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Abstract
In this paper, we study a delayed predator–prey model with impulse and, in particular,
the existence of the predator-free periodic solution. We employ the approach and
techniques coming from epidemiology and calculate the basic reproduction number
for the predator. Using the basic reproduction number, we consider the global
attraction of the predator-free periodic solution and uniform persistence of the
predator. Our results improve the results by Li and Liu (Adv. Differ. Equ. 2016:42, 2016),
where they left the open problem of finding a threshold value that determines the
eradication and uniform persistence of the predator. Furthermore, we give some
numerical simulations to illustrate our results.
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1 Introduction
In the natural world, many species usually pass through a number of stages during their life
cycle. So it is practical to introduce time delay into models of theoretical ecology. In par-
ticular, it is often important to take into account the processes of gestation and maturation
to make an abstract model more biologically realistic [2–4]. The characteristic property of
population models with time delay is their oscillatory behavior: for a sufficiently large mat-
uration period, an initially stable equilibrium becomes unstable, and the system exhibits
sustained oscillations [2, 5]. Additionally, impulsive differential equations have been ex-
tensively used as models in biology, physics, chemistry, engineering, and other sciences
with particular emphasis on population dynamics [6–9]. In [9] the authors discussed an
impulsive predator–prey system with stage structure and generalized functional response.
Sufficient conditions are established for the existence of a predator-free positive periodic
solution and the permanence of the system. Numerical simulation shows that impulses
and functional response affect the dynamics of the system.

Hence time delay and impulse are incorporated into predator–prey models, which
greatly enrich biologic background. However, the systems become so complicated that
they cause great difficulties to study the models. The investigation of impulsive delay-
differential equations is inchoate and focuses on theoretical analysis [10–12]. In [1] the
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authors considered the following delayed model with impulse:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)(1 – x(t)
K ) – αx2(t)y(t)

1+βx2(t) ,

y′(t) = kαx2(t–τ )y(t–τ )
1+βx2(t–τ ) – dy(t),

⎫
⎬

⎭
t �= nT ,

�x(t) = –px(t),

�y(t) = 0,

⎫
⎬

⎭
t = nT ,

(1.1)

where x(t) and y(t) denote the population densities of prey and predator at time t, respec-
tively, r, K , α, β , k, d are positive, r is the intrinsic rate of increase of the prey, K is the
carrying capacity of the prey, α is the predation coefficient of the predator, which reflects
the size of the predator’s ability, β is the predation regulation factor (saturation factor)
of the predator, d is the death rate of the predator, k (0 < k < 1) is the rate of convers-
ing prey into predator, τ > 0 denotes a time delay due to the gestation of the predator,
�x(t) = x(t+) – x(t), �y(t) = y(t+) – y(t), T is the impulsive period, n ∈ N+ = {1, 2, . . .}, and
p > 0 is the proportionality constant, which represents the rate of mortality due to the
applied pesticide. The initial conditions for system (1.1) are

(
φ1(s),φ2(s)

) ∈ C
(
[–τ , 0],R2

+
)
, φi(0) > 0 (i = 1, 2). (1.2)

In [1], sufficient conditions for the global attraction of a predator-free periodic solu-
tion are obtained by the theory of impulsive differential equations, that is, T < T∗

1 . The
conditions for the permanence of the system are investigated, that is, T > T∗

2 . Note that
T∗

1 < T∗
2 always holds. It is obvious that if T ∈ (T∗

1 , T∗
2 ), then we cannot determine whether

the predator can persist or not. In the present paper, we give a thorough global dynam-
ics of (1.1), which completely solves the question left in [1]. To do this, we employ the
approach coming from epidemiology [13]. As far as we know, there are no papers em-
ploying this approach in ecology. Throughout the present paper, roughly speaking, the
basic reproduction number R0 may be thought as the number of predators one preda-
tor gives rise during its life, when introduced in a prey population [14]. A similar thresh-
old value for the coexistence of a predator–prey system has previously been formulated
and explained by Pielou [15], among others but, to the best of our knowledge, has not
been termed a “basic reproduction number.” In ecology, many authors have investigated
the autonomous predator–prey systems using the basic reproduction number [16, 17].
For example, in [16] the authors considered a stage-structured predator–prey model with
nonlinear predation rate. They discussed the stability of the system using the basic re-
production number of the predator population. In contrast, there have been few papers
discussing the nonautonomous, delayed, or impulsive predator–prey systems using the
basic reproduction number (except for [18]). In [18] the authors considered an ecoepi-
demiological model with Holling type-III functional response and time delay. They used
the ecological and disease basic reproduction numbers to determine the persistence of
the system. In this paper, using the basic reproduction number of the predator population
and approach in [13], we wish to find a threshold value to determine whether the predator
can exist or not.

