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1 Introduction
Statistics and econometrics have made great progress in the last two decades. It became
necessary to study the distributions or the asymptotic distributions of some complex
statistics, so the weak convergence of a stochastic process has been widely studying as
an important subject of modern probability theory.

Kac [13] described the solution of the telegrapher’s equation in terms of a Poisson pro-
cess. Later, Stroock [18] gave that the law of the continuous processes {Xε(t), t ≥ 0} given
by

Xε(t) = ε

∫ t
ε2

0
(–1)N(r) dr =

1
ε

∫ t

0
(–1)N( r

ε2 ) dr, t ≥ 0, (1)

where {N(t), t ≥ 0} is a standard Poisson process, weakly converges when ε tends to zero,
in the Banach space C([0, T]) of continuous functions on [0, T], to the law of a standard
Brownian motion.

This result of Stroock [18] has been extended to obtain approximations of other pro-
cesses such as, among others: Brownian sheet (cf. Bardina and Jolis [5]), m-dimensional
Brownian motion (cf. Bardina and Rovira [7]), fractional Brownian motion (cf. Delgado
and Jolis [11], Li and Dai [14]), fractional Brownian sheet (cf. Tudor [19], Bardina et al. [6],
Wang et al. [20]) and so on. We can refer to Dai [10], Mishura and Banna [16], Nieminen
[12], Ouahra [17], Wang et al. [21] and the references therein for more information about
weak convergence.
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On the other hand, by the fact (–1)N(r) = cos(πN(r)) = eiπN(r), equality (1) can be rewrit-
ten by

Xε(t) =
1
ε

∫ t

0
eiπN( r

ε2 ) dr, t ≥ 0. (2)

In this case, Xε(t) can also be written by Euler’s formula as Xε(t) = Re Xε(t) + i Im Xε(t),
where

Re Xε(t) =
1
ε

∫ t

0
cos

(
πN

(
r
ε2

))
dr and Im Xε(t) =

1
ε

∫ t

0
sin

(
πN

(
r
ε2

))
dr

are the real part and the imaginary part, respectively.
Then, some authors considered the weak convergence to the complex Brownian motion

by the angles θ replacing the π , where θ ∈ (0, 2π ) in equation (2). For example, Bardina
[2] and Bardina et al. [4] constructed the process from a standard Poisson process which
respectively weakly or strongly converges in law to a complex Brownian motion, and got
that the real part and the imaginary part of this process are two independent Brownian
motions. Bardina and Bascompte [3] obtained the weak convergence towards two inde-
pendent Gaussian processes from a Poisson process (see also Bardina and Rovira [7], a
d-dimensional Brownian motion of this result). In addition, it is well known that some
properties of the Poisson process can be found from a Lévy process (cf. Applebaum [1]),
so there are some literature works which research an approximation of a complex Brow-
nian motion from the Lévy process (cf. Bardina and Rovira [8]).

Inspired by all the above works, the purpose of this paper is to research a weak approx-
imation of a complex fractional Brownian motion from a standard Poisson process and
from a Lévy process, respectively, by the method in Delgado and Jolis [11].

Let {Mt , t ≥ 0} be a Poisson process of parameter 2. We define {Nt , t ≥ 0} and {N ′
t , t ≥ 0}

two other counter processes where, at each jump of M, each of them jumps or does not
jump with probability 1

2 , independently of the jumps of the other process and of its past.
In Bardina et al. [4], they proved that N and N ′ are Poisson processes of parameter 1 with
independent increments on disjoint intervals.

Then, for θ ∈ (0,π ) ∪ (π , 2π ), we consider the first processes Zθ
ε = {Zθ

ε (t), t ∈ [0, 1]} with

Zθ
ε (t) =

2
ε

(–1)G
∫ 1

0
KH (t, r)(–1)

N ′
2r
ε2 e

iθN 2r
ε2 dr, t ∈ [0, 1], (3)

where N and N ′ are the processes defined above, G is a random variable independent of
N and N ′, with Bernoulli distribution of parameter 1

2 , and

KH (t, r) = cHr
1
2 –H

∫ t

r
(u – r)H– 3

2 uH– 1
2 du (4)

which is the kernel of fractional Brownian motion with H ∈ ( 1
2 , 1) and cH is the following

normalizing constant:

cH =
[

H(2H – 1)
β(2 – 2H , H – 1

2 )

] 1
2

(cf. Mandelbrot and Van Ness [15]).
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And consider the other processes Y θ
ε = {Y θ

ε (t), t ∈ [0, 1]} from a Lévy process with

Y θ
ε (t) =

2
ε

c(θ )
∫ 1

0
KH (t, r)e

iθX 2r
ε2 dr, t ≥ 0, (5)

where {Xs, s ≥ 0} is a Lévy process with Lévy exponent ψX(u), c(θ ) =
√

‖ψX (θ )‖2

2 Re[ψX (θ )] is a con-
stant depending on θ , θ ∈ (0, 2π ), and KH (t, r) is defined in (4).

It is well known that Lévy exponent ψX(u) can be expressed by the Lévy–Khinchine
formula as follows:

ψX(u) = –aiu +
1
2
σ 2u2 –

∫
R\{0}

(
eiux – 1 – iuxI|x|<1

)
η(dx),

where a ∈ R, σ ≥ 0, and η is a Lévy measure, that is,
∫

R\{0} min{x2, 1}η(dx) < ∞. For the
sake of simplicity, let

a(u) := ReψX(u) =
1
2
σ 2u2 –

∫
R\{0}

(
cos(ux) – 1

)
η(dx) (6)

and

b(u) := ImψX(u) = –au –
1
2
σ 2u2 –

∫
R\{0}

(
sin(ux) – uxI|x|<1

)
η(dx). (7)

In addition, denote φXt (u) = E(eiuXt ) = e–tψX (u) as the characteristic function of a Lévy pro-
cess. According to (6) and (7), it is easy to get

∥∥φXt (u)
∥∥ = e–ta(u). (8)

The one aim of this paper is to extend the result in Bardina et al. [4] to the case of
the complex fractional Brownian motion from the unique standard Poisson process and
a sequence of independent random variables with common distribution Bernoulli 1

2 , that
is:

Theorem 1.1 Let {P1
ε , ε > 0} be the family of laws of the processes Zθ

ε given by (3) in the
Banach space C([0, 1],C). Then P1

ε converges weakly as ε tends to zero to the law Pθ in the
Banach space C([0, 1],C) of a complex fractional Brownian motion Z = {Z(t), t ∈ [0, 1]}:

Z(t) =
∫ 1

0
KH (t, r) dW (r) =

∫ 1

0
KH (t, r) dW 1(r) + i

∫ 1

0
KH (t, r) dW 2(r), (9)

where W (r) = W 1(r) + iW 2(r) is a complex Brownian motion, W 1(r) and W 2(r) are two
independent standard Brownian motions.

The other aim of this paper is to extend the result of Bardina and Rovira [8] to a slightly
more general setting applicable to the complex fractional Brownian motion. So, for our
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processes Y θ
ε , we get the following weak convergence of realizations of these processes,

which is stated as follows.

Theorem 1.2 The family {P2
ε , ε > 0} of laws of the processes Y θ

ε in C([0, 1],C) converges
weakly when ε tends to zero to the family Pθ of laws of a complex fractional Brownian
motion Z.

The rest of the paper is organized as follows. Section 2 is devoted to proving the tightness
of the family {P1

ε , ε > 0} and {P2
ε , ε > 0}. In Sect. 3, we give the proof of our main result.

In addition, throughout the paper C denotes positive constants, not depending on ε,
which may change from one expression to another.

2 Main lemmas
In order to prove that the family P1

ε is tight, we need to prove that the laws corresponding
to the real part and the imaginary part of processes Zθ

ε are tight. Using the Billingsley
criterium (see Billingsley [9]) and that our processes are null on the origin, it suffices to
prove the following.

Lemma 2.1 For any t > s, ε > 0, there exists a constant C such that

sup
ε

(
E
(
Re Zθ

ε (t) – Re Zθ
ε (s)

)4 + E
(
Im Zθ

ε (t) – Im Zθ
ε (s)

)4) ≤ C(t – s)4H . (10)

Proof From the definition and the independence of N and N ′, it is easy to calculate (see
Bardina et al. [4]) that, for any 0 ≤ x1 ≤ x2,

E
[
(–1)N ′

x2 –N ′
x1 eiθ (Nx2 –Nx1 )] = e–2(x2–x1). (11)

Following the representation of complex fractional Brownian motions Zθ
ε , the real part

and the imaginary part can be written as follows:

Re Zθ
ε (t) =

2
ε

(–1)G
∫ 1

0
KH (t, r)(–1)

N ′
2r
ε2 cos(θN 2r

ε2
) dr (12)

and

Im Zθ
ε (t) =

2
ε

(–1)G
∫ 1

0
KH (t, r)(–1)

N ′
2r
ε2 sin(θN 2r

ε2
) dr, (13)

respectively. Then Zθ
ε (t) = Re Zθ

ε (t) + i Im Zθ
ε (t). Furthermore, the increments of the real

part and the imaginary part of the processes Zθ
ε can be expressed as follows:

Re Zθ
ε (t) – Re Zθ

ε (s) =
2
ε

(–1)G
∫ 1

0

(
KH (t, r) – KH (s, r)

)
(–1)

N ′
2r
ε2 cos(θN 2r

ε2
) dr

=
2
ε

(–1)G
∫ 1

0
�KH (t, s, r)(–1)

N ′
2r
ε2 cos(θN 2r

ε2
) dr, (14)
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and

Im Zθ
ε (t) – Im Zθ

ε (s) =
2
ε

(–1)G
∫ 1

0

(
KH (t, r) – KH (s, r)

)
(–1)

N ′
2r
ε2 sin(θN 2r

ε2
) dr

=
2
ε

(–1)G
∫ 1

0
�KH (t, s, r)(–1)

N ′
2r
ε2 sin(θN 2r

ε2
) dr, (15)

where �K(t, s, r) = KH (t, r) – KH (s, r).
Considering

2(cos x1 cos x2 cos x3 cos x4 + sin x1 sin x2 sin x3 sin x4)

= cos(x4 – x3) cos(x2 – x1) + cos(x4 + x3) cos(x2 + x1) (16)

and the independent increments of N ′, we can get equality (17):

