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1 Introduction
This paper focuses on the existence of homoclinic solutions for #-dimensional p-Laplacian

neutral differential systems with a time-varying delay of the following form:

(0p (u(t) — Cualt - r))/)/ + %VF(M(I,‘)) +Gu(t-y@)) =e@), (1.1)

where p € (1,+00), @, : R" — R”, @,(u) = (|lu1 P~ 2ur, [t2lP 1, . .., |0 /P~ u) for u #0 =
(0,0,...,0), F € C}((R*,R), G € CR",R"), e € CR,R"), C = diag(cy,¢2,...,¢n)s lci| #1 (i =
1,2,...,n), T and T > 0 are given constants, y € (R,R), y(¢ + T) = y(¢t) with y(¢) > 0.

In the past few decades, the existence of homoclinic solutions for second-order differ-
ential equations has been widely investigated by using critical point theory, the methods
of bifurcation theory, or Mawhin’s continuation theorem (see [1-8]). However, the corre-
sponding results on the existence of homoclinic solutions to a neutral differential equation

are relatively infrequent. For example, the existence of homoclinic solutions to a kind of

second-order neutral functional differential systems was considered in [9]:

((u(t) - Cult -1))" + %VF(u(t)) +G(u(®) + H(u(t - y(0))) = e®), (1.2)

where C = [c;],xn is a real constant symmetric matrix, F € C3(R",R), G,H € C}(R",R),
ee C(R,R"), y € R,R), y(t + T) = y(¢) with y(¢) > 0 and given constant T > 0. Mean-
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while, Du [10] discussed the system
(u(t) - Cu(t—1))" + %VF(u(t)) + VG(u(t)) = e(®), (1.3)

where F € C*(R",R), G € C}(R*,R). e € C(R,R"), C = diag(cy,ca,...,¢n), ¢i (i=1,2,...,n)
and t are given constants. The existence of homoclinic solutions for Eq. (1.3) is obtained.
Then Chen [11] studied the existence of homoclinic solutions for the class of neutral Duft-
ing differential systems

(u(t) - Cu(t — )" + BOx'(©) + g(u(t - ¥ (1)) = p(o), (1.4)

where 8 € CL(R,R) with 8(t+ T) = B(t),g € C(R",R"),p € C(R,R"),y € (R,R), y(t+T) =
y(¢) with y(¢) > 0, T > 0 and t are given constants; B(£) is allowed to change sign, and
C = [¢ijluxn is a constant symmetric matrix.

It is not hard to find that Eq. (1.1) can be converted to second-order neutral functional
differential systems (1.2)—(1.4) when p = 2. To our knowledge, there are few results re-
ported in the literature regarding the existence of homoclinic solutions for n-dimensional
p-Laplacian neutral differential systems with time-varying delay. Because of the term
(p(u(t) — Cu(t — 7))’) in Eq. (1.1), the method of Lemma 2.5 in [12] cannot be applied
directly to prove that |uy(£)| — 0 as |¢| — +oo. In this paper, we solve this problem by
combining the conclusion about uniform convergence and Lemma 2.3 in [13].

Similarly to [9—11], we obtain the existence of a homoclinic solution for the equation by
taking a series of the 2kT-periodic limit for the following equation:

AN d
((pp(u(t) — Cu(t - ‘L’)) ) + %VF(u(t)) + G(u(t - y(t))) = ex (), (1.5)
where k € N, and e, : R — R” is a 2kT-periodic function such that

" e(t), t e [-kT,kT - &), 16
e = .
e(KT — o) + SKD=e&I=20) (¢ _ kT 4+ &), t € [kT — &0, kT),

o
with a constant g € (0, T) independent of k.

2 Preliminaries
Lemma 2.1 ([12]) Ifu:R — R” is continuously differentiable on R, a >0, u > 1,and p > 1
are constants, then for every t € R, we have the following inequality:

|u(t)] < (2a) % </M|u(s)|“ds)ﬁ +a(2a)_1% (/t+a|u’(s)|p ds)ﬁ.