The remainder of this paper is organized as follows. In the next section, we discuss the
existence of a predator-free periodic solution and boundedness of system (1.1). In Sect. 3,
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we employ the approach coming from epidemiology and calculate the basic reproduction
number for the predator. In Sect. 4, using the basic reproduction number, we consider the
global attraction of the predator-free periodic solution and persistence of the predator in
(1.1). In Sect. 5, we give some numerical simulations to illustrate our results. Finally, we
give some concluding remarks.

2 The existence of a predator-free periodic solution and boundedness of
system (1.1)

In this section, we investigate the existence of a predator-free periodic solution of system
(1.1). In this case, the predator population is entirely absent from the population perma-
nently, that is, y(t) = 0, t ≥ 0. System (1.1) yields

⎧
⎨

⎩

x′(t) = rx(t)(1 – x(t)
K ), t �= nT ,

�x(t) = –px(t), t = nT .
(2.1)

For system (2.1), we have the following result.

Lemma 2.1 ([1]) If (1–p)erT > 1, then system (2.1) has the unique positive periodic solution

x∗(t) =
x∗

0
(1 – x∗

0/K)e–r(t–nT) + x∗
0/K

, t ∈ (
nT , (n + 1)T

]
, (2.2)

which is globally asymptotically stable, where

x∗
0 =

K((1 – p)erT – 1)
erT – 1

. (2.3)

According to Lemma 2.1, we obtain the following result.

Theorem 2.1 If (1 – p)erT > 1, then system (1.1) has a predator-free periodic solution
(x∗(t), 0), where x∗(t) is shown in (2.2).

Next, we will show that all solutions of (1.1) are uniformly upper bounded.

Theorem 2.2 If (1 – p)erT > 1, then all solutions of (1.1) are uniformly upper bounded.

Proof From the first and third equations of (1.1) we have

⎧
⎨

⎩

x′(t) ≤ rx(t)(1 – x(t)
K ), t �= nT ,

�x(t) = –px(t), t = nT .

Consider the following impulsive comparison system:

⎧
⎨

⎩

z′
1(t) = rz1(t)(1 – z1(t)

K ), t �= nT ,

�z1(t) = –pz1(t), t = nT .
(2.4)

By Lemma 2.1 we obtain that system (2.4) has a globally asymptotically stable periodic
solution z∗

1(t) = x∗(t), where x∗(t) is defined in (2.2). In view of the comparison principle,
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for given ε0 > 0, there exists T1 > 0 such that, for t > T1,

x(t) ≤ z1(t) ≤ x∗(t) + ε0 ≤ x∗
0

(1 – x∗
0/K)e–rT + x∗

0/K
+ ε0 � M1. (2.5)

Let V (t) = kx(t – τ ) + y(t). Then, for t > T1 + τ , we have

V ′(t) = krx(t – τ )
(

1 –
x(t – τ )

K

)

– dy(t)

≤ krx(t – τ ) – dy(t)

= (kr + kd)x(t – τ ) – d
(
kx(t – τ ) + y(t)

)

≤ k(r + d)M1 – dV (t)

and

V
(
(nT + τ )+)

= kx
(
nT+)

+ y
(
(nT + τ )+)

= k(1 – p)x(nT) + y(nT + τ )

≤ kx(nT) + y(nT + τ )

= V (nT + τ ).

Consider the following impulsive comparison system:

⎧
⎨

⎩

V ′
1(t) = k(r + d)M1 – dV1(t), t �= nT + τ ,

�V1(t) = 0, t = nT + τ .

It is clear that

lim
t→+∞ V1(t) =

k(r + d)M1

d
.

By the comparison principle, for ε0 > 0, there exists T2 > T1 + τ such that, for t > T2, we
get

V (t) ≤ V1(t) ≤ k(r + d)M1

d
+ ε0 � M2. (2.6)

The proof is completed. �

Thus the dynamics of system (1.1) can be analyzed in the following bounded feasible
region:

Γ =
{(

x(t), y(t)
) | 0 ≤ x(t) ≤ M1, 0 ≤ y(t) ≤ M2

}
,

where M1 and M2 are defined in (2.5) and (2.6), respectively.
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3 The basic reproduction number of the predator
In this section, we introduce the basic reproduction number R0 of the predator for system
(1.1) using the next generation operators approach in [19]. We linearize system (1.1) at
(x∗(t), 0) and get

y′(t) =
kαx∗2(t – τ )

1 + βx∗2(t – τ )
y(t – τ ) – dy(t)

= g(t)y(t – τ ) – dy(t), (3.1)

where

g(t) =
kαx∗2(t – τ )

1 + βx∗2(t – τ )
. (3.2)

From (3.1) we obtain

y(t) = y(0)e–dt + e–dt
∫ t

0
g(s)y(s – τ )eds ds.