(–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2 = (–1)

(N ′
2r2
ε2

–N ′
2r1
ε2

)+(N ′
2r4
ε2

–N ′
2r3
ε2

)+2(N ′
2r1
ε2

+N ′
2r3
ε2

)

= (–1)
(N ′

2r2
ε2

–N ′
2r1
ε2

)+(N ′
2r4
ε2

–N ′
2r3
ε2

)

. (17)

Therefore, the left-hand side of inequality (10) can be calculated as follows:

E
(
Re Zθ

ε (t) – Re Zθ
ε (s)

)4 + E
(
Im Zθ

ε (t) – Im Zθ
ε (s)

)4

=
16
ε4 E

[
(–1)4G

∫
[0,1]4

4∏
i=1

�KH (t, s, ri)(–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r1
ε2

) cos(θN 2r2
ε2

) cos(θN 2r3
ε2

) cos(θN 2r4
ε2

)
4⊗

i=1

dri

]

+
16
ε4 E

[
(–1)4G

∫
[0,1]4

4∏
i=1

�KH (t, s, ri)(–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× sin(θN 2r1
ε2

) sin(θN 2r2
ε2

) sin(θN 2r3
ε2

) sin(θN 2r4
ε2

)
4⊗

i=1

dri

]

=
16
ε4 × 4!E

[
(–1)4G

∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× [
cos(θN 2r1

ε2
) cos(θN 2r2

ε2
) cos(θN 2r3

ε2
) cos(θN 2r4

ε2
)

+ sin(θN 2r1
ε2

) sin(θN 2r2
ε2

) sin(θN 2r3
ε2

) sin(θN 2r4
ε2

)
] 4⊗

i=1

dri

]

=
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2
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× cos(θN 2r4
ε2

– θN 2r3
ε2

) cos(θN 2r2
ε2

– θN 2r1
ε2

)
4⊗

i=1

dri

]

+
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r4
ε2

+ θN 2r3
ε2

) cos(θN 2r2
ε2

+ θN 2r1
ε2

)
4⊗

i=1

dri

]

:= I1 + I2, (18)

where

I1 =
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r4
ε2

– θN 2r3
ε2

) cos(θN 2r2
ε2

– θN 2r1
ε2

)
4⊗

i=1

dri

]
(19)

and

I2 =
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r4
ε2

+ θN 2r3
ε2

) cos(θN 2r2
ε2

+ θN 2r1
ε2

)
4⊗

i=1

dri

]
. (20)

According to equality (11) and | cos θx| ≤ |eiθx|, it is easy to get

E(–1)
N ′

2r2
ε2

–N ′
2r1
ε2 e

iθ (N 2r2
ε2

–N 2r1
ε2

)
= e–2( 2r2

ε2 – 2r1
ε2 ) = e– 4(r2–r1)

ε2 . (21)

Then

I1 =
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r4
ε2

– θN 2r3
ε2

) cos(θN 2r2
ε2

– θN 2r1
ε2

)
4⊗

i=1

dri

]

=
16
ε4 × 4!

2

∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)
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× E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2 cos(θN 2r2

ε2
– θN 2r1

ε2
)
]

× E
[
(–1)

N ′
2r4
ε2

–N ′
2r3
ε2 cos(θN 2r4

ε2
– θN 2r3

ε2
)
] 4⊗

i=1

dri

≤ 16
ε4 × 4!

2

{∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)

× E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2 cos(θN 2r2

ε2
– θN 2r1

ε2
)
]

dr1 dr2

}2

≤ 16
ε4 × 4!

2

{∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)

× E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2 e

iθ (N 2r2
ε2

–N 2r1
ε2

)]
dr1 dr2

}2

=
16
ε4 × 4!

2

{∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)e
– 4(r2–r1)

ε2 dr1 dr2

}2

. (22)

Using the inequality |ab| ≤ 1
2 (a2 + b2), the last expression of (22) is easily bounded by

16
ε4 × 4!

2
× 1

22

{∫
[0,1]2

1{r1≤r2}�K2
H (t, s, r1)e– 4(r2–r1)

ε2 dr1 dr2

+
∫

[0,1]2
1{r1≤r2}�K2

H (t, s, r2)e– 4(r2–r1)
ε2 dr1 dr2

}2

=
4!
2

× 1
22

{∫ 1

0
�K2

H (t, s, r1) dr1

∫ 1

r1

4
ε2 e– 4(r2–r1)

ε2 dr2

+
∫ 1

0
�K2

H (t, s, r2) dr2

∫ r2

0

4
ε2 e– 4(r2–r1)

ε2 dr1

}2

≤ 4!
2

× 1
22

{∫ 1

0
�K2

H (t, s, r) dr
}2

(23)

as ε tends to zero. It is well known that

∫ 1

0

(
KH (t, r) – KH (s, r)

)2 dr = E
[
BH(t) – BH (s)

]2 = (t – s)2H . (24)

Then there exists a constant C1 such that

E
(
Re Zθ

ε (t) – Re Zθ
ε (s)

)4 ≤ C1(t – s)4H . (25)

Moreover, considering the fact that

cos(x4 + x3) cos(x2 + x1)

=
[
cos

(
(x4 – x3) + (x2 – x1) + (2x3 + x1 – x2)