Lemma 2.2 ([13]) Let s € C(R,R) with s(t + w) = s(t) and s(t) € [0, w] for t € R. Suppose
p € (1,+00), |slo = maxse(o,) 8(£), and u € CH(R,R) with u(t + @) = u(t). Then

/w|u(t) ~u(t-s@) | dt < sl /w|u/(t) |” dt.
0 0
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Lemma 2.3 ([14]) Ifx € (0, +00) satisfies the inequality x°* < ax? + Bx” for some constants
s>q>r>0,a>0,and B >0, then

1 1
) B\ a =
O<x < inf maxj| — R .
£€(0,1) £ 1-¢

Lemma 2.4 ([15]) Suppose t € CH(R,R) with t(t + w) = 7(t) and ©'(t) < 1 for t € [0, w)].
Then the function t — t(t) has an inverse u € C(R,R) such that u(t + w) = u(t) + w for
teR.

Lemma 2.5 ([16]) Suppose that §2 is an open bounded set in X such that the following
conditions are satisfied:
[A1] Foreach A €(0,1), the equation

(0p (u(t) — Cult - r))/)/ + A%VF(u(t)) +AG(u(t -y (1)) = rex(t)

has no solution on 352.
[A2] The equation

1 kT
Aa) := T /—kT [G(u) - ek(t)] dt=0

has no solution on 02 NR”.

[As] The Brouwer degree
dg{A, 2 NR",0} #0.
Then Eq. (1.5) has a 2kT-periodic solution in $2.

Lemma 2.6 ([16]) Suppose that ci,cs,...,c, are eigenvalues of a matrix C. If |¢;| #1 (i =
1,2,...,n), then A has a continuous bounded inverse with the following properties:

@ I1A7fl = L u_—l‘cl.”)llfllfor allf € Cr,

@) [ AP dt <o [ |f QP dt for all f € Cr and p > 1, where

max(m), p=2,
n 1 2-p
o= (Zi:l (l_lcil)%) 2, p € [1’2);
»
(Z?:l 1_|lci|q)q’ P € [2,+00),

and q is a constant such that }7 + % =1.
(3) (Ax) = Ax’ forall x € C}..

Throughout this paper, for convenience, we list the following conditions and corre-

sponding mathematical notation.

[H;] There are constants n1y > 0 and m; > 0 such that

((E - C)x, G(x)) < -mp|x? forallx € R",

Page 3 of 15



Gao and Chen Advances in Difference Equations (2018) 2018:446 Page 4 of 15

|G(x)| <m|xfPt forallx e R”,
and
‘VF(x)’ <mylxlPt forallx e R".

[H,] e e C(R,R") is a bounded function with e(£) # 0 = (0,0,...,0)T and

B:= (/ ’e(t)‘th>q + sup’e(t)| < +00.
R teR
kT

By (1.6) we know that |ex(f)| < sup,. le(#)|. So for each k € N, (ffkT lex(£)]9 dt)%l <Bif
[H>] holds. Let Cyr = {x|x € C(R,R"),x(¢ + 2kT) = x(t)}, Cyyy = {xlx € C'(R,R"), (¢ +
2kT) = x(t)}, and |x|o = max,e[o,2c7] |%()|. If the norms of Cyxr and CékT are respectively de-
fined by || - lcyr = |- loand |- ”C%kT = max{|x|o, |*'|o}, then Cy 7 and C21,(T are Banach spaces.
By () : R” x R” — R we denote the standard inner product, and by | - | we denote the
absolute value and the Euclidean norm on R”. For ¢ € Cyr, set |¢|, = (ffkTT Igo(t)lrdt)%,
r>1. Let y € CH(R,R) with y'(¢) < 1 for all ¢ € [0, T]. Let o9 = mine(o,77y'(£) and o1 =

max;e(o,7] ¥'(£). Define the linear operator
A:Cr— Cr, [Ax](2) = x(£) — Cx(t - 7).
3 Main results

First, we study some properties of all possible 2kT-periodic solutions of the following

equation:
(op(u(®) - Cult - 7)) + k%VF(u(t)) +AG(u(t-y(@®)) = rex(®), 1€(0,1]. (3.1)

Let ¥ C C);p, k € N, be the set of all the 2kT-periodic solutions to Eq. (3.1).

Theorem 3.1 If assumptions [H1]-[H,] hold and

2 1
(1—00)P A lmi2lylo + 1T)(A - 01)"7 + my)?

m{)z—l

where Ay = max{c?}, [c)| #1,i=1,2,...,n,and u € X for each k € N, then
llze]lp < Ao, ||M’||pSA1, ltlo < po, /|, < p1,

where Ay, A1, po, and p; are positive constants independent of ). and k.

