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Abstract
In this paper, we investigate the existence of a set with 2kT -periodic solutions for
n-dimensional p-Laplacian neutral differential systems with a time-varying delay
(ϕp(u(t) – Cu(t – τ ))′)′ + d

dt∇F(u(t)) + G(u(t – γ (t))) = ek(t) based on the coincidence
degree theory of Mawhin. Combining this with the conclusion about uniform
convergence and limit, we obtain the corresponding results on the existence of
homoclinic solutions.
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1 Introduction
This paper focuses on the existence of homoclinic solutions for n-dimensional p-Laplacian
neutral differential systems with a time-varying delay of the following form:

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ +
d
dt

∇F
(
u(t)

)
+ G

(
u
(
t – γ (t)

))
= e(t), (1.1)

where p ∈ (1, +∞), ϕp : Rn → R
n, ϕp(u) = (|u1|p–2u1, |u2|p–2u2, . . . , |un|p–2un) for u �= 0 =

(0, 0, . . . , 0), F ∈ C2(Rn,R), G ∈ C(Rn,Rn), e ∈ C(R,Rn), C = diag(c1, c2, . . . , cn), |ci| �= 1 (i =
1, 2, . . . , n), τ and T > 0 are given constants, γ ∈ (R,R), γ (t + T) = γ (t) with γ (t) ≥ 0.

In the past few decades, the existence of homoclinic solutions for second-order differ-
ential equations has been widely investigated by using critical point theory, the methods
of bifurcation theory, or Mawhin’s continuation theorem (see [1–8]). However, the corre-
sponding results on the existence of homoclinic solutions to a neutral differential equation
are relatively infrequent. For example, the existence of homoclinic solutions to a kind of
second-order neutral functional differential systems was considered in [9]:

(
(u(t) – Cu(t – τ )

)′′ +
d
dt

∇F
(
u(t)

)
+ G

(
u(t)

)
+ H

(
u
(
t – γ (t)

))
= e(t), (1.2)

where C = [cij]n×n is a real constant symmetric matrix, F ∈ C2(Rn,R), G, H ∈ C1(Rn,R),
e ∈ C(R,Rn), γ ∈ (R,R), γ (t + T) = γ (t) with γ (t) ≥ 0 and given constant T > 0. Mean-
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while, Du [10] discussed the system

(
u(t) – Cu(t – τ )

)′′ +
d
dt

∇F
(
u(t)

)
+ ∇G

(
u(t)

)
= e(t), (1.3)

where F ∈ C2(Rn,R), G ∈ C1(Rn,R). e ∈ C(R,Rn), C = diag(c1, c2, . . . , cn), ci (i = 1, 2, . . . , n)
and τ are given constants. The existence of homoclinic solutions for Eq. (1.3) is obtained.
Then Chen [11] studied the existence of homoclinic solutions for the class of neutral Duff-
ing differential systems

(
u(t) – Cu(t – τ )

)′′ + β(t)x′(t) + g
(
u
(
t – γ (t)

))
= p(t), (1.4)

where β ∈ C1(R,R) with β(t +T) ≡ β(t), g ∈ C(Rn,Rn), p ∈ C(R,Rn), γ ∈ (R,R), γ (t +T) =
γ (t) with γ (t) ≥ 0, T > 0 and τ are given constants; β(t) is allowed to change sign, and
C = [cij]n×n is a constant symmetric matrix.

It is not hard to find that Eq. (1.1) can be converted to second-order neutral functional
differential systems (1.2)–(1.4) when p = 2. To our knowledge, there are few results re-
ported in the literature regarding the existence of homoclinic solutions for n-dimensional
p-Laplacian neutral differential systems with time-varying delay. Because of the term
(ϕp(u(t) – Cu(t – τ ))′)′ in Eq. (1.1), the method of Lemma 2.5 in [12] cannot be applied
directly to prove that |u′

0(t)| → 0 as |t| → +∞. In this paper, we solve this problem by
combining the conclusion about uniform convergence and Lemma 2.3 in [13].

Similarly to [9–11], we obtain the existence of a homoclinic solution for the equation by
taking a series of the 2kT-periodic limit for the following equation:

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ +
d
dt

∇F
(
u(t)

)
+ G

(
u
(
t – γ (t)

))
= ek(t), (1.5)

where k ∈N, and ek : R →R
n is a 2kT-periodic function such that

ek(t) =

⎧
⎨

⎩
e(t), t ∈ [–kT , kT – ε0),

e(kT – ε0) + e(–kT)–e(kT–ε0)
ε0

(t – kT + ε0), t ∈ [kT – ε0, kT],
(1.6)

with a constant ε0 ∈ (0, T) independent of k.