)
cos(x2 + x1)

]
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=
[
cos

(
(x4 – x3) + (x2 – x1)

)][
cos(2x3 + x1 – x2) cos(x2 + x1)

]

–
[
sin

(
(x4 – x3) + (x2 – x1)

)][
sin(2x3 + x1 – x2) cos(x2 + x1)

]

≤ ∣∣[cos
(
(x4 – x3) + (x2 – x1)

)]∣∣ +
∣∣[sin

(
(x4 – x3) + (x2 – x1)

)]∣∣
≤ [∣∣cos(x4 – x3)

∣∣ +
∣∣sin(x4 – x3)

∣∣] × [∣∣cos(x2 – x1)
∣∣ +

∣∣sin(x2 – x1)
∣∣] (26)

and using the inequality |x + y| ≤ √
2(x2 + y2), we get

∣∣cos(x4 – x3) + sin(x4 – x3)
∣∣ ≤ √

2
(
cos2(x4 – x3) + sin2(x4 – x3)

) 1
2

=
√

2
∣∣ei(x4–x3)∣∣. (27)

Then, for the term I2, we have that

I2 =
16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× cos(θN 2r4
ε2

+ θN 2r3
ε2

) cos(θN 2r2
ε2

+ θN 2r1
ε2

)
4⊗

i=1

dri

]

≤ 16
ε4 × 4!

2
E

[∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)

× (–1)
N ′

2r1
ε2

+N ′
2r2
ε2

+N ′
2r3
ε2

+N ′
2r4
ε2

× [
cos(θN 2r4

ε2
– θN 2r3

ε2
) + sin(θN 2r4

ε2
– θN 2r3

ε2
)
]

× [
cos(θN 2r2

ε2
– θN 2r1

ε2
) + sin(θN 2r2

ε2
– θN 2r1

ε2
)
] 4⊗

i=1

dri

]

≤ 16
ε4 × 4!

2

∫
[0,1]4

1{r1≤r2≤r3≤r4}
4∏

i=1

�KH (t, s, ri)
4⊗

i=1

dri

× E
[
(–1)

N ′
2r4
ε2

–N ′
2r3
ε2

(
cos(θN 2r4

ε2
– θN 2r3

ε2
) + sin(θN 2r4

ε2
– θN 2r3

ε2
)
)]

× E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2

(
cos(θN 2r2

ε2
– θN 2r1

ε2
) + sin(θN 2r2

ε2
– θN 2r1

ε2
)
)]

=
16
ε4 × 4!

2

{∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2

× (
cos(θN 2r2

ε2
– θN 2r1

ε2
) + sin(θN 2r2

ε2
– θN 2r1

ε2
)
)]

dr1 dr2

}2

≤ 16
ε4 × 4!

2

{∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)
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× E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2 e

iθ (N 2r2
ε2

–N 2r1
ε2

)]
dr1 dr2

}2

≤ 16
ε4 × 4!

2
× 1

22

{∫
[0,1]2

1{r1≤r2}�K2
H (t, s, r1)e– 4(r2–r1)

ε2 dr1 dr2

}2

. (28)

Similar to the proof of the term I1, using equality (23), we easily get the bound of the last
integral of (28) as follows:

4!
2

× 1
22

{∫ 1

0
�K2

H (t, s, r) dr
}2

≤ C2(t – s)4H , (29)

where C2 is a constant. Combining (25) and (29), we obtain that there exists a constant C
such that

sup
ε

(
E
(
Re Zθ

ε (t) – Re Zθ
ε (s)

)4 + E
(
Im Zθ

ε (t) – Im Zθ
ε (s)

)4) ≤ C(t – s)4H . (30)

This completes the proof. �

Next, we consider the tightness of the processes Y θ
ε .

Lemma 2.2 For any t > s, ε > 0, there exists a constant C such that

sup
ε

(
E
[
Re Y θ

ε (t) – Re Y θ
ε (s)

]4 + E
[
Im Y θ

ε (t) – Im Y θ
ε (s)

]4) ≤ C(t – s)4H . (31)

Proof For the complex function a(t) = eiθ t , we can obtain by using fundamental opera-
tions:

(cos θ t – cos θs)4 + (sin θ t – sin θs)4 ≤ ∣∣a(t) – a(s)
∣∣4. (32)

By (32), we have

E
[
Re Y θ

ε (t) – Re Y θ
ε (s)

]4 + E
[
Im Y θ

ε (t) – Im Y θ
ε (s)

]4

≤ E
∣∣Y θ

ε (t) – Y θ
ε (s)

∣∣4

= c4(θ )
24

ε4 E
(∫ 1

0
�KH (t, s, r1)e

iθX 2r1
ε2 dr1

∫ 1

0
�KH (t, s, r2)e

–iθX 2r2
ε2 dr2

)2

= c4(θ )
24

ε4

(∫
[0,1]4

4∏
i=1

�KH (t, s, ri)E
[
e

iθ (X 2r1
ε2

–X 2r2
ε2

)
e

iθ (X 2r3
ε2

–X 2r4
ε2

)] 4⊗
i=1

dri

)

= c4(θ )
24

ε4 × 4!
∫

[0,1]4
1{r1≤r2≤r3≤r4}

4∏
i=1

�KH (t, s, ri)

