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Abstract
In this paper, we prove the existence and uniqueness of the equilibrium solution of
the system by using theM-matrix and the topological degree technique and study
the boundedness and robustness of dynamics of reaction–diffusion high-order
Markovian jump Cohen–Grossberg neural networks (CGNNs) with p-Laplacian
diffusion, including the common reaction–diffusion CGNNs. The obtained criteria are
applicable to computer Matlab LMI-toolbox, which is suitable for large-scale
calculations of actual complex engineering. Finally, a numerical example
demonstrates the effectiveness of the proposed method.
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1 Introduction
All the time neural networks have attracted much attention for its wide application [1–
7]. In 1983, Cohen–Grossberg neural networks (CGNNs) were originally proposed in [8].
Since then, the CGNNs have gained increasing research attention [9–14] due to their ex-
tensive applications, such as pattern recognition, image and signal processing, quadratic
optimization, and artificial intelligence. Whether the above application is successful de-
pends on a key prerequisite that the system has some stability. So stability analysis of var-
ious neural networks has become a hot research topic [15–25]. In practical experience,
neural networks are often disturbed by environmental noise. The noise may influence the
stability of the equilibrium and vary some structure parameters, which is usually satisfied
by Markov processes. During the recent decade, neural networks with Markovian jump-
ing parameters have been extensively studied due to the fact that systems with Markovian
jumping parameters are useful in modeling abrupt phenomena, such as random failures,
changing in the interconnections of subsystems, and operating in different points of a non-
linear plant. Moreover, Markovian jump dynamics have been applied to various complex
systems, such as dissipative fault-tolerant control for nonlinear singular perturbed sys-
tems with Markov jumping parameters based on slow state feedback, slow state variables
feedback stabilization for semi-Markov jump systems with singular perturbations, finite-
time nonfragile l2–l∞ control for jumping stochastic systems subject to input constraints
via an event-triggered mechanism, and so on ([26–29] and the references therein).
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High-order Cohen–Grossberg neural networks, as an important class of dynamical sys-
tems, have been the object of intensive analysis by many authors in both theory and ap-
plications due to the fact that high-order neural networks can be with impressive compu-
tational, learning, and storage capabilities. In fact, most researchers focused on low-order
neural networks and did not consider the high-order terms, which have faster convergence
rate and stronger approximation property. Furthermore, the high-order neural networks
have been shown stronger approximation property, impressive computational, storage,
and learning capabilities, greater storage capacity and higher fault tolerance, and faster
convergence rate than in traditional low-order neural networks. There are a lot of liter-
ature related to the stability analysis of high-order neural networks [30–36]. In practical
engineering the diffusion phenomenon cannot be avoided in the neural networks model
when electrons are moving in an asymmetric electromagnetic field. So various reaction–
diffusion models were considered [13, 14, 31, 37, 38]. For example, in [31] the following
reaction–diffusion high-order Hopfield neural network was investigated:
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In addition, p-Laplacian reaction–diffusion models were recently studied in [37] and [14].
For example, in [37] the following p-Laplacian reaction–diffusion system was investigated:

∂u
∂t

– a
(
l(u)

)
�pu = f (u) + h(t). (1.2)

Note that seldom literature involves both boundedness analysis and robust stability anal-
ysis of high-order neural networks, which inspires our current work. In this paper, we
present a sufficient condition for the boundedness and robust stability of the reaction–
diffusion high-order Markovian jump Cohen–Grossberg neural network with nonlinear
Laplacian diffusion. Of course, the existence and uniqueness of the equilibrium solution of
the system will be first presented by employing the M-matrix and the topological degree
technique.

For convenience, we need introduce some standard notation.
• Q = (qij)n×n > 0 (< 0): a positive (negative) definite matrix, that is, yT Qy > 0 (< 0) for all

0 �= y ∈ Rn.
• Q = (qij)n×n ≥ 0 (≤ 0): a semipositive (seminegative) definite matrix, that is, yT Qy ≥ 0

(≤ 0) for all y ∈ Rn.
• Q1 ≥ Q2 (Q1 ≤ Q2): Q1 – Q2 is a semipositive (seminegative) definite matrix.
• Q1 � Q2 (Q1 � Q2): Q1 – Q2 is a nonnegative (nonpositive) matrix.
• Q1 > Q2 (Q1 < Q2): Q1 – Q2 is a positive (negative) definite matrix.
• λmax(Φ) and λmin(Φ) denote the largest and smallest eigenvalues of a matrix Φ ,

respectively.
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• |C| = (|cij|)n×n for any matrix C = (cij)n×n; |u(t, x)| = (|u1(t, x)|, |u2(t, x)|, . . . , |un(t, x)|)T

for any u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))T .
• I : the identity matrix of compatible dimension.
• The symmetric terms in a symmetric matrix are denoted by ∗.
Motivated by some methods and results of the related literature [30–34, 39–41], we

present the existence and uniqueness of the equilibrium solution of the system and study
the boundedness and robustness of dynamics of reaction–diffusion high-order Markovian
jump Cohen–Grossberg neural networks (CGNNs) with p-Laplacian diffusion, including
the common reaction–diffusion CGNNs.