2 Preliminaries
Lemma 2.1 ([12]) If u : R →R

n is continuously differentiable on R, a > 0, μ > 1, and p > 1
are constants, then for every t ∈R, we have the following inequality:

∣∣u(t)
∣∣ ≤ (2a)– 1

μ

(∫ t+a

t–a

∣∣u(s)
∣∣μ ds

) 1
μ

+ a(2a)– 1
p

(∫ t+a

t–a

∣∣u′(s)
∣∣p ds

) 1
p

.

Lemma 2.2 ([13]) Let s ∈ C(R,R) with s(t + ω) ≡ s(t) and s(t) ∈ [0,ω] for t ∈ R. Suppose
p ∈ (1, +∞), |s|0 = maxt∈[0,ω] s(t), and u ∈ C1(R,R) with u(t + ω) ≡ u(t). Then

∫ ω

0

∣∣u(t) – u
(
t – s(t)

)∣∣p dt ≤ |s|p0
∫ ω

0

∣∣u′(t)
∣∣p dt.
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Lemma 2.3 ([14]) If x ∈ (0, +∞) satisfies the inequality xs ≤ αxq + βxr for some constants
s > q > r ≥ 0, α > 0, and β > 0, then

0 < x ≤ inf
ε∈(0,1)

max

{(
β

ε

) 1
s–r

,
(

α

1 – ε

) 1
s–q

}
.

Lemma 2.4 ([15]) Suppose τ ∈ C1(R,R) with τ (t + ω) ≡ τ (t) and τ ′(t) < 1 for t ∈ [0,ω].
Then the function t – τ (t) has an inverse μ ∈ C(R,R) such that μ(t + ω) ≡ μ(t) + ω for
t ∈R.

Lemma 2.5 ([16]) Suppose that Ω is an open bounded set in X such that the following
conditions are satisfied:

[A1] For each λ ∈ (0, 1), the equation

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ + λ
d
dt

∇F
(
u(t)

)
+ λG

(
u
(
t – γ (t)

))
= λek(t)

has no solution on ∂Ω .
[A2] The equation

�(a) :=
1

2kT

∫ kT

–kT

[
G(a) – ek(t)

]
dt = 0

has no solution on ∂Ω ∩R
n.

[A3] The Brouwer degree

dB
{�,Ω ∩R

n, 0
} �= 0.

Then Eq. (1.5) has a 2kT-periodic solution in Ω̄ .

Lemma 2.6 ([16]) Suppose that c1, c2, . . . , cn are eigenvalues of a matrix C. If |ci| �= 1 (i =
1, 2, . . . , n), then A has a continuous bounded inverse with the following properties:

(1) ‖A–1f ‖ ≤ (
∑n

i=1
1

|1–|ci|| )‖f ‖ for all f ∈ CT ,
(2)

∫ T
0 |(A–1f )(t)|p dt ≤ α

∫ T
0 |f (t)|p dt for all f ∈ CT and p ≥ 1, where

α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max( 1
(1–|ci|)2 ), p = 2,

(
∑n

i=1
1

(1–|ci|) 2p
2–p

)
2–p

2 , p ∈ [1, 2),

(
∑n

i=1
1

1–|ci|q )
p
q , p ∈ [2, +∞),

and q is a constant such that 1
p + 1

q = 1.
(3) (Ax)′ = Ax′ for all x ∈ C1

T .

Throughout this paper, for convenience, we list the following conditions and corre-
sponding mathematical notation.

[H1] There are constants m0 > 0 and m1 > 0 such that

〈
(E – C)x, G(x)

〉 ≤ –m0|x|p for all x ∈R
n,
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∣∣G(x)
∣∣ ≤ m1|x|p–1 for all x ∈R

n,

and

∣∣∇F(x)
∣∣ ≤ m2|x|p–1 for all x ∈ R

n.

[H2] e ∈ C(R,Rn) is a bounded function with e(t) �= 0 = (0, 0, . . . , 0)T and

B :=
(∫

R

∣∣e(t)
∣∣q dt

) 1
q

+ sup
t∈R

∣∣e(t)
∣∣ < +∞.

By (1.6) we know that |ek(t)| ≤ supt∈R |e(t)|. So for each k ∈ N, (
∫ kT

–kT |ek(t)|q dt)
1
q < B if

[H2] holds. Let C2kT = {x|x ∈ C(R,Rn), x(t + 2kT) ≡ x(t)}, C1
2kT = {x|x ∈ C1(R,Rn), x(t +

2kT) ≡ x(t)}, and |x|0 = maxt∈[0,2kT] |x(t)|. If the norms of C2kT and C1
2kT are respectively de-

fined by ‖·‖C2kT = | · |0 and ‖·‖C1
2kT

= max{|x|0, |x′|0}, then C2kT and C1
2kT are Banach spaces.