Let y1(t) = g(t)y(t – τ ). Then

y1(t) = y(0)g(t)e–d(t–τ ) + e–d(t–τ )g(t)
∫ t–τ

0
y1(s)eds ds.

Making the change of variable s = t – δ, we get

y1(t) = y(0)g(t)e–d(t–τ ) + g(t)e–d(t–τ )
∫ t

τ

y1(t – δ)ed(t–δ) dδ

= y(0)g(t)e–d(t–τ ) + g(t)
∫ t

τ

y1(t – δ)e–d(δ–τ ) dδ

= y10(t) +
∫ t

τ

K̄(t, δ)y1(t – δ) dδ,

where

y10(t) = y(0)g(t)e–d(t–τ )

and

K̄(t, δ) =

⎧
⎨

⎩

0, δ < τ ,

g(t)e–d(δ–τ ), δ ≥ τ .

Let CT be the ordered Banach space of all continuous T-periodic functions from R to
R equipped with the maximum norm ‖ · ‖ and the positive cone C+

T = {ψ ∈ CT | ψ(t) ≥
0, t ∈R}. Then we can define the linear operator L : CT → CT by

L : v(t) �→
∫ +∞

0
K̄(t, δ)v(t – δ) dδ.
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Following [19], the basic reproduction number of the predator is defined as R0 � r(L),
the spectral radius of L.

We see that the basic reproduction number R0 = r(L) can be obtained by solving the
eigenvalue problem

g(t)
∫ +∞

τ

u(t – δ)e–d(δ–τ ) dδ = R0u(t), u ∈ CT . (3.3)

Differentiating Eq. (3.3) and then integrating by parts, we have

R0u′(t) = g ′(t)
∫ +∞

τ

u(t – δ)e–d(δ–τ ) dδ + g(t)
∫ +∞

τ

u′(t – δ)e–d(δ–τ ) dδ

= g ′(t)
R0u(t)

g(t)
– g(t)

∫ +∞

τ

e–d(δ–τ ) du(t – δ)

= g ′(t)
R0u(t)

g(t)
+ g(t)u(t – τ ) – dR0u(t).

This equation can be rewritten as

u′(t)
u(t)

=
g ′(t)
g(t)

+
g(t)u(t – τ )

R0u(t)
– d. (3.4)

Note that u(0) = u(T) and g(0) = g(T). Integrating both sides of (3.4) from 0 to T yields

R0 =
∫ T

0 [g(t)u(t – τ )/u(t)] dt
dT

. (3.5)

Obviously, there is no explicit formula for R0 when τ �= 0.

Remark 3.1 When τ = 0, system (1.1) reduces to a periodic system of ordinary differential
equations. The corresponding basic reproduction number R0 becomes

R0 =
∫ T

0 g(t) dt
dT

.

4 The global dynamics of system (1.1)
In this section, we study the global dynamics of system (1.1) in terms of its basic repro-
duction number R0. To this end, we first introduce some lemmas for our main results.

For any ψ ∈ C([–τ , 0],R), let P(t)ψ = ut(ψ) be the unique solution of (3.1) satisfying
u0 = ψ . Then P � P(T) is the Poincaré map of (3.1).

Lemma 4.1 ([20]) Let r(P) be the spectral radius of P. Then the following statements are
valid:

(1) R0 = 1 if and only if r(P) = 1;
(2) R0 > 1 if and only if r(P) > 1;
(3) R0 < 1 if and only if r(P) < 1.

Consider the following linear equation with time delay:

u′(t) = a(t)u(t) + b(t)u(t – τ ), (4.1)
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where a(t) ∈ CT , and b(t) is a piecewise left-continuous T-periodic function with discon-
tinuous points of first kind at nT such that b(t) > 0, t ≥ 0. By applying the method of steps
it is easy to verify that, for any φ ∈ C+ = C([–τ , 0],R+), system (4.1) has a unique contin-
uous solution u(t,φ) on [–τ , +∞) with u0 = φ. Let P be the Poincaré map associated with
(4.1) on C+, that is, P(φ) = uT (φ). Then we have the following result.