Proof If u € ¥ and k € N, then u satisfies

(0p(u(®) - Cult - 1)) + A%VF(u(t)) +AG(u(t -y (1)) = rex(t), *€(0,1]. (3.2)
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Multiplying both sides of Eq. (3.2) by [Au](¢) and integrating from —kT to kT, we get
kT

kT d
il [ kT<[Au](t), EVF(u(t))>dt o [ iAo, Glule -y @)

—kT

kT
= / ([Aul(2), ex(0)) dt.
—kT

Since

kT d kT
/ <[Au](t),%VF(u(t))>dt=/ (Cu'(t - ), VF (u(1))) dt,

kT —kT

we have

kT
A/ ([Au)(2), ex(0)) dt

kT

kT
Sy / {Cue= ), VF(utw)

A / ) (e - 7 0), Glu(t -y ) e

kT

A / ClE = Coule - v (0), Glu(e - (1)) de

kT

kT
- A/ (Cult—1) - Cu(t-y(t), G(u(t - y(2)))dt,

kT

and by assumption [H]
kT
Au |+ 2mg f Jue- (o)
kT .
< Annp / |u(t) - u(t— y(t))||u(t— y(t)) |p dt
—kT
1 kT .
+ AmAy /kTiu(t -7)— u(t— y(t))||u(t - y(t)) |p_ dt

+ +

kT
A / (Ci/(t — 1), VF(u(t))) dt|, (3.3)
—kT

kT
/\/ ([Au](2), ex(2)) dt

kT

where Ay = max{c?},i=1,2,...,n.
By applying Lemma 2.2, Lemma 2.4, [H;], and [H;] we get

kT

kT
||u||5;s/ T|u(t—y(t))|”dt=/

2
_ d
1- 00 , o Ty MO

=

s 3.4
e 1 (3.4

and

kT
w0 (e =y @) [u(e -y @) de
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kT Py kT el
e p _ p
< </:kT|u(t) u(t y(t))| dt) (/:kT|u(t y(t))| dt)
1
< Iy lo——r 2|, el .
l1-07) 7

Using the same method as for (3.5), we have

kT
/ lut—7) —u(t -y ©)||u(t -y @) ’p_l dt

kT

1

< (I7lo+ lel) ———= [ Nl
(1-01) 7
and

kT

‘/ ([Au)(2), ex(2)) dt
—kT

=< llexllqlizell, + llexllqllzllp

1
<B(L+A3)lull,.

Furthermore, by [H;] we have

kT
l [ 1ee-n, VF(u(t)))dt‘
—kT

kT 3/ kT i
/ r q
5(/”]&4 t-1)| dt) (/kT|vF(u(t))\ dt)

1
< 3bms | Jul.

Applying (3.4)—(3.8) to (3.3), we obtain

||Au/||§ + Ay lleel?

1—0'()
1 _1
<M [m(2lylo+1t))(1-01) 77
1
+ Ay Hu’Hpnun;-l + AB(L + A2 llullp.
By (3.9) we get
1-0p. 1 1
el < m—:‘)xmml(zm 1)L =00+ ]| Nl

1 “ P B(1 4 3) ]

+
mo

Since

4 _1
(1= ool Az 2lylo + 1T)(A - 01) 7 + my)? <1

mg—l

’
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there exists a constant g € (0, 1) such that

v o
(1= o0y Ay [m2lylo + [T1) (1 —01) "7 + my)?

(1 —eoptmy!

Applying Lemma 2.3 and (3.10), we get

flaell?
2 1
Emax{(1—<70)’!’)»1\4[1"’11(2|7/|0+|7-'|)(1—01) 7+ myl? 1|,
(1 - go)Pmy r
1 A
— 0 1 p—
[ °B(1+/\A24)} }
EoMo
If
(1 - o)y [y (2 )1 - )7 + o 1 NG
_ + — q + — 1 p-
00 ) Ayl [Vlo+ 17| (<31 my “u/”pS GOB(1+)\.K4) ,
(1 - eo)Prgy goMmy
then
1 s 1 1
— 0 2 p- _ — 0o 2
ullf <| ——B(1+1} , ulft < ——B(1+12%),
= [ om0l gt e )

(3.11)

(3.12)

1
By Lemma 2.6 we have [|u/||, = |A*Au/||, < a? | Av||,. From (3.9) and Lemma 2.3 with

_1
£ =35 weget

4w,

-0y % ,

11 1 1
Sallf)\f,[[ml(2|y|o + |‘L'|)(1—O‘1) i +mz] s

1
+<1_00)p_13(1+)»;%4)%

Eomyo
and
|ax|,
1| 1.1 _1 1-o0p 1 ﬁ
Smax{zpl [apkj,[[ml(2|y|0+|t|)(1—01) q+m2]€m B(l+)»,f,1)i| )
0o
1
1(1-0¢g)\re-D I -
219(80%) B(1+A3)? }.—Ml.
If

L _1 .
(1 =00l Ay lmi2lylo + A —01) "4 + my)?