By 〈·, ·〉 : Rn × R
n → R we denote the standard inner product, and by | · | we denote the

absolute value and the Euclidean norm on R
n. For ϕ ∈ C2kT , set ‖ϕ‖r = (

∫ kT
–kT |ϕ(t)|r dt) 1

r ,
r > 1. Let γ ∈ C1(R,R) with γ ′(t) < 1 for all t ∈ [0, T]. Let σ0 = mint∈[0,T] γ

′(t) and σ1 =
maxt∈[0,T] γ

′(t). Define the linear operator

A : CT → CT , [Ax](t) = x(t) – Cx(t – τ ).

3 Main results
First, we study some properties of all possible 2kT-periodic solutions of the following
equation:

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ + λ
d
dt

∇F
(
u(t)

)
+ λG

(
u
(
t – γ (t)

))
= λek(t), λ ∈ (0, 1]. (3.1)

Let Σ ⊂ C1
2kT , k ∈N, be the set of all the 2kT-periodic solutions to Eq. (3.1).

Theorem 3.1 If assumptions [H1]–[H2] hold and

(1 – σ0)p–1λ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

mp–1
0

< 1,

where λM = max{c2
i }, |ci| �= 1, i = 1, 2, . . . , n, and u ∈ Σ for each k ∈N, then

‖u‖p ≤ A0,
∥∥u′∥∥

p ≤ A1, |u|0 ≤ ρ0,
∣∣u′∣∣

0 ≤ ρ1,

where A0, A1, ρ0, and ρ1 are positive constants independent of λ and k.

Proof If u ∈ Σ and k ∈N, then u satisfies

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ + λ
d
dt

∇F
(
u(t)

)
+ λG

(
u
(
t – γ (t)

))
= λek(t), λ ∈ (0, 1]. (3.2)
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Multiplying both sides of Eq. (3.2) by [Au](t) and integrating from –kT to kT , we get

–
∥
∥Au′∥∥p

p + λ

∫ kT

–kT

〈
[Au](t),

d
dt

∇F
(
u(t)

)〉
dt + λ

∫ kT

–kT

〈
[Au](t), G

(
u
(
t – γ (t)

))〉
dt

= λ

∫ kT

–kT

〈
[Au](t), ek(t)

〉
dt.

Since

∫ kT

–kT

〈
[Au](t),

d
dt

∇F
(
u(t)

)
〉

dt =
∫ kT

–kT

〈
Cu′(t – τ ),∇F

(
u(t)

)〉
dt,

we have

λ

∫ kT

–kT

〈
[Au](t), ek(t)

〉
dt

= –
∥
∥Au′∥∥p

p + λ

∫ kT

–kT

〈
Cu′(t – τ ),∇F

(
u(t)

)〉
dt

+ λ

∫ kT

–kT

〈
u(t) – u

(
t – γ (t)

)
, G

(
u
(
t – γ (t)

))〉
dt

+ λ

∫ kT

–kT

〈
(E – C)u

(
t – γ (t)

)
, G

(
u
(
t – γ (t)

))〉
dt

– λ

∫ kT

–kT

〈
Cu(t – τ ) – Cu

(
t – γ (t)

)
, G

(
u
(
t – γ (t)

))〉
dt,

and by assumption [H1]

∥∥Au′∥∥p
p + λm0

∫ kT

–kT

∣∣u
(
t – γ (t)

)∣∣p dt

≤ λm1

∫ kT

–kT

∣
∣u(t) – u

(
t – γ (t)

)∣∣
∣
∣u

(
t – γ (t)

)∣∣p–1 dt

+ λm1λ
1
2
M

∫ kT

–kT

∣∣u(t – τ ) – u
(
t – γ (t)

)∣∣∣∣u
(
t – γ (t)

)∣∣p–1 dt

+
∣∣
∣∣λ

∫ kT

–kT

〈
[Au](t), ek(t)

〉
dt

∣∣
∣∣ +

∣∣
∣∣λ

∫ kT

–kT

〈
Cu′(t – τ ),∇F

(
u(t)

)〉
dt

∣∣
∣∣, (3.3)

where λM = max{c2
i }, i = 1, 2, . . . , n.