Lemma 4.2 [13]. Let μ = ln r(P)
T . Then there exists a positive T-periodic function v(t) such

that eμtv(t) is a solution of (4.1).

For the predator-free periodic solution (x∗(t), 0) of (1.1), we have the following result.

Theorem 4.1 Assume that (1 – p)erT > 1. If R0 < 1, then the predator-free periodic solution
(x∗(t), 0) of (1.1) is globally attracting, where R0 is defined in (3.5).

Proof Let Pε be the Poincaré map of the following perturbed linear equation:

y′
2(t) =

kα(x∗(t – τ ) + ε)2

1 + β(x∗(t – τ ) + ε)2 y2(t – τ ) – dy2(t). (4.2)

By Lemma 4.1 we see that R0 < 1 if and only if r(P) < 1, where P is the Poincaré map of
(3.1). Since limε→0 r(Pε) = r(P) < 1, we may fix a small enough ε > 0 such that r(Pε) < 1.
By Lemma 4.2 there is a positive T-periodic function vε(t) such that eμε tvε(t) is a positive
solution of (4.2), where με = ln r(Pε )

T < 0.
According to the proof of Theorem 2.2, for given ε > 0, there exists T3 > 0 such that, for

t > T3,

x(t) ≤ x∗(t) + ε, (4.3)

where x∗(t) is defined in (2.2).
By the second equation of (1.1), for t > T3 + τ , we get

y′(t) ≤ kα(x∗(t – τ ) + ε)2

1 + β(x∗(t – τ ) + ε)2 y(t – τ ) – dy(t).

Choose a sufficiently large A > 0 such that y(t) ≤ Aeμε tvε(t), t ∈ [T3, T3 + τ ], where
Aeμε tvε(t) is a positive solution of (4.2). By the comparison principle we have

y(t) ≤ Aeμε tvε(t), t ≥ T3 + τ .

Since με < 0, limt→+∞ y(t) = 0.
Then for a sufficiently small ε1 > 0 (ε1 < r

αM1
, where M1 is shown in (2.5)), there exists

T4 > 0 such that, for t > T4, we obtain

0 < y(t) < ε1.

From the first and third equations of (1.1), for t > max{T1, T4}, we have
⎧
⎨

⎩

x′(t) ≥ x(t)(r – αM1ε1 – r
K x(t)), t �= nT ,

�x(t) = –px(t), t = nT .
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Consider the following impulsive comparison system:

⎧
⎨

⎩

z′
2(t) = z2(t)(r – αM1ε1 – r

K z2(t)), t �= nT ,

�z2(t) = –pz2(t), t = nT .
(4.4)

Since ε1 < r
αM1

, it is obvious that r – αM1ε1 > 0. According to Lemma 2.1, we find that
system (4.4) has a globally asymptotically stable periodic solution

z∗
2(t) =

z∗
2(0+)

(1 – rz∗
2(0+)/(Kr1))e–r1(t–nT) + rz∗

2(0+)/(Kr1)
, nT < t ≤ (n + 1)T ,

with

z∗
2(0+) =

Kr1((1 – p)er1T – 1)
r(er1T – 1)

, r1 = r – αM1ε1.

By the comparison principle, for x(0+) ≥ z2(0+) and t > max{T1, T4}, we have x(t) ≥ z2(t),
and z2(t) – z∗

2(t) → 0 as t → +∞. Meanwhile, z∗
2(t) – x∗(t) → 0 as ε1 → 0. Based on this

analysis and (4.3), we see that x(t) – x∗(t) → 0 as t → +∞. Therefore the predator-free
periodic solution (x∗(t), 0) of (1.1) is globally attracting. The proof is completed. �

Theorem 4.2 Let (1 – p)erT > 1. If R0 > 1, then there exists q > 0 such that every positive
solution (x(t), y(t)) of (1.1) satisfies y(t) ≥ q for t large enough.

Proof Let Mη be the Poincaré map of the perturbed equation

ȳ′(t) =
kα(x∗(t – τ ) – η)2

1 + β(x∗(t – τ ) – η)2 ȳ(t – τ ) – dȳ(t). (4.5)

Since limη→0 r(Mη) = r(P) > 1, we can fix a small positive number η such that r(Mη) > 1
and η < inft≥0 x∗(t).