× E
[
e

iθ (X 2r2
ε2

–X 2r1
ε2

)
e

iθ (X 2r4
ε2

–X 2r3
ε2

)] 4⊗
i=1

dri. (33)

Because the process X has independent increments, we have

E
[
e

iθ [(X 2r4
ε2

–X 2r3
ε2

)+(X 2r2
ε2

–X 2r1
ε2

)]]
=

∥∥φX 2r4
ε2

–X 2r3
ε2

(θ )
∥∥∥∥φX 2r2

ε2
–X 2r1

ε2
(θ )

∥∥. (34)
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So, the last expression of (33) is easily bounded by

c4(θ )
24

ε4 × 4!
∫

[0,1]4
1{r1≤r2≤r3≤r4}

4∏
i=1

�KH (t, s, ri)
∥∥φX 2r2

ε2
–X 2r1

ε2
(θ )

∥∥

× ∥∥φX 2r4
ε2

–X 2r3
ε2

(θ )
∥∥ 4⊗

i=1

dri. (35)

According to equality (8) of the Lévy process, we get ‖φXu–Xv (θ )‖ = e–(u–v)a(θ ). Thus, ex-
pression (35) is equal to

c4(θ )
24

ε4 × 4!
∫

[0,1]4
1{r1≤r2≤r3≤r4}

4∏
i=1

�KH (t, s, ri)e
– 2(r2–r1)

ε2 a(θ )

× e– 2(r4–r3)
ε2 a(θ )

4⊗
i=1

dri

= c4(θ )
23

ε4 × 4!

(∫
[0,1]2

1{r1≤r2}
2∏

i=1

�KH (t, s, ri)e
– 2(r2–r1)

ε2 a(θ ) dr1 dr2

)2

≤ c4(θ )
24

ε4 × 4!
(∫

[0,1]2
1{r1≤r2}�K2

H (t, s, r1)e– 2(r2–r1)
ε2 a(θ ) dr1 dr2

+
∫

[0,1]2
1{r1≤r2}�K2

H (t, s, r2)e– 2(r2–r1)
ε2 a(θ ) dr1 dr2

)2

= c4(θ )2 × 4!
(∫ 1

0
�K2

H (t, s, r1)
(∫ 1

r1

2
ε2 e– 2(r2–r1)

ε2 a(θ ) dr2

)
dr1

+
∫ 1

0
�K2

H (t, s, r2)
(∫ r2

0

2
ε2 e– 2(r2–r1)

ε2 a(θ ) dr1

)
dr2

)2

≤ 4c4(θ )4!
(∫ 1

0
�K2

H (t, s, r) dr
)2

. (36)

By equality (24), there exists a constant C such that the last integral of (36) can be bounded
by C(t – s)4H . The proof has been completed. �

For the proof of Theorem 1.1, we need the following lemma.

Lemma 2.3 For any f (r) ∈ L2([0, 1]) and ε > 0, let

F(t) =
2
ε

(–1)G
∫ t

0
f (r)(–1)

N ′
2r
ε2 e

iθN 2r
ε2 dr, t ∈ [0, 1].

Then there exists a constant C such that E[Re F(t)]2 ≤ C
∫ t

0 f 2(r) dr and E[Im F(t)]2 ≤
C

∫ t
0 f 2(r) dr.
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Proof Following the definition of F(t), we get

E
[
Re F(t)

]2 = E
[

2
ε

(–1)G
∫ t

0
f (r)(–1)

N ′
2r
ε2 cos(θN 2r

ε2
) dr

]2

= E
[

4
ε2 (–1)2G

∫ t

0
f (r1)(–1)

N ′
2r1
ε2 cos(θN 2r1

ε2
) dr1

×
∫ t

0
f (r2)(–1)

N ′
2r2
ε2 cos(θN 2r2

ε2
) dr2

]

= E
[

4
ε2 × 2!

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)(–1)
N ′

2r1
ε2

+N ′
2r2
ε2

× cos(θN 2r1
ε2

) cos(θN 2r2
ε2

) dr1 dr2

]
. (37)

Because

(–1)
N ′

2r1
ε2

+N ′
2r2
ε2 = (–1)

(N ′
2r2
ε2

–N ′
2r1
ε2

)+2N ′
2r1
ε2 = (–1)

(N ′
2r2
ε2

–N ′
2r1
ε2

)

and

cos(θN 2r1
ε2

) cos(θN 2r2
ε2

) =
1
2
[
cos θ (N 2r2

ε2
– N 2r1

ε2
) + cos θ (N 2r2

ε2
+ N 2r1

ε2
)
]
.

Then equation (37) is equal to

E
[

4
ε2

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)(–1)
N ′

2r2
ε2

–N ′
2r1
ε2

[
cos θ (N 2r2

ε2
– N 2r1

ε2
)

+ cos θ (N 2r2
ε2

+ N 2r1
ε2

)
]

dr1 dr2

]

=
4
ε2

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2

[
cos θ (N 2r2

ε2
– N 2r1

ε2
)
]]

dr1 dr2

+
4
ε2

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2

[
cos θ (N 2r2

ε2
+ N 2r1

ε2
)
]]

dr1 dr2

:= I3 + I4.