By applying Lemma 2.2, Lemma 2.4, [H1], and [H2] we get

1
1 – σ0

‖u‖p
p ≤

∫ kT

–kT

∣
∣u

(
t – γ (t)

)∣∣p dt =
∫ kT

–kT

1
1 – γ ′(μ(t))

∣
∣u(t)

∣
∣p dt

≤ 1
1 – σ1

‖u‖p
p (3.4)

and

∫ kT

–kT

∣
∣u(t) – u

(
t – γ (t)

)∣∣
∣
∣u

(
t – γ (t)

)∣∣p–1 dt
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≤
(∫ kT

–kT

∣
∣u(t) – u

(
t – γ (t)

)∣∣p dt
)p(∫ kT

–kT

∣
∣u

(
t – γ (t)

)∣∣p dt
) p–1

p

≤ |γ |0 1

(1 – σ1)
p–1

p

∥∥u′∥∥
p‖u‖p–1

p . (3.5)

Using the same method as for (3.5), we have

∫ kT

–kT

∣
∣u(t – τ ) – u

(
t – γ (t)

)∣∣
∣
∣u

(
t – γ (t)

)∣∣p–1 dt

≤ (|γ |0 + |τ |) 1

(1 – σ1)
p–1

p

∥
∥u′∥∥

p‖u‖p–1
p (3.6)

and

∣
∣∣
∣

∫ kT

–kT

〈
[Au](t), ek(t)

〉
dt

∣
∣∣
∣

≤ ‖ek‖q‖u‖p + ‖ek‖q‖u‖p

≤ B
(
1 + λ

1
2
M

)‖u‖p. (3.7)

Furthermore, by [H1] we have

∣∣∣
∣

∫ kT

–kT

〈
Cu′(t – τ ),∇F

(
u(t)

)〉
dt

∣∣∣
∣

≤
(∫ kT

–kT

∣∣Cu′(t – τ )
∣∣p dt

) 1
p
(∫ kT

–kT

∣∣∇F
(
u(t)

)∣∣q dt
) 1

q

≤ λ
1
2
Mm2

∥∥u′∥∥
p‖u‖p–1

p . (3.8)

Applying (3.4)–(3.8) to (3.3), we obtain

∥∥Au′∥∥p
p + λm0

1
1 – σ0

‖u‖p
p

≤ λλ
1
2
M

[
m1

(
2|γ |0 + |τ |)(1 – σ1)– 1

q

+ λm2
]∥∥u′∥∥

p‖u‖p–1
p + λB

(
1 + λ

1
2
M

)‖u‖p. (3.9)

By (3.9) we get

‖u‖p
p ≤ 1 – σ0

m0
λ

1
2
M

[
m1

(
2|γ |0 + |τ |)(1 – σ1)– 1

q + m2
]∥∥u′∥∥

p‖u‖p–1
p

+
1 – σ0

m0
B
(
1 + λ

1
2
M

)‖u‖p. (3.10)

Since

(1 – σ0)p–1λ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

mp–1
0

< 1,
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there exists a constant ε0 ∈ (0, 1) such that

(1 – σ0)p–1λ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)p–1mp–1
0

< 1. (3.11)

Applying Lemma 2.3 and (3.10), we get

‖u‖p
p

≤ max

{
(1 – σ0)pλ

p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

∥
∥u′∥∥p

p,

[
1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)
] p

p–1
}

. (3.12)

If

(1 – σ0)pλ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

∥
∥u′∥∥p

p ≤
[

1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)]
p

p–1
,

then

‖u‖p
p ≤

[
1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)
] p

p–1
, ‖u‖p–1

p ≤ 1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)
,

‖u‖p ≤
[

1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)]
1

p–1
.

By Lemma 2.6 we have ‖u′‖p = ‖A–1Au′‖p ≤ α
1
p ‖Au′‖p. From (3.9) and Lemma 2.3 with

ε = 1
2 we get

∥
∥Au′∥∥p

p

≤ α
1
p λ

1
2
M

[
m1

(
2|γ |0 + |τ |)(1 – σ1)– 1

q + m2
]1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)∥∥Au′∥∥
p

+
(

1 – σ0

ε0m0

) 1
p–1

B
(
1 + λ

1
2
M

) p
p–1

and

∥∥Au′∥∥
p

≤ max

{
2

1
p–1

[
α

1
p λ

1
2
M

[
m1

(
2|γ |0 + |τ |)(1 – σ1)– 1

q + m2
]1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)
] 1

p–1
,

2
1
p

(
1 – σ0

ε0m0

) 1
p(p–1)

B
(
1 + λ

1
2
M

) 1
p–1

}
:= M1.

If

(1 – σ0)pλ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

∥∥u′∥∥p
p ≥

[
1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)
] p

p–1
,
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then

‖u‖p
p ≤ (1 – σ0)pλ

p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

∥
∥u′∥∥p

p,

‖u‖p–1
p ≤

[
(1 – σ0)pλ

p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

] p–1
p ∥

∥u′∥∥p–1
p ,

and

‖u‖p ≤
[

(1 – σ0)pλ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

] 1
p ∥
∥u′∥∥

p.