By Lemma 4.2 there is a positive T-periodic function vη(t) such that eμηtvη(t) is a positive
solution of (4.5), where μη = ln r(Mη)

T > 0.
Consider the impulsive comparison system

⎧
⎨

⎩

x̄′(t) = x̄(t)(r – αM1ε̄ – r
K x̄(t)), t �= nT ,

�x̄(t) = –px̄(t), t = nT .
(4.6)

where 0 < ε̄ < r
αM1

, and M1 is shown in (2.5).
Using Lemma 2.1, we see that system (4.6) admits a positive periodic solution x∗

ε̄ (t),
which is globally asymptotically stable, and limε̄→0 x∗

ε̄ (t) = x∗(t). Hence we can fix a small
number ε̄ ∈ (0, r

αM1
) such that, for t ≥ 0,

x∗
ε̄ (t) > x∗(t) –

η

2
. (4.7)

Fix a positive number γ such that γ < min{η, ε̄}. We now claim that, for any t0 > 0, it is
impossible that y(t) < γ for all t > t0. Suppose by contradiction that there is t0 > 0 such that
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y(t) < γ for t > t0. It follows from the first equation of (1.1) that, for t > t0,

x′(t) ≥ rx(t)
(

1 –
x(t)
K

)

– αM1γ x(t)

≥ x(t)
(

r – αM1ε̄ –
rx(t)

K

)

.

Therefore we have
⎧
⎨

⎩

x′(t) ≥ x(t)(r – αM1ε̄ – rx(t)
K ), t �= nT ,

�x(t) = –px(t), t = nT .

By system (4.6) and the comparison principle there exists t1 > t0 such that, for t > t1 and
x(0+) ≥ x̄(0+),

x(t) ≥ x̄(t) > x∗
ε̄ (t) –

η

2
. (4.8)

Using (4.7) and (4.8), for t > t1, we get

x(t) > x∗(t) – η. (4.9)

From (4.9) and the second equation of (1.1), for t > t2 � t1 + τ , we have

y′(t) ≥ kα(x∗(t – τ ) – η)2

1 + β(x∗(t – τ ) – η)2 y(t – τ ) – dy(t). (4.10)

Choose a number m1 > 0 such that

y(t) ≥ m1eμηtvη(t), t ∈ [t1, t2], (4.11)

and

m1eμηtvη(t) < γ , t ∈ [t1, t2], (4.12)

where eμηtvη(t) is a positive solution of (4.5) and μη > 0. Using (4.10), (4.11), (4.12), and the
comparison theorem, there must be t3 > t2 such that γ < y(t3) < ε̄, which is a contradiction.

From the above claim we discuss the following two possibilities:
(H1) y(t) ≥ γ for all large t.
(H2) y(t) oscillates about γ for all large t.
Let q = min{ γ

2 , q2}, where

q2 =
q1 mint∈[0,T] vη(t)

eμητ maxt∈[0,T] vη(t)

with q1 = γ e–dτ .
We hope to show that y(t) ≥ q for t large enough. Obviously, we only need to consider

case (H2). Let t and t̄ satisfy

y(t) = y(t̄) = γ , y(t) < γ , t ∈ [t, t̄], (4.13)
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where t is sufficiently large such that, for t ∈ [t, t̄],

x(t) > x∗(t) – η. (4.14)

Note that the function y(t) for t ≥ 0 is uniformly continuous since its derivative is
bounded for all t ≥ 0. Hence there exists T ′ (0 < T ′ < τ is independent of the choice of
t) such that y(t) > γ

2 for t ∈ [t, t + T ′]. Let us consider the following three cases:
Case (B1) t̄ – t ≤ T ′. Then y(t) > γ

2 for all t ∈ [t, t̄].
Case (B2) T ′ < t̄ – t ≤ τ .
By the second equation of (1.1) we have

y′(t) ≥ –dy(t).

Using the comparison principle, for t ∈ [t, t̄], we get

y(t) ≥ y(t)e–d(t–t)

≥ γ e–dτ � q1.

Therefore, in this case, y(t) ≥ q1 for t ∈ [t, t̄].
Case (B3) t̄ – t > τ .
Similarly to the discussion of case (B2), we obtain y(t) ≥ q1 for t ∈ [t, t + τ ]. If y(t) ≥ q1

for t ∈ [t + τ , t̄], then our aim is reached. Suppose not. Then there exists T̄1 > 0 such that

y(t) ≥ q1, t ∈ [t, t + τ + T̄1],

y(t + τ + T̄1) = q1, y(t) < q1, 0 < t – (t + τ + T̄1) � 1.

