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Abstract
Dual-mode (2 + 1)-dimensional Kadomtsev–Petviashvili (DMKP) equation is a new
model which represents the spread of two simultaneously directional waves due to
the involved term “utt(x, y, t)” in its equation. We present the construction of DMKP
and search for possible solutions. The innovative tanh-expansion method and
Kudryashov technique will be utilized to find the necessary constraint conditions
which guarantee the existence of soliton solutions to DMKP. Supportive 3D plots will
be provided to validate our findings.
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1 Introduction
Dual-mode type is a new family of nonlinear partial differential equations which fall in the
following form: [1, 2]

ytt – s2yxx +
(

∂

∂t
– αs

∂

∂x

)
N(y, yx, . . .) +

(
∂

∂t
– βs

∂

∂x

)
L(ykx) = 0, (1.1)

where N(y, yx, . . .) and L(ykx) : k ≥ 2 are the nonlinear and linear terms involved in
the equation. y(x, t) is the unknown field-function, s > 0 is the phase velocity, |β| ≤ 1,
|α| ≤ 1, β is the dispersion parameter, and α is the parameter of nonlinearity. With s = 0
and integrating with respect to t, the dual-mode problem is reduced to a partial differential
equation of the first order in time t.

A few dual-mode models have been established and studied. In [3–8], authors extracted
abundant soliton solutions for the second-order KdV. [9, 10] established the dual-mode
Burgers and fourth-order Burgers and obtained multiple soliton solutions by means of
the simplified Hirota technique. In [11–13], the tanh technique and Hirota method were
implemented to seek possible solutions of the two-mode coupled Burgers equation, cou-
pled m-KdV, and coupled KdV. Finally, the dual-mode perturbed Burgers, Ostrovsky, and
Schrodinger equations were established in [14, 15].
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1.1 Structure of dual-mode (2 + 1)-dimensional Kadomtsev–Petviashvili
The Kadomtsev–Petviashvili (KP) equation reads [16, 17]

∂

∂x
(Wt – 6WWx + Wxxx) + 3σWyy = 0, (1.2)

where W = W (x, y, t). It models three connected aspects: weakly dispersive, longer wave
length compared with its wave amplitude, and slower variation in y-coordinate compared
with its propagation in x-coordinate. σ gives the strength of the surface tension, strong
with σ > 0 and weak if σ < 0.

To derive the dual-mode version of KP, we apply the operator N = ( ∂
∂t –α1s ∂

∂x –α2s ∂
∂y ) to

the nonlinear terms of (1.2) and the operator L = ( ∂
∂t – β1s ∂

∂x – β2s ∂
∂y ) to the linear terms,

i.e.,

0 =
∂

∂x

(
Wtt – s2Wxx – s2Wyy – 6
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∂
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∂
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– β1s

∂

∂x
– β2s

∂
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)
(Wxxx)

)

+ 3σ

(
∂

∂t
– β1s

∂

∂x
– β2s

∂

∂y

)
(Wyy), (1.3)

α1, α2 are the nonlinearity parameters, β1, β2 are the dispersive parameters, and s is the
phase velocity.

We aim in this work to seek possible soliton solutions for (1.3) and study graphically the
effects of the aforementioned parameters on the propagations of the obtained dual waves
such model possesses.

2 Solutions of DMKP by tanh-expansion technique
First, we use the new variable z = ax + by – ct to convert (1.3) into the following reduced
differential equation:

0 =
(
a
(
c2 –

(
a2 + b2)s2) – 3σb2(c + β1as + β2bs)

)
W + 3a2(c + α1as + α2bs)W 2

– a4(c + β1as + β2bs)W ′′, (2.1)

where W = W (z). Balancing W 2 with W ′′ in tanh technique sense [18, 19], the solution of
(2.1) is

W (z) = A1 + A2 tanh(z) + A3 tanh2(z). (2.2)

To determine the values of A1, A2, A3, a, b, and c, we substitute (2.2) in (2.1) and apply the
identity sech2(z) = 1 – tanh2(z) to get a polynomial of tanh function. Setting the coefficient
of the same power of tanh to zero, we obtain the following non-algebraic system:

0 = 3a2A2
1c – 2a4A3c + aA1c2 – a3A1s2 – aA1b2s2 + 3a3A2

1sα1 + 3a2A2
1bsα2

– 2a5A3sβ1 – 2a4A3bsβ2 – 3A1b2cσ – 3aA1b2sβ1σ – 3A1b3sβ2σ ,

0 = 2a4A2c + 6a2A1A2c + aA2c2 – a3A2s2 – aA2b2s2 + 6a3A1A2sα1 + 6a2A1A2bsα2

+ 2a5A2sβ1 + 2a4A2bsβ2 – 3A2b2cσ – 3aA2b2sβ1σ – 3A2b3sβ2σ ,



Abu Irwaq et al. Advances in Difference Equations        (2018) 2018:433 Page 3 of 7

0 = 3a2A2
2c + 8a4A3c + 6a2A1A3c + aA3c2 – a3A3s2 – aA3b2s2 + 3a3A2

2sα1 (2.3)

+ 6a3A1A3sα1 + 3a2A2
2bsα2 + 6a2A1A3bsα2 + 8a5A3sβ1 + 8a4A3bsβ2

– 3A3b2cσ – 3aA3b2sβ1σ – 3A3b3sβ2σ ,

0 = –2a4A2c + 6a2A2A3c + 6a3A2A3sα1 + 6a2A2A3bsα2 – 2a5A2sβ1 – 2a4A2bsβ2,

0 = –6a4A3c + 3a2A2
3c + 3a3A2

3sα1 + 3a2A2
3bsα2 – 6a5A3sβ1 – 6a4A3bsβ2.