From (3.9) we have

∥
∥Au′∥∥p

p

≤ (1 – σ0)p–1λ
p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)p–1mp–1
0

∥∥Au′∥∥p
p

+ α
1
p B

(
1 + λ

1
2
M

) (1 – σ0)λ
1
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]
(1 – ε0)mp

0

∥∥Au′∥∥
p.

Combining this with (3.11), we see that there exists a constant M2 > 0 such that

∥
∥Au′∥∥

p ≤ M2.

Obviously,

∥
∥Au′∥∥

p ≤ max{M1, M2} := M, (3.13)
∥∥u′∥∥

p ≤ α
1
p
∥∥Au′∥∥

p ≤ α
1
p M := A1, (3.14)

‖u‖p

≤ max

{[
1 – σ0

ε0m0
B
(
1 + λ

1
2
M

)]
1

p–1
,

[
(1 – σ0)pλ

p
2
M[m1(2|γ |0 + |τ |)(1 – σ1)– 1

q + m2]p

(1 – ε0)pmp
0

] 1
p

A1

}
:= A0. (3.15)

By (3.15) we can easily notice that A0 and A1 are constants independent of λ and k. By
Lemma 2.1, for t ∈ [–kT , kT], we obtain

∣
∣u(t)

∣
∣ ≤ (2T)– 1

p

(∫ t+T

t–T

∣
∣u(s)

∣
∣p ds

) 1
p

+ T(2T)– 1
p

(∫ t+T

t–T

∣
∣u′(s)

∣
∣p ds

) 1
p

≤ (2T)– 1
p

(∫ t+kT

t–kT

∣∣u(s)
∣∣p ds

) 1
p

+ T(2T)– 1
p

(∫ t+kT

t–kT

∣∣u′(s)
∣∣p ds

) 1
p

= (2T)– 1
p

(∫ kT

–kT

∣
∣u(s)

∣
∣p ds

) 1
p

+ T(2T)– 1
p

(∫ kT

–kT

∣
∣u′(s)

∣
∣p ds

) 1
p

.
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From (3.13) and (3.14) we have

|u|0 ≤ (2T)– 1
p ‖u‖p + T(2T)– 1

p
∥
∥u′∥∥

p

≤ (2T)– 1
p A0 + T(2T)– 1

p A1 := ρ0. (3.16)

Furthermore, setting Fρ0 := max|x|≤ρ0 |∇F(x)| and Gρ0 := max|x|≤ρ0 |G(x)|, by Eq. (3.2) we
get

∣∣∣
∣

d
dt

[
ϕp

([
Au′](t)

)
+ λ∇F

(
u(t)

)]
∣∣∣
∣ ≤ Gρ0 + sup

t∈R

∣∣e(t)
∣∣ := ρ̃, t ∈ [–kT , kT]. (3.17)

Combining the continuity of [Au′](t) and (3.13), we find that there exists ti ∈ [iT , (i + 1)T],
i = –k, –k + 1, . . . , k – 1, such that

∣∣[Au′](ti)
∣∣ =

∣
∣∣
∣

1
T

∫ (i+1)T

iT

[
Au′](s) ds

∣
∣∣
∣

≤ 1
T

∫ (i+1)T

iT

∣
∣[Au′](s)

∣
∣ds

≤ T
1–q

q

(∫ (i+1)T

iT

∣
∣[Au′](s)

∣
∣p ds

) 1
p

≤ T
1–q

q

(∫ kT

–kT

∣∣[Au′](s)
∣∣p ds

) 1
p

≤ T
1–q

q max{M1, M2}. (3.18)

By (3.16)–(3.18) we have

∣
∣ϕp

([
Au′](t)

)
+ λ∇F

(
u(t)

)∣∣

≤
∣∣
∣∣

∫ t

ti

d
ds

[
ϕp

([
Au′](s)

)
+ λ∇F

(
u(s)

)]
ds + ϕp

([
Au′](ti)

)
+ λ∇F

(
u(ti)

)
∣∣
∣∣

≤
∫ (i+1)T

iT

∣∣[ϕp
([

Au′](s)
)

+ λ∇F
(
u(s)

)]∣∣ds +
∣∣ϕp

([
Au′](ti)

)∣∣ + Fρ0

≤ ρ̃T +
[
T

1–q
q max{M1, M2}

]p–1 + Fρ0 := ρ,

which yields

∣∣[Au′](t)
∣∣ ≤ [ρ + Fρ0 ]

1
p–1 . (3.19)

It follows from Lemma 2.6 and (3.19) that

∣∣u′∣∣
0 =

∥∥A–1Au′∥∥ ≤
( n∑

i=1

1
|1 – |ci||

)
∥∥Au′∥∥ ≤

( n∑

i=1

1
|1 – |ci||

)

[ρ + Fρ0 ]
1

p–1 := ρ1.