P 1—0'0 % =
e ] z[gomOB(lmM)} ,
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then
5 -3 »
lull? < (1 =00)Aylmi2lylo +IT)(A —01) 7 + my] 1|,
P (1 - eo)rm; ?
5 _1 p-1
2! < (1= oo)Prylmlylo+ )1 —01)" 1 + my]? | P ”u/”l’—l
re= (1 - eo)Pml p
and

(L= ool A L lm 21y lo + [tD(L—01) 7 + mal? |7,
e | 1,

From (3.9) we have

4w

v 1
- (1—o0)P A lmi2lylo + 1T(A - 01)"7 + my)?

< |Aw,
(1 - eop-tmf ! v

1 1
L 1 (1 o0)2 2 [y (2 1-0y)
rab(1 i) SR S0 T
0

Daw|

»

Combining this with (3.11), we see that there exists a constant M, > 0 such that

4w, < My.
Obviously,
Ad'|| < max{M, My} :=M, (3.13)
|aw]],
||, <ar|au|, <arm:=a, (3.14)
llull,
1 | T
—0p 3 p-
< maxH: o B(l + AM)j| s

E ~ 0P gl 21y lo + [£)(1 = 1) + szPF als, 15

(1 - &o)Pmly

By (3.15) we can easily notice that Ay and A; are constants independent of A and k. By
Lemma 2.1, for t € [-kT, kT'], we obtain

1 t+T P% 1 t+T },
’u(t)| <(T)» (/ |u(s)‘p ds) +TQT)™? (/ ’u/(s) |p ds)

-T -T
1

t+kT }, 1 t+kT »
|u(s) |p ds) +TQT)? (/ |u’(s) |p ds)
kT

o
/

<@T) "

- (2T)1%<

K

T 3 . kT 3
|u(s) |p ds) +TQT)? (/ |u/(s) |p ds) .
T kT

-k
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From (3.13) and (3.14) we have
_1 _1
lulo < T) 7 llull, + TRT)? o],
< (2T) P Ao+ TQT) 7 A; = po. (3.16)

Furthermore, setting F,; := maxy<,, |[VF(x)| and G,, := maxy<,, |G(x)|, by Eq. (3.2) we
get

d
’%[wp([Au'](t)) + )\VF(u(t))]‘ <Gpy + su£|e(t)| =p, te[-kT,kT]. (3.17)

Combining the continuity of [A«/](¢) and (3.13), we find that there exists ¢; € [iT, (i + 1)T7],
i=-k,—k+1,...,k-1, such that
(i+1)T

[An](8)] - ‘% [ e

iT

(+1)T
/ |[Au'](s)| ds

IA
~| -

1

Au (S) ’p ds)

U,
< [Au'](9)[” ds) :

X{Ml,Mz} (3'18)

_q (1+1
q

| /\

|/\
*L

1—

<|
L

<T
By (3.16)—(3.18) we have

[ ([Aw](®) + 2V (u(@) |

<

[ S lonl[4010) 9 E )]s g (A0 10) + 25 F )

+1)T

< [ lonllAv]) + 29 F)] ds ¢ o, ([AuT0)] +
< T +[T 7 max{My, Mo) P + Ey =,

which yields

[Aw](0)] < [p + Ex 7. (3.19)

It follows from Lemma 2.6 and (3.19) that

N acian ] < (& -1 A1
o= 1 = (3 - Y = (S oo

Note that p; is independent of X and k. The proof of Theorem 3.1 is completed. O
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Theorem 3.2 [fthe conditions of Theorem 3.1 are satisfied, then Eq. (3.2) has at least one
2kT-periodic solution uy(t) for each k € N such that

et |l < Ao, ||M§<||pSA1, leeklo < pos |M;<|0§,01~

Proof To apply Lemma 2.5, we study the p-Laplacian neutral systems
N d
(gop(u(t) — Cu(t - r)) ) + A&VF(u(t)) + AG(u(t - y(t))) =xer(t), Xe(0,1). (3.20)