2 Model description and preparation
Consider the following high-order Markovian jump Cohen–Grossberg neural network
with nonlinear Laplacian diffusion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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= 0, i, j = 1, 2, . . . , n, (t, x) ∈ [0, +∞) × ∂Ω ,

ui(s, x) = ξi(s, x), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ],

(2.1)

where x ∈ Ω , and Ω is a bounded domain in Rn with smooth boundary ∂Ω of class C2.
The initial value function ξi(s, x) is bounded and continuous on (–∞, τ ] × Ω , αi is the
input from outside of the networks, ui(t, x) is the state variable of the ith neuron at time
t and space variable x, ai(ui(t, x)) presents an amplification function, whereas bi(ui(t, x))
denotes an appropriate behavior function, Di = Di(t, x) ≥ 0 is the diffusion operator, fi and
gj are active functions, and Trij and Trijl are the first- and second-order synaptic weights
of system (2.1) (see, e.g., [42]). (Ω̆ ,Υ ,P) is the given probability space, where Ω̆ is sample
space, Υ is a σ -algebra of subsets of the sample space, and P is the probability measure
defined on Υ . Let S = {1, 2, . . . , n0}, and let {r(t) : [0, +∞) → S} be a homogeneous, finite-
state right-continuous Markovian process with generator Π = (γij)n0×n0 and the transition
probability from mode i ∈ S at time t to mode j ∈ S at time t + �t

P
(
r(t + δ) = j | r(t) = i

)
=

⎧
⎨

⎩
γijδ + o(δ), j �= i,

1 + γijδ + o(δ), j = i,

where γij ≥ 0 is the transition probability rate from i to j (j �= i), γii = –
∑n0

j=1,j �=i γij, δ > 0, and
limδ→0 o(δ)/δ = 0.

Let u∗ = (u∗
1, u∗

2, . . . , u∗
n)T ∈ Rn be a constant vector. Then it is not difficult to deduce the

following fact:
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which proves (2.2).
In (2.2), i and j are symmetric, which implies that
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Taking gl(u∗
l ) = 0 = gj(u∗

j ) in (2.5), system (2.1) can be rewritten as follows:
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where α = (α1,α2, . . . ,αn)T , f (u) = (f1(u1), f2(u2), . . . , fn(un))T , g(u) = (g1(u1), g2(u2), . . . ,
gn(un))T for u = (u1, u2, . . . , un)T , the Neumann boundary value ∂u(t,x)

∂ν
= ( ∂u1(t,x)

∂ν
, ∂u2(t,x)

∂ν
, . . . ,

∂un(t,x)
∂ν

) with ∂ui(t,x)
∂ν

= ( ∂ui(t,x)
∂x1

, ∂ui(t,x)
∂x2

, . . . , ∂ui(t,x)
∂xn

)T , the matrix D = (Di(t, x))n×m, and the vec-
tor function ς0 is defined as

ς0 =
1
2

⎛

⎜⎜⎜⎜⎝

g1(u1(t – τ (t), x))
g2(u2(t – τ (t), x))

...
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⎞

⎟⎟⎟⎟⎠
. (2.7)

Throughout this paper, we assume the following hypotheses:
(H1) There is a positive constant vector M = (M1, M2, . . . , Mn)T ∈ Rn such that

|gj(·)| ≤ Mj, j = 1, 2, . . . , n.
(H2) There is a real number matrix B = diag(b̃1, b̃2, . . . , b̃n) such that bi(0) = 0 and

bi(s) – bi(r)
s – r

≥ b̃i > 0, ∀s, r ∈ R, s �= r, i = 1, 2, . . . , n.

(H3) There exist real number diagonal matrices A = diag(ā1, ā2, . . . , ān) and
A = diag(a1, a2, . . . , an) such that

0 < A ≤ A(s) ≤ A.

(H4) There are real matrices F1 = diag(F11, F12, . . . , F1n), G1 = diag(G11, G12, . . . , G1n),
F2 = diag(F21, F22, . . . , F2n), and G2 = diag(G21, G22, . . . , G2n) such that

F1j ≤ fj(s) – fj(t)
s – t

≤ F2j, G1j ≤ gj(s) – gj(t)
s – t

≤ G2j

with

|F1j| ≤ F2j, |G1j| ≤ G2j, ∀j = 1, 2, . . . , n.