Note that ρ1 is independent of λ and k. The proof of Theorem 3.1 is completed. �
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Theorem 3.2 If the conditions of Theorem 3.1 are satisfied, then Eq. (3.2) has at least one
2kT-periodic solution uk(t) for each k ∈ N such that

‖uk‖p ≤ A0,
∥∥u′

k
∥∥

p ≤ A1, |uk|0 ≤ ρ0,
∣∣u′

k
∣∣
0 ≤ ρ1.

Proof To apply Lemma 2.5, we study the p-Laplacian neutral systems

(
ϕp

(
u(t) – Cu(t – τ )

)′)′ + λ
d
dt

∇F
(
u(t)

)
+ λG

(
u
(
t – γ (t)

))
= λek(t), λ ∈ (0, 1). (3.20)

Let Ω1 ⊂ C1
2kT be the set of all 2kT-periodic of Eq. (3.20). From Theorem 3.1, assuming

that u ∈ Ω1 ⊂ Σ by (0, 1) ⊂ (0, 1], we get

|u|0 ≤ ρ0,
∣∣u′∣∣

0 ≤ ρ1.

Set Ω2 = {x : x ∈ Ker L, QNx = 0},

L : D(L) ⊂ C2kT → C2kT , Lu =
(
ϕp(Au)′

)′,

N : C2kT → C1
2kT , Nu = –

d
dt

∇F
(
u(t)

)
– G

(
u
(
t – γ (t)

))
+ ek(t),

Q : C2kT → C2kT / Im L, Qy =
1

2kT

∫ kT

–kT
y(s) ds.

Obviously, x = a ∈R
n when x ∈ Ω2. Meanwhile, it follows from [H1] that

2kTm0|a|p ≤
∫ kT

–kT

∣∣〈(E – C)a, ek(t)
〉∣∣dt ≤ B|a|(1 + |cM|)(2kT)

1
p ,

that is,

|a| ≤ m
1

1–p
0 B

1
p–1 T

–1
p
(
1 + |cM|) 1

p–1 := B0,

where |cM| = max |ci|, i = 1, 2, . . . , n.
Let Ω = {x : x ∈ C1

2kT , |x|0 < ρ0 + B0, |x′|0 < ρ1 + 1}. Then Ω ⊃ Ω1 ∪Ω2. Thus assumptions
[A1] and [A2] of Lemma 2.5 are satisfied. Next, we can prove that [A3] of Lemma 2.5 is also
satisfied. Let

H(x,μ) :
(
Ω ∩R

n) × [0, 1] −→R
n : H(x,μ) = –μx + (1 – μ)�(x),

where �(x) = 1
2kT

∫ kT
–kT [G(x) – ek(t)] dt is determined by Lemma 2.5. By [H1] we get

H(x,μ) �= 0, ∀(x,μ) ∈ [
∂
(
Ω ∩R

n)] × [0, 1].

Thus

deg{JQN ,Ω ∩ Ker L, 0}
= deg

{
H(x, 0),Ω ∩ Ker L, 0

}



Gao and Chen Advances in Difference Equations        (2018) 2018:446 Page 11 of 15

= deg
{

H(x, 1),Ω ∩ Ker L, 0
}

�= 0.

So, A3 of Lemma 2.5 holds. By Lemma 2.5, uk ∈ Ω̄ is a 2kT-periodic solution for Eq. (1.2)
when λ = 1. Therefore, by means of Theorem 3.1 we have

‖uk‖p ≤ A0,
∥∥u′

k
∥∥

p ≤ A1, |uk|0 ≤ ρ0,
∣∣u′

k
∣∣
0 ≤ ρ1. (3.21)

�

Theorem 3.3 Assume that the conditions in Theorem 3.1 are satisfied. Then Eq. (1.1) has
a nontrivial homoclinic solution.

Proof By Theorem 3.2, Eq. (1.5) has a 2kT-periodic solution uk(t) for each k ∈ N. Thus
uk(t) satisfies

(
ϕp

(
uk(t) – Cuk(t – τ )

)′)′ = –
d
dt

∇F
(
uk(t)

)
– G

(
uk

(
t – γ (t)

))
+ ek(t). (3.22)

Set yk = ϕp(Au′
k) for k > k0. From (3.19) and (3.22) we see that

|yk|0 ≤ ρ + Fρ0

and

∣∣y′
k
∣∣
0 ≤ max

|x|≤ρ0

( n∑

i=1

n∑

j=1

∣∣∣
∣
∂2F(x)
∂xi∂xj

∣∣∣
∣

2
) 1

2 ∣∣u′
k
∣∣
0 + Gρ0 + sup

t∈R

∣∣e(t)
∣∣ := ρ2.