Using (21), we get

I3 =
4
ε2

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)e– 4(r2–r1)
ε2 dr1 dr2

=
4
ε2 × 1

2

[∫
[0,t]2

1{r1≤r2}f 2(r1)e– 4(r2–r1)
ε2 dr1 dr2

+
∫

[0,t]2
1{r1≤r2}f 2(r2)e– 4(r2–r1)

ε2 dr1 dr2

]

=
1
2

[∫ t

0
f 2(r1) dr1

∫ t

r1

4
ε2 e– 4(r2–r1)

ε2 dr2 +
∫ t

0
f 2(r2) dr2

∫ r2

0

4
ε2 e– 4(r2–r1)

ε2 dr1

]
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=
1
2

[∫ t

0
f 2(r1)

(
1 – e– 4(t–r1)

ε2
)

dr1 +
∫ t

0
f 2(r2)

(
1 – e– 4r2

ε2
)

dr2

]

≤ 1
2

[∫ t

0
f 2(r1) dr1 +

∫ t

0
f 2(r2) dr2

]
=

∫ t

0
f 2(r) dr

and

I4 =
4
ε2

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)E
[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2

[
cos θ (N 2r2

ε2
+ N 2r1

ε2
)
]]

dr1 dr2

≤ 4
ε2

√
2
∫

[0,t]2
1{r1≤r2}f (r1)f (r2)

∣∣E[
(–1)

N ′
2r2
ε2

–N ′
2r1
ε2 e

iθ (N 2r2
ε2

–N 2r1
ε2

)]∣∣dr1 dr2

≤ √
2
∫ t

0
f 2(r) dr

since

cos θ (N 2r2
ε2

+ N 2r2
ε2

)

= cos θ (N 2r2
ε2

– N 2r1
ε2

+ 2N 2r1
ε2

)

= cos θ (N 2r2
ε2

– N 2r1
ε2

) cos(2N 2r1
ε2

) – sin θ (N 2r2
ε2

– N 2r1
ε2

) sin(2N 2r1
ε2

)

≤ ∣∣cos θ (N 2r2
ε2

– N 2r1
ε2

)
∣∣ +

∣∣sin θ (N 2r2
ε2

– N 2r1
ε2

)
∣∣

≤ √
2
(
cos2 θ (N 2r2

ε2
– N 2r1

ε2
) + sin2 θ (N 2r2

ε2
– N 2r1

ε2
)
)

=
√

2
∣∣eiθ (N 2r2

ε2
–N 2r1

ε2
)∣∣.

For the term E[Im F(t)]2, we have

E
[
Im F(t)

]2 = E
[

2
ε

(–1)G
∫ t

0
f (r)(–1)

N ′
2r
ε2 sin(θN 2r

ε2
) dr

]2

= E
[

4
ε2 × 2!

∫
[0,t]2

1{r1≤r2}f (r1)f (r2)(–1)
N ′

2r1
ε2

+N ′
2r2
ε2 sin(θN 2r1

ε2
)

× sin(θN 2r2
ε2

) dr1 dr2

]
.

Using the equation

sin(θN 2r1
ε2

) sin(θN 2r2
ε2

) =
1
2
(
cos θ (N 2r2

ε2
– N 2r1

ε2
) – cos θ (N 2r2

ε2
+ N 2r2

ε2
)
)
,

similar to the calculation of E[Re F(t)]2, we can get E[Im F(t)]2 ≤ C
∫ t

0 f 2(r) dr. The proof
of this lemma is accomplished. �

3 Weak convergence to the complex fractional Brownian motion
In this section, we give the proof of Theorem 1.1 and Theorem 1.2 by checking that the
families of laws of the processes Zθ

ε and Y θ
ε are tight respectively and that any weakly

convergent subsequence converges to the law of the complex fractional Brownian motion.
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Proof of Theorem 1.1 Firstly, following Lemma 2.1, we have proved the tightness of the
family P1

ε of laws of the processes Zθ
ε by applying Theorem 12.3 of Billingsley [9].

Next we will prove that the family of stochastic processes Zθ
ε converges in the sense of

finite dimensional distribution function to the process Z. That is, for any integer number
N ≥ 1, considering arbitrary real numbers a1, . . . , aN ∈R and t1, . . . , tN ∈ [0, 1], we have

Sθ
ε :=

N∑
k=1

akZθ
ε (tk) → S :=

N∑
k=1

akZ(tk)

as ε tends to zero. To prove this, the convergence of the corresponding characteristic func-
tions must be checked.

For the sake of simplicity, we denote

θ (r) =
2
ε

(–1)
G+N ′

2r
ε2 e

iθN 2r
ε2

=
2
ε

(–1)
G+N ′

2r
ε2 cos(θN 2r

ε2
) + i

2
ε

(–1)
G+N ′

2r
ε2 sin(θN 2r

ε2
)

:= Re θ (r) + i Im θ (r).

Note that

Sθ
ε =

∫ 1

0
K∗(r)θ (r) dr =

∫ 1

0
K∗(r) Re θ (r) dr + i

∫ 1

0
K∗(r) Im θ (r) dr (38)

and

S =
∫ 1

0
K∗(r) dW (r) =

∫ 1

0
K∗(r) dW 1(r) + i

∫ 1

0
K∗(r) dW 2(r), (39)

where K∗(r) =
∑N

k=1 akK(tk , r), W (r) = W 1(r) + iW 2(r) is a complex Brownian motion,
W 1(r) and W 2(r) are two independent standard Brownian motions.