Remark 1 F1j, G1j may be negative numbers, which implies conditions weaker than the
corresponding conditions of [43].
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(2.8)
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T̃r =

⎛
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...
Trn + TT
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(2.9)

For any mode r(t) = i ∈ S, we assume that Wr , Tr , and T̃r are real constant matrices of
appropriate dimensions, and �Wr(t),�Tr(t), and �T̃r(t) are real-valued matrix functions
representing time-varying parameter uncertainties satisfying

Wr(t) = Wr + �Wr(t), Tr(t) = Tr + �Tr(t), T̃r(t) = T̃r + �T̃r(t) (2.10)

with

(
�Wr(t),�Tr(t),Γ �Tri(t)

)
= ErK(t)(Nr , Nr0, Ñr), (2.11)

where Er , Nr , Nr0, and Ñr are real matrices, and |K(t)| ≤ I with the identity matrix I .
In the case p = 2, system (2.1) becomes the following common reaction–diffusion high-

order Markovian jump Cohen–Grossberg neural network:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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j=1 Trij(t)gj(uj(t – τ (t), x))

–
∑n

j=1
∑n

l=1 Trijl(t)gj(uj(t – τ (t), x))gl(ul(t – τ (t), x)) + αi],

r ∈ S, i = 1, 2, . . . , n,
∂ui(t,x)

∂xj
= 0, i, j = 1, 2, . . . , n, (t, x) ∈ [0, +∞) × ∂Ω ,

ui(s, x) = ξi(s, x), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ],

(2.12)

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t = ∇ • (D ◦ ∇u(t, x)) – A(u(t, x))

× [B(u(t, x)) + Wr(t)f (u(t, x)) + Tr(t)g(u(t – τ (t), x))

+

⎛

⎜⎜⎝

ςT
0

ςT
0

. . .
ςT

0

⎞

⎟⎟⎠

n×n2

⎛

⎜⎜⎝

Tr1(t)+TT
r1(t)

Tr2(t)+TT
r2(t)

...
Trn(t)+TT

rn(t)

⎞

⎟⎟⎠

n2×n

× g(u(t – τ (t), x)) + α],
∂u(t,x)

∂ν
= 0, (t, x) ∈ [0, +∞) × ∂Ω ,

u(s, x) = ξ (s, x), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ].

(2.13)
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Lemma 2.1 ([44]) Let ε > 0 be any given scalar, and let M,E, and K be matrices of appro-
priate dimensions. If KTK ≤ I , then we have

MKE + E
TKTMT ≤ ε–1MMT + εET

E.

Lemma 2.2 (Schur complement [45]) Given matrices Q(t), S(t), and R(t) of appropriate
dimensions, where Q(t) = Q(t)T and R(t) = R(t)T , we have

(
Q(t) S(t)
ST (t) R(t)

)
> 0

if and only if

R(t) > 0, Q(t) – S(t)R–1(t)ST (t) > 0,

or

Q(t) > 0, R(t) – ST (t)Q–1(t)ST (t) > 0,

where Q(t), S(t), and R(t) are dependent on t.

Lemma 2.3 (Poincaré integral inequality (see [46])) Let Ω be a bounded domain of Rn

with a smooth boundary ∂Ω of class C2, and let h(x) be a real-valued function belonging
to H1

0 (Ω) such that ∂h(x)
∂ν

|∂Ω = 0. Then

∫

Ω

∣∣∇h(x)
∣∣2 dx ≥ λ1

∫

Ω

∣∣h(x)
∣∣2 dx, (2.14)

where λ1 is the smallest positive eigenvalue of the Neumann boundary problem

⎧
⎨

⎩
–�h(x) = λh(x), x ∈ Ω ,
∂h(x)
∂xj

= 0, x ∈ ∂Ω .
(2.15)

3 Main results
Before giving the main results of this paper, we need to present two necessary technical
lemmas.

Lemma 3.1 Let u∗ = (u∗
1, u∗

2, . . . , u∗
n)T be an equilibrium point of system (2.6), and let ũ =

u – u∗, where u = u(t, x) is any solution of system (2.6). Then

n∑

k=1

∂

∂xk

(
Di|∇ui|p–2 ∂ui

∂xk

)
dx =

n∑

k=1

∂

∂xk

(
Di|∇ũi|p–2 ∂ũi

∂xk

)
dx (3.1)

and

∫

Ω

n∑

i=1

qiũi

n∑

k=1

∂

∂xk

(
Di|∇ũi|p–2 ∂ũi

∂xk

)
dx



Rao and Zhong Advances in Difference Equations        (2018) 2018:434 Page 8 of 29

= –
n∑

k=1

n∑

i=1

∫

Ω

qiDi|∇ũi|p–2
(

∂ũi

∂xk

)2

dx, (3.2)

where qi > 0 for all i.