By the method similar to that of Lemma 2.4 in [12] we can get that there is u0 ∈ C1(R,Rn)
such that u′

kj
(t) → u′

0(t) uniformly on [c, d] ⊂R, where {ukj} is a subsequence of {uk}.
There exists j0 > 0 such that [a – |γ |0, b + |γ |0] ⊂ [–kjT , kjT –ε0] with j > j0 and a < b ∈R.

Therefore, by (1.5) and (3.15), for t ∈ [a – |γ |0, b + |γ |0], we get

(
ϕp

(
ukj (t) – Cukj (t – τ )

)′)′ = –
d
dt

∇F
(
ukj (t)

)
– G

(
ukj

(
t – γ (t)

))
+ e(t). (3.23)

From (3.23) we get

y′
k =

(
ϕp

(
Au′

kj

))′

= –
d
dt

∇F
(
ukj (t)

)
– G

(
ukj

(
t – γ (t)

))
+ e(t)

→ –
d
dt

∇F
(
u0(t)

)
– G

(
u0

(
t – γ (t)

))
+ e(t)

:= χ (t), uniformly on [a, b],

because y′
kj

(t) is continuously differentiable on (a, b) for j > j0 and y′
kj

(t) → χ (t) uniformly
on [a, b]. We know that χ (t) = (ϕp(u0(t) – Cu0(t – τ ))′)′, t ∈R. Since a, b ∈R are arbitrary,
u0(t) is a solution of (1.1).
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Next, we prove that u0(t) → 0 and u′
0(t) → 0 as |t| → +∞. Since

∫ +∞

–∞

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt = lim
i→+∞

∫ iT

–iT

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt

= lim
i→+∞ lim

j→+∞

∫ iT

–iT

(∣∣ukj (t)
∣∣p +

∣∣u′
kj

(t)
∣∣p)dt,

if kj > i, i ∈N, then it follows from (3.14) and (3.15) that

∫ iT

–iT

(∣∣ukj (t)
∣
∣p +

∣
∣u′

kj
(t)

∣
∣p)dt ≤

∫ kjT

–kjT

(∣∣ukj (t)
∣
∣p +

∣
∣u′

kj
(t)

∣
∣p)dt ≤ Ap

0 + Ap
1.

Letting i → +∞ and j → +∞, we have
∫ +∞

–∞

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt ≤ Ap
0 + Ap

1 (3.24)

and
∫

|t|≥r

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt → 0, r → +∞. (3.25)

From (3.13), similarly to the previous method, we get
∫ +∞

–∞

∣∣u′
0(t) – Cu′

0(t – τ )
∣∣p dt ≤ Mp. (3.26)

From Lemma 2.1 we can see that

∣∣u0(t)
∣∣ ≤ (2T)– 1

p

(∫ t+T

t–T

∣∣u0(s)
∣∣p ds

) 1
p

+ T(2T)– 1
p

(∫ t+T

t–T

∣∣u′
0(s)

∣∣p ds
) 1

p

≤ max
{

(2T)– 1
p , T(2T)– 1

p
}∫ t+T

t–T

(∣∣u0(t)
∣
∣p +

∣
∣u′

0(t)
∣
∣p)dt → 0, |t| → +∞.

Finally, we will prove that |u′
0(t)| → 0 as |t| → +∞ if the following condition holds:

∣
∣[Ãu′

0
]
(t)

∣
∣ :=

∣
∣u′

0(t) – Cu′
0(t – τ )

∣
∣ → 0, |t| → +∞. (3.27)

On the one hand, from (3.16) we have |u0| ≤ ρ0, and applying (1.1) yields
∣
∣∣
∣

d
dt

(∣∣[Ãu′
0
]
(t)

∣∣p–2[Ãu′
0
]
(t)

)
∣
∣∣
∣

≤
∣∣∣
∣

d
dt

∇F
(
u0(t)

)
∣∣∣
∣ +

∣∣G
(
u0

(
t – γ (t)

))∣∣ + sup
t∈R

∣∣e(t)
∣∣

≤ sup
|u|≤ρ0

∣
∣∣∣

d
dt

∇F(u)
∣
∣∣∣ + sup

|u|≤ρ0

∣∣G(u)
∣∣ + sup

t∈R

∣∣e(t)
∣∣ := M̃ for t ∈ R.