We study the solution of the above system via compatible constraint relations:
For α1 = α2 = β1 = β2 = γ with |γ | < 1, we get two solution sets.

2.1 The first solution set

a = free constant, A1 = free constant, A2 = 0,

A3 = 2a2,

c =
sγ (a ± √

a2(2γ 2 – 1))
γ 2 – 1

, b =
aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2 .

(2.4)

Therefore, the resulting dual-wave solution of DMKP (1.3) is

W (x, y, t) = A1 + 3a2 tanh2
(

ax +
aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2 y –

sγ (a ± √
a2(2γ 2 – 1))

γ 2 – 1
t
)

,

(2.5)

where 1√
2 < |γ | < 1. Figure 1 shows the proximity of the two waves with increasing the

phase velocity s and fixing γ . Figure 2 shows the extent of convergence and spacing of the
two waves by the sign of γ and fixing s.

2.2 The second solution set

a = free constant, A1 = 0, A2 = free constant,

A3 = 2a2,

c = –(a + b)sγ , b =
aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2 .

(2.6)

Figure 1 3D plots of the dual wavesW(x, y, t) and the impact of phase velocity s on its propagating
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Figure 2 3D plots of the dual wavesW(x, y, t) and the impact of linearity-dispersive parameter γ on its
propagating

Figure 3 3D plots of the first wave, second wave, and dual waves forW(x, y, t) given in (2.7)

Therefore, the resulting dual-wave solution of DMKP (1.3) is

W (x, y, t) = A2 tanh

(
ax +

aγ 2 ± √
a2(2γ 2 – 1)

1 – γ 2 y

–
(

a +
(aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2

)
sγ t

)

+ 2a2 tanh2
(

ax +
aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2 y

–
(

a +
(aγ 2 ± √

a2(2γ 2 – 1)
1 – γ 2

)
sγ t

)
, (2.7)

where 1√
2 < |γ | < 1. Figure 3 shows the shape of the obtained solution described in (2.7).

3 Solutions of DMKP by Kudryashov expansion technique
It is to be noted that the tanh solution obtained in the preceding section is σ -independent
and, therefore, using another method to study the solution of DMKP is needed. We use
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here the Kudryashov technique where the solution takes the following form [20, 21]:

W (x, y, t) = W (z) =
n∑

i=0

λiY i, Y = Y (z), z = ax + by – ct. (3.1)

The variable Y satisfies the differential equation

Y ′ = Y (Y – 1) ln(k). (3.2)

Solving (3.2) gives

Y (z) =
1

1 + dkz . (3.3)

The index n to be determined by applying order-balance procedure between W 2 and W ′′

appears in (2.1). Thus, n = 2 and accordingly we write (3.1) as

W (z) = λ0 + λ1Y + λ2Y 2. (3.4)

Differentiating both (3.2) and (3.4) implicitly leads to

Y ′′ = Y (Y – 1)(2Y – 1) ln2(k) (3.5)

and

W ′(z) = λ1Y ′ + 2λ2YY ′,

W ′′(z) = λ1Y ′′ + 2λ2
(
YY ′′ +

(
Y ′)2).

(3.6)

Now, we insert (3.2) through (3.6) in (2.1) to get a polynomial in Y . By setting each coef-
ficient of Y i to zero, a nonlinear algebraic system is obtained. Seeking a solution to this
system, we get

α1 = α2 = β1 = β2 = γ , |γ | < 1,

λ0 = 0,

λ1 = –2a2 ln2(k),

λ2 = –λ1,

c =
(
3b2σ + a4 ln2(k)

±
√

(3b2σ + a4 ln2(k))2 + 4as(a3s + 3b3γ σ + ab2(s + 3γ σ ) + a4(a + b)γ ln2(k))
)

/(2a).

(3.7)

Therefore, a new solution of DMKP (1.3) is

W (x, y, t) = –
2a2d ln2(k)kct+ax+by(2 + ln(k))

(kct + dkax+by)2 . (3.8)



Abu Irwaq et al. Advances in Difference Equations        (2018) 2018:433 Page 6 of 7

Figure 4 3D soliton solution ofW(x, y, t) given in (3.8) when σ = 2 and respectively t = 1 and t = 2. The other
assigned values are a = b = d = 1, k = e, γ = 1

2

Figure 5 3D soliton solution ofW(x, y, t) given in (3.8) when σ = –2 and respectively t = 1 and t = 2. The other
assigned values are a = b = d = 1, k = e, γ = 1

2

Figures 4 and 5 provide 3D plots of the Kudryashov solutions when σ > 0 and σ < 0, re-
spectively.

4 Conclusion
A new dual-mode Kadomtsev–Petviashvili (DMKP) equation is introduced. This model
describes the spread of two simultaneously directional waves. We have studied possible
solutions for DMKP and obtained the following findings:

• σ -independent tanh soliton solution is obtained for the DMKP.
• σ -dependent Kudryashov soliton solution is obtained for the DMKP.
• The above two solutions exist when α1 = α2 = β1 = β2 = γ with 1√

2 < |γ | < 1.
Also, a graphical analysis is provided to show the impact of both linearity-dispersive pa-
rameter γ and the phase velocity s on the spread of the obtained dual waves for DMKP.
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