The function K∗(r) ∈ L2([0, 1]) can be approximated by a sequence of step functions of
the form

Kn(r) =
mn–1∑

i=0

Kn
i 1(rn

i ,rn
i+1](r), (40)

with 0 = rn
0 < rn

1 < · · · < rn
mn–1 < rn

mn = 1 and Kn
i , i = 0, . . . , mn – 1 being constants that are

chosen such that

∫ 1

0

(
K∗(r) – Kn(r)

)2 dr ≤ 1
n

for any n ∈N. (41)

Define now

Sn
ε =

∫ 1

0
Kn(r)θε(r) dr =

∫ 1

0
Kn(r) Re θε(r) dr + i

∫ 1

0
Kn(r) Im θε(r) dr (42)
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and

Sn =
∫ 1

0
Kn(r) dW (r) =

∫ 1

0
Kn(r) dW 1(r) + i

∫ 1

0
Kn(r) dW 2(r). (43)

By taking f (r) = K∗(r) – Kn(r) in Lemma 2.3, we have that there exists a positive constant
C, which does not depend on n, such that

E
[(

Re Sθ
ε – Re Sn

ε

)2] ≤ C
∫ 1

0

(
K∗(r) – Kn(r)

)2 dr ≤ C
1
n

(44)

and

E
[(

Im Sθ
ε – Im Sn

ε

)2] ≤ C
∫ 1

0

(
K∗(r) – Kn(r)

)2 dr ≤ C
1
n

(45)

for any ε > 0.
On the other hand, for fixed n ∈N,

Sn
ε =

mn–1∑
i=0

∫ 1

0
Kn

i θε(r) dr

=
mn–1∑

i=0

∫ 1

0
Kn

i Re θε(r) dr + i
mn–1∑

i=0

∫ 1

0
Kn

i Im θε(r) dr

converges in law as ε tends to zero to

Sn =
∫ 1

0
Kn(r) dW 1(r) + i

∫ 1

0
Kn(r) dW 2(r)

=
mn–1∑

i=0

∫ 1

0
Kn

i dW 1(r) + i
mn–1∑

i=0

∫ 1

0
Kn

i dW 2(r)

due to the result established by Bardina et al. [4]. Then we have the convergence of the
corresponding characteristic function: for any x ∈R and n ∈N,

E
[
eixSn

ε
] → E

[
eixSn]

as ε → 0. (46)

From Bardina et al. [4], it is easy to get that Re Zθ
ε (t) and Im Zθ

ε (t) are two independent
centered Gaussian processes. So, we get that

∣∣E[
eiλSθ

ε
]

– E
[
eiλS]∣∣

=
∣∣E[

eiλ(Re Sθ
ε +i Im Sθ

ε )] – E
[
eiλ(Re S+i Im S)]∣∣

=
∣∣E[

eiλRe Sθ
ε e–λ Im Sθ

ε
]

– E
[
eiλRe Se–λ Im S]∣∣

=
∣∣E[(

eiλRe Sθ
ε – eiλRe S)e–λ Im Sθ

ε
]

+ E
[
eiλRe S(e–λ Im Sθ

ε – e–λ Im S)]∣∣
≤ ∣∣E[

e–λ Im Sθ
ε
]∣∣I5 +

∣∣E[
eiλRe S]∣∣I6, (47)

where I5 := |E(eiλRe Sθ
ε – eiλRe S)| and I6 := |E(e–λ Im Sθ

ε – e–λ Im S)|.
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Using the mean value theorem, there exists ξ ∈ (a, b) for a ≤ b such that

eib – eia =
∫ b

a
ieixdx = ieiξ (b – a) = ei( π

2 +ξ )(b – a).

Then it is easy to get

∣∣EeiX2 – EeiX1
∣∣ =

∣∣E(
eiX2 – eiX1

)∣∣ =
∣∣Eei( π

2 +ξ )(X2 – X1)
∣∣

≤ E
[∣∣ei( π

2 +ξ )∣∣|X2 – X1|
] ≤ E|X2 – X1|,

where X1, X2 are two random variables. So, there exists a constant C > 0 for the term I5

such that

I5 ≤ |λ|{E
∣∣Re Sθ

ε – Re S
∣∣} ≤ C

{
E
∣∣Re Sθ

ε – Re S
∣∣}.

Meanwhile, by (38) and (39), we have

E
∣∣Re Sθ

ε – Re S
∣∣ ≤ I51 + I52 + I53,

where I51 = E|Re Sθ
ε – Re Sn

ε |, I52 = E|Re Sn
ε – Re Sn|, and I53 = E|Re Sn – Re S|.

Using the Schwarz inequality (E|ξη|)2 ≤ E|ξ |2E|η|2 and (44), we can get, for any ε > 0
and n ∈ N,

I51 = E
∣∣Re Sθ

ε – Re Sn
ε

∣∣

= E
∣∣∣∣
∫ 1

0

(
K∗(r) – Kn(r)

)
Re θ (r) dr

∣∣∣∣

≤
(∫ 1

0

(
K∗(r) – Kn(r)

)2
Re θ (r) dr

) 1
2
(

E
∫ 1

0

(
Re θ (r)

)2 dr
) 1

2

≤ C
(∫ 1

0

(
K∗(r) – Kn(r)

)2 dr
) 1

2 ≤ C
1√
n

.

