎟
⎟
⎠

.

Example 5.1 In this example, we consider the consensus of the first-order multiagent sys-
tem. Figure 2(a) is the state trajectory of the multiagent system without community di-
vision. Figure 2(b) is the state trajectory of the multiagent system using the community



Feng and Yang Advances in Difference Equations        (2018) 2018:440 Page 10 of 13

Figure 2 Agent states of multiagent system

Figure 3 State trajectories of multiagent system

detection algorithm in [23]. Obviously, from Fig. 2(b) we can find that the multiagent sys-
tem do not obtain average consensus.

Figure 3(a) is the state trajectory of the multiagent system using the FCWAC Algorithm.
We can find that the multiagent system obtains faster convergence speed than it is in the
case without division community and indeed reaches the average consensus. Figure 3(b) is
a comparison figure of state trajectory between using the FCWAC Algorithm and without
division community case. Moreover, we can find that our FCWAC Algorithm has faster
convergence speed than the community detection algorithm in [23]. We also find that the
final states of the agents verify the correctness of Theorem 3.1.

Example 5.2 In this example, we consider the consensus of second-order multiagent sys-
tem. Figure 4 is the state trajectory of the multiagent system without community division.
Figure 5 is the state trajectory of the multiagent system using the FCWAC Algorithm.
We can find that the multiagent system obtains faster convergence speed than it is in the
case without division community, and the multiagent system indeed reaches the average
consensus. Figure 6 is a comparison figure of state trajectory between using the FCWAC
Algorithm and without division community case. The final states of the agents verify the
correctness of Theorem 4.1.
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Figure 4 State trajectories of multiagent system

Figure 5 State trajectories of multiagent system

Figure 6 State trajectories of multiagent system

6 Conclusion
In this paper, we consider fast convergent average consensus based on community detec-
tion algorithm and present the FCWAC Algorithm. To use the FCWAC Algorithm, we
obtain the results of the weighted average consensus of multiagent systems. It should be
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noticed that our idea can also solve the average consensus problem, which divides the
communication topology into several layers of community. Finally, we use numerical ex-
amples to illustrate our theoretical results.
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