Proof Indeed, since u∗
i is a real number,

ũi � ui – u∗
i ⇒ ∂ui

∂xk
=

∂ũi

∂xk
⇒ ∇ui = ∇ũi,

and hence

n∑

k=1

∂

∂xk

(
Di|∇ui|p–2 ∂ui

∂xk

)
dx =

n∑

k=1

∂

∂xk

(
Di|∇ui|p–2 ∂ũi

∂xk

)
dx

=
n∑

k=1

∂

∂xk

(
Di|∇ũi|p–2 ∂ũi

∂xk

)
dx.

On the other hand, the Neumann zero boundary condition yields

∫

Ω

n∑

i=1

qiũi

n∑

k=1

∂

∂xk

(
Di|∇ũi|p–2 ∂ũi

∂xk

)
dx = –

n∑

k=1

n∑

i=1

∫

Ω

qiDi|∇ũi|p–2
(

∂ũi

∂xk

)2

dx. �

In addition, from (H4) and the Weber theorem of one-variable quadratic equation it is
not difficult to get the following conclusion.

Lemma 3.2 Let u∗ = (u∗
1, u∗

2, . . . , u∗
n)T be an equilibrium point of system (2.6), and let ũ =

u – u∗, f (ũ) = f (u) – f (u∗), and g(ũ) = g(u) – g(u∗). Then there are two positive definite
diagonal matrices K0 and K1 such that

2
∣∣f
(
ũ(t, x)

)∣∣T K0
∣∣f
(
ũ(t, x)

)∣∣ – 2
∣∣ũ(t, x)

∣∣T K0(F1 + F2)
∣∣f
(
ũ(t, x)

)∣∣

+ 2
∣∣ũ(t, x)

∣∣T F1K0F2
∣∣ũ(t, x)

∣∣≤ 0 (3.3)

and

2
∣∣g
(
ũ
(
t – τ (t), x

))∣∣T K1
∣∣g
(
ũ
(
t – τ (t), x

))∣∣

– 2
∣∣ũ
(
t – τ (t), x

)∣∣T K1(G1 + G2)
∣∣g
(
ũ
(
t – τ (t), x

))∣∣

+ 2
∣∣ũ
(
t – τ (t), x

)∣∣T G1K1G2
∣∣ũ
(
t – τ (t), x

)∣∣≤ 0, (3.4)

where u = u(t, x) is any solution of system (2.6).

We now give the main result of this paper.

Theorem 3.3 Assume that

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2 –

(
Γ |T̃r| + |Er||Ñr|

)
G2
)–1 � 0,

r ∈ S. (3.5)
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Then:
(a) System (2.1) or system (2.6) has a unique equilibrium point.
(b) All the solutions of system (2.1) and system (2.6) are bounded.
(c) If there is a sequences of positive definite diagonal matrices Pr (r ∈ S), K0, and K1

such that

Φ̃r < 0 ∀r ∈ S, (3.6)

where

Φ̃r =

⎛

⎜⎜⎜⎜⎜⎜⎝

Ãr 0 PrA|Wr| + K0(F1 + F2) PrA(|Tr | + Γ |T̃r|) PrA|Er| 0
∗ –2G1K1G2 0 K1(G1 + G2) 0 0
∗ ∗ –2K0 0 0 |Nr|T
∗ ∗ ∗ –2K1 0 |Nr0|T + |Ñr|T
∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ –I

⎞

⎟⎟⎟⎟⎟⎟⎠

with Ãr = Ar – 2F1K0F2 and

Ar = –2PrAB +
n0∑

j=1

γrjPj, r ∈ S, (3.7)

then the unique equilibrium point of system (2.1) or system (2.6) is globally asymptotically
stochastic robust stable.

Proof System (2.1) is equivalent to system (2.6). We divide the proof of the theorem into
four steps.

Step 1. We first prove that there is at least one equilibrium point for system (2.6).
If u∗ ∈ Rn is an equilibrium point of (2.1), then by (2.1) we get

hri
(
u∗

i
)

= 0, ∀r ∈ S, i = 1, 2, . . . , n,

where

hri
(
u∗

i
)

= bi
(
u∗

i
)

–
n∑

j=1

Wrij(t)fj
(
u∗

j
)

–
n∑

j=1

Trij(t)gj
(
u∗

j
)

–
n∑

j=1

n∑

l=1

Trijl(t)gj
(
u∗

j
)
gl
(
u∗

l
)

– αi.

Since i and j are symmetric, exchanging i