By Bardina et al. [4], we easily get that the real part and the imaginary part of the pro-
cesses Zθ

ε are two independent Brownian motions. So, for the term I52, we have

I52 = E
∣∣Re Sn

ε – Re Sn∣∣

= E
∣∣∣∣
∫ 1

0
Kn(r) Re θ (r) dr –

∫ 1

0
Kn(r) dW (r)

∣∣∣∣
→ 0, ε → 0.

According to the Schwarz inequality and the isometric property of the Wiener integral
with respect to the term I53, we obtain that, for any n ∈N,

I53 ≤ (
E
∣∣Re Sn – Re S

∣∣2) 1
2 ≤ C

(∫ 1

0

(
K∗(r) – Kn(r)

)2 dr
)1/2

≤ C
1√
n

.
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Then both I51 and I53 become arbitrarily small by taking n ≥ n0 for some n0 ∈N. Similarly,
we can prove I6 converging to 0 as n tends to infinity. This completes the proof. �

Proof of Theorem 1.2 The tightness of the processes Y θ
ε comes from Lemma 2.3. Next, we

identify the limit law by proving that the family of stochastic processes Y θ
ε converges in

the sense of finite dimensional distribution function to the process Z as ε tends to zero,
that is, we prove

Tε :=
N∑

k=1

akY θ
ε (tk) → T :=

N∑
k=1

akZ(tk)

in distribution when ε tends to zero, where a1, . . . , aN ∈R and t1, . . . , tN ∈ [0, 1].
Similar to the proof of Theorem 1.1, note that

Tε =
∫ 1

0
K∗(r)

2
ε

c(θ )e
iθX 2r

ε2 dr and T =
∫ 1

0
K∗(r) dW (r),

where K∗(r) =
∑N

k=1 akK(tk , r).
Because K∗(r) ∈ L2([0, 1]), there exists a simple function

Kn(r) =
mn–1∑
k=0

Kn
k 1(rn

k ,rn
k+1](r) (48)

with 0 = rn
0 < rn

1 < · · · < rn
mn–1 < rn

mn = 1 such that

∫ 1

0

(
K∗(r) – Kn(r)

)2 dr ≤ 1
n

, n ≥ 1.

Now, define two variables Tn
ε =

∫ 1
0 Kn(r) 2

ε
c(θ )e

iθX 2r
ε2 dr and Tn =

∫ 1
0 Kn(r) dW (r), then

E
∣∣Tn

ε – Tε

∣∣ ≤ E
∫ 1

0

∣∣∣∣
(
Kn(r) – K∗(r)

)2
ε

c(θ )e
iθX 2r

ε2

∣∣∣∣dr

≤ c(θ )
(∫ 1

0

∣∣(Kn(r) – K∗(r)
)∣∣2 dr

) 1
2

≤ c(θ )
1√
n

. (49)

By (48), we have

Tn
ε =

∫ 1

0
Kn(r)

2
ε

c(θ )e
iθX 2r

ε2 dr

=
mn–1∑
k=0

Kn
k

∫ rn
k+1

rn
k

2
ε

c(θ )e
iθX 2r

ε2 dr. (50)

According to the result obtained by Bardina and Rovira [8], it is easy to get the weak con-
vergence of Tn

ε to Tn, where Tn =
∫ 1

0 Kn(r) dW (r) =
∑mn–1

k=0 Kn
k

∫ rn
k+1

rn
k

dW (r).
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So,

E
(
eiuTn

ε
) → E

(
eiuTn)

, ε → 0. (51)

By the triangle inequality, we have

∣∣E(
eiuTε

)
– E

(
eiuT)∣∣ ≤ αn

ε + βn
ε + γ n, u ∈ R, ε > 0, n ∈ N , (52)

where αn
ε = |E(eiuTε ) – E(eiuTn

ε )|, βn
ε = |E(eiuTn

ε ) – E(eiuTn )|, γ n = |E(eiuTn ) – E(eiuT )|.
Using the mean value theorem and inequality (49), we obtain αn

ε ≤ uE|Tε – Tn
ε | converg-

ing to 0 as n tends to infinity. With respect to the term βn
ε , it is easy to get the convergence

of βn
ε to 0 as ε tends to 0 from (51).

Next we consider the term γ n. By the Schwarz inequality and the isometric property of
the Wiener integer, we get

γ n ≤ uE
∣∣Tn – T

∣∣
≤ u

[
E
∣∣Re Tn – Re T

∣∣ + E
∣∣Im Tn – Im T

∣∣]

≤ |u|[(E
∣∣Re Tn – Re T

∣∣2) 1
2 +

(
E
∣∣Im Tn – Im T

∣∣2) 1
2
]

= |u|
(∫ 1

0

(
K∗(r) – Kn(r)

)2 dr
) 1

2

≤ |u| 1√
n

→ 0 (53)

as n tends to infinity. This completes the proof. �
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