If (3.27) does not hold, then there exist a parameter ε0 ∈ (0, 1
2 ) and a sequence {tk} such

that

|t1| < |t2| < |t3| < · · · , |tk| + 1 < |tk+1|, k = 1, 2, . . . ,
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and

∣
∣Ãu′

0(tk)
∣
∣ ≥ (2ε0)

1
p–1 , k = 1, 2, . . . .

So, for t ∈ [tk , tk + ε0/(1 + M̃)], we have

∣∣[Ãu′
0
]
(t)

∣∣p–1 =
∣
∣∣∣
∣∣[Ãu′

0
]
(tk)

∣∣p–2[Ãu′
0
]
(tk) +

∫ t

tk

d
ds

(∣∣[Ãu′
0
]
(s)

∣∣p–2[Ãu′
0
]
(s)

)
ds

∣
∣∣∣

≥ ∣∣[Ãu′
0
]
(tk)

∣∣p–1 –
∫ t

tk

∣
∣∣
∣

d
ds

∣∣([Ãu′
0
]
(s)

∣∣p–2[Ãu′
0
]
(s)

)
∣
∣∣
∣ds

≥ ε0.

Note that

∫ +∞

–∞

∣∣[Ãu′
0
]
(tk)

∣∣p dt ≥
∞∑

k=1

∫ tk +ε0/(1+M̃)

tk

∣∣[Ãu′
0
]
(tk)

∣∣p dt = ∞,

which contradicts (3.26), and thus (3.27) holds.
On the other hand, let u′

0(t) = (u′
01 (t), u′

02 (t), . . . , u′
0n (t)). From (3.21) we know that |Au′

k| <

(1 +
√∑n

i=1 |ci|2)ρ1 := B1. For all ε > 0, let N = [log
ε(1–|ci|)

2B1
|ci| ] > 0. Then

∑∞
h=N+1 |ci|h < ε

2B1

(|ci| < 1). According to (3.27), it is easy to find that there exists a constant G > 0 such
that |u′

0i
(t) – ciu′

0i
(t – τ )| < ε

2(N+1) for t > G. Set PT = {x|x ∈ C(R,R), x(t + T) ≡ x(t)} and
A0 : PT → PT , [A0x](t) = x(t) – cx(t – τ ) with |c| �= 1. Then applying Lemma 2.3 in [13], we
obtain

[
A–1

0 f
]
(t) =

⎧
⎨

⎩

∑
j≥0 cjf (t – jτ ), |c| < 1 ∀f ∈ PT ,

–
∑

j≥0 c–jf (t + jτ ), |c| > 1 ∀f ∈ PT .

When |ci| < 1, this yields

∣∣u′
0i

(t)
∣∣

= lim
j→+∞

∣∣[A–1Au′
kj0i

]
(t)

∣∣

≤
∣∣∣
∣∣
lim

j→∞

N∑

h≥0

ch
i
[
Au′

kj0i

]
(t – hτ ) +

∞∑

h=N+1

ch
i
[
Au′

kj0i

]
(t – hτ )

∣∣∣
∣∣

≤
∣∣
∣∣
∣
lim

j→∞

N∑

h≥0

ch
i
[
Au′

kj0i

]
(t – hτ )

∣∣
∣∣
∣

+

∣∣
∣∣
∣
lim

j→∞

∞∑

h=N+1

ch
i
[
Au′

kj0i

]
(t – hτ )

∣∣
∣∣
∣

≤ lim
j→∞

N∑

h≥0

|ci|h
∣
∣[Au′

kj0i

]
(t – hτ )

∣
∣ + B1

∞∑

h=N+1

|ci|h

=
N∑

h≥0

|ci|h
∣∣(u′

0i
(t – hτ ) – ciu′

0i

(
t – (h + 1)τ

))∣∣ + B1

∞∑

h=N+1

|ci|h. (3.28)



Gao and Chen Advances in Difference Equations        (2018) 2018:446 Page 14 of 15

By (3.28), for arbitrary ε > 0, there exists N̄ = G + N such that, for t > N̄ ,

∣∣u′
0i

(t)
∣∣ ≤

N∑

h≥0

|ci|h
∣∣(u′

0i
(t – hτ ) – ciu′

0i

(
t – (h + 1)τ

))∣∣ +

∣
∣∣
∣∣
B1

∞∑

h=N+1

ch
i

∣
∣∣
∣∣

< (N + 1)
ε

2(N + 1)
+ B1

ε

2B1

= ε.

So, |u′
0i

(t)| → 0 as |t| → +∞. Similarly to the previous method, when |ci| > 1, |u′
0i

(t)| → 0
also holds as |t| → +∞. Thus |u′

0(t)| → 0 as |t| → +∞. Obviously, u0(t) �= 0; otherwise,
e(t) = 0, which contradicts condition [H2]. This completes the proof. �
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