By (4.14) and the second equation of system (1.1), for t ∈ [t, t̄], we have

y′(t) ≥ kα(x∗(t – τ ) – η)2

1 + β(x∗(t – τ ) – η)2 y(t – τ ) – dy(t).

Choose a number m2 = q1[eμη(t+τ+T̄1) maxt∈[0,T] vη(t)]–1 > 0. It is clear that, for t ∈ [t +
T̄1, t + τ + T̄1],

m2eμηtvη(t) ≤ q1 ≤ y(t),

and for t ∈ [t + T̄1, t̄],

m2eμηtvη(t) ≥ m2eμη(t+T̄1) min
t∈[0,T]

vη(t) =
q1 mint∈[0,T] vη(t)

eμητ maxt∈[0,T] vη(t)
= q2 > 0.

The comparison theorem implies that, for t ∈ [t + T̄1, t̄],

y(t) ≥ q2.

Thus y(t) ≥ q2 for t ∈ [t, t̄].
Consequently, we get y(t) ≥ q for t ∈ [t, t̄]. Since this kind of interval [t, t̄] is chosen

arbitrarily, we get y(t) ≥ q for t large enough. This completes the proof. �
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5 Numerical simulation
In this section, we give phase portraits of system (1.1) to illustrate the above theoretical
analysis using numerical simulations. We consider the following delayed model with im-
pulse:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = 1.5x(t)(1 – x(t)
5 ) – 0.75x2(t)y(t)

1+x2(t) ,

y′(t) = 3x2(t–τ )y(t–τ )
8(1+x2(t–τ )) – 0.24y(t),

⎫
⎬

⎭
t �= nT ,

�x(t) = –0.5x(t),

�y(t) = 0,

⎫
⎬

⎭
t = nT ,

(5.1)

where τ = 0.5 and the initial conditions (φ1(t),φ2(t)) = (1, 1), t ∈ [–τ , 0]. In [1] the authors
got the thresholds T∗

1 ≈ 0.5734 and T∗
2 ≈ 0.7634 for system (5.1). Meanwhile, they con-

cluded that if T < T∗
1 , then the predator-free periodic solution is globally attractive, and if

T > T∗
2 , then the predator will persist. However, if T ∈ (T∗

1 , T∗
2 ), then they could not deter-

mine whether the predator can persist or not. In the present paper, we completely solve
this question.

By Eq. (3.3), for system (5.1), the following eigenvalue problem can be obtained:

g1(t)
∫ +∞

0.5
u(t – δ)e–0.24(δ–0.5) dδ = R0u(t), u ∈ CT , (5.2)

where R0 and u(t) are the eigenvalue and eigenvector of Eq. (5.2), respectively, and

g1(t) =
3(5e1.5T – 10)2

8[(e–1.5(t–0.5–(n+1)T) + e1.5T – 2)2 + (5e1.5T – 10)2]
.

So we have

R0 =
(5e1.5T – 10)2

0.64T

×
∫ T

0

u(t – 0.5)
u(t)[(e–1.5(t–0.5–(n+1)T) + e1.5T – 2)2 + (5e1.5T – 10)2]

dt,

where u(t) ∈ CT .

Figure 1 Time series of the solution of system (5.1) with T = 0.6
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Figure 2 Time series of the solution of system (5.1) with T = 0.7

In system (5.1), let T = 0.6 ∈ (T∗
1 , T∗

2 ). We compute the basic reproduction number R0

numerically to get R0 ≈ 0.8590 < 1. We also numerically compute the threshold T∗ ≈
0.6445. It is obvious that T = 0.6 < T∗, that is, R0 < 1. By Theorem 4.1 we obtain that the
predator-free periodic solution is globally attractive. Figure 1 illustrates our theoretical
results.

Let T = 0.7 ∈ (T∗
1 , T∗

2 ). We numerically compute the basic reproduction number R0 ≈
1.1250 > 1. It is clear that T = 0.7 > T∗, that is, R0 > 1. By Theorem 4.2 we obtain that the
predator will become permanent. Figure 2 illustrates our theoretical results.

6 Conclusion
In this paper, we mainly discuss the extinction and permanence of the predator for system
(1.1). Using the basic reproduction number coming from epidemiology, we may find the
threshold value R0 such that if R0 < 1, then the predator is extinct, whereas if R0 > 1, then
it will persist. Thus we improve the results of [1]. As far as we know, this is the first paper
employing this approach of [13] in ecology.
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