Let £2; C C};; be the set of all 2kT-periodic of Eq. (3.20). From Theorem 3.1, assuming
that u € £2, C X by (0,1) C (0, 1], we get

lulo < po, ||, < p1-
Set £25 = {x:x € Ker L, QNx = 0},

L:D(L) C Cur — Cour,  Lu=(gp(Aw)'),

N : Coyr — C%kT, Nu = —%VF(u(t)) - G(u(t - y(t))) + ex(t),

kT

1
: er/ ImL, =— ds.
Q: Cur — Cyur/Im Qy KT _kT}/(S) s

Obviously, x = a € R” when x € §2,. Meanwhile, it follows from [H;] that
kT .
2kTmg|alP < / |((E - C)a, ex(t))| dt < Bla|(1 + |eum|)(2KT) 7,

-kT

that is,

1
=

-1
|| <my?BFIT7 (1+|cpl)? := By,

where |cy| = max|¢|,i=1,2,...,n.

Let2={x:x€ C%kT, [xlo < po + Bo, |€'|o < p1 +1}. Then £2 D £2; U §2,. Thus assumptions
[A1] and [A;] of Lemma 2.5 are satisfied. Next, we can prove that [A3] of Lemma 2.5 is also
satisfied. Let

H(x, ) : (.Q OR”) x [0,1] — R": H(x, 1) = —ux + (1 — w)A(x),
where A(x) = 21+T _lfT[G(x) —ex(t)] dt is determined by Lemma 2.5. By [H;] we get
H(x, 1) #0, V(x,u) € [3(2 NR")] x [0,1].

Thus

deg{/ON, £2 N Ker L, 0}

= deg{H(x, 0),2nN KerL,O}
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=deg{H(x,1), 2 NKerL,0}
#0.

So, A3 of Lemma 2.5 holds. By Lemma 2.5, u; € §2 is a 2kT-periodic solution for Eq. (1.2)
when A = 1. Therefore, by means of Theorem 3.1 we have

lully < Ao [l <An  Julo<po,  |uify < o1 (321)
0

Theorem 3.3 Assume that the conditions in Theorem 3.1 are satisfied. Then Eq. (1.1) has

a nontrivial homoclinic solution.

Proof By Theorem 3.2, Eq. (1.5) has a 2kT -periodic solution u(t) for each k € N. Thus
u (t) satisfies

AN d
(tpp(uk(t) — Cuy(t - r)) ) = —%VF(uk(t)) - G(uk(t - y(t))) + e (2). (3.22)

Set yx = ¢, (Au;) for k > k. From (3.19) and (3.22) we see that

|yk|0 <p +Fp0

and

1
non 2\ 2
elo = max (FZII; ) i)y + Gpo + st161£)|e(t)| = po.

9%F(x)
axiax,»

By the method similar to that of Lemma 2.4 in [12] we can get that there is uo € C}(R, R")
such that ”/k,(t) — u(t) uniformly on [c,d] C R, where {uy;} is a subsequence of {u}.

There exists jo > 0 such that [a—|y o, b+ |y lo] C [-kT, kT —eo] withj > joanda < b e R.
Therefore, by (1.5) and (3.15), for t € [a — |y |0, b + |y |o], we get

(0 (1, (0) = Cun (£ - 7)) = —%VF(ukj(t)) ~ G(uig (t -y (1)) +e(t). (3.23)

From (3.23) we get

e = (o (Au;cj)),

_ _%w(uk,.(t)) = G(u (£~ ¥ () + e(t)

d
— —EVF(uo(t)) - G(uo(t - y(t))) +e(t)
:= x(¢£), uniformly on [a,b],
because y}g(t) is continuously differentiable on (4, b) for j > j, and y}g(t) — x(¢) uniformly

on [a, b]. We know that x (t) = (¢,(uo(t) — Cuo(t — 7))’), t € R. Since a, b € R are arbitrary,
uo(t) is a solution of (1.1).

Page 11 of 15
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Next, we prove that u,(¢) — 0 and #;(t) — 0 as |t| — +o0. Since

+00 iT
/ (|o®” + |up@) ) dt = iE{rnoo/'T(|uo(t)|p + |up@)|) dt
iT

= lim lim [ (luy @[ + [, @) dz,

i—>+00j—>+00 J_;T
if k; > i, i € N, then it follows from (3.14) and (3.15) that
iT KT
/ (|, O + [ (D)) dt < / T(|ukj(t)|p + |u (0)") dt < A + AT,

iT —k;

Letting i — +00 and j — +00, we have

/ (‘uo(t) ’p + ’ug(t) ’p) dt < Af + AY (3.24)
and
/ (|u0(t)|p + |u6(t)|p) dt— 0, r— +o0o. (3.25)
[t|=r

From (3.13), similarly to the previous method, we get

/ |u6(t) — Cug(t - r)|p dt < MP. (3.26)

oe]

From Lemma 2.1 we can see that

1 t+T 1% 1 t+T },
|uo(t)| <(@T)» (/ !uo(s) |p ds) +TQT)? (/ |u(')(s) |p ds)
t t-T

-T
-1 BN » /[P
<max{(2T)?,T(2T)"? }/ (|luo@®)]” + |up@®)|") dt — 0,  [t| > +o0.
=T
Finally, we will prove that |u; ()| — 0 as |t| — +oc if the following condition holds:
|[Au6](t)| = |u6(t) — Cuy(t - r)| — 0, |t|— +oo. (3.27)

On the one hand, from (3.16) we have |uy| < po, and applying (1.1) yields

d ~ o~
A 0 L] o)

d
< ‘EVF(uo(t))

+ |G(u0(t - y(t)))| + su£|e(t)|

iVF(u)

< sup dr

lul=po

+ sup |G(u)’ +sup|e(t)| =M forteR.
|

ul<po teR

If (3.27) does not hold, then there exist a parameter &, € (0, %) and a sequence {f;} such
that

[t] < |taf < |E3] <+, It + 1< |tisal, k=1,2,...,
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and
~ 1
|Aug(ti)| = (2e0)7T, k=1,2,....

So, for t € [t tx + €0/(1 + M)], we have

- . ~ o~ Yd -~ 2~
] = \I[Aua]uwl’” “[Au) @) + f Z([Au] " [Aup](s)) ds

~ _ td ~ o~
= [l - [ 1Al *[A)o) |as

4 | ds
> &o.
Note that
+00 tk+so/(1+M
/ [Aug] (&) dt > Z / [Auy](&)|” dt = oo,
—00

which contradicts (3.26), and thus (3.27) holds.
On the other hand, let u(2) = (i, (2), ug, (), - .., g, (£)). From (3.21) we know that |Au; | <

e(1-|c;])
(1 + /2", leil?)pr = By. For all & > 0, let N = [log, #1150, Then Y.7°,, lail” < o
(lci] < 1). According to (3.27), it is easy to find that there exists a constant G > 0 such
that |ug (¢) — ciug, (¢ - 7)| < for t > G. Set Pr = {x|x € C(R,R),x(t + T) = x(¢)} and

N+1
Ao : Pr — Pr, [Aox](t) = x(t) — cx(t — t) with |c| # 1. Then applying Lemma 2.3 in [13], we
obtain
- Yo df(t—jT), lc| < 1Vf € Pr,
[Aolf](t) = /=0

=Y o ¢f(E+jT), el >1Yf €Pr.

When |¢;| < 1, this yields

|16, 0)]
-1 ’
lilinoo{ [ Auiji ](t)‘
N oo
< Ilirglo g o [Au;%i ](t —ht)+ h§+1 ch [Au}%i ](t - ht)

hm Z Auk ] =h)

h N+1

N
. h
< ]1_1}?0 hEZO ol [Au}%i ](t —ht)| +

[e¢]
< hm2|c,| |Auk ]t hr)|+Bl Z lcil”

h>0 h=N+1

N 0
= leil"| (up, (¢ = ht) = ciug (¢ = (1 + 1)7)) | + By Y eil”. (3.28)

h>0 h=N+1

Page 13 0of 15



Gao and Chen Advances in Difference Equations (2018) 2018:446 Page 14 of 15

By (3.28), for arbitrary & > 0, there exists N = G + N such that, for £ > N,

N oo
g, (8)] <D leal”| (u, (¢ = hT) = caty, (¢ = (h + 1)T)) | + By Y
h>0 h=N+1

£
N+l)—o  +B
< W+ Doy *Bigg,

= €&.

So, |u6i(t)| — 0 as || = +oo. Similarly to the previous method, when |c;| > 1, |u6i(t)| -0
also holds as |t| — +00. Thus |u;(t)] — 0 as |¢] — +00. Obviously, uo(¢) # 0; otherwise,
e(t) = 0, which contradicts condition [H]. This completes the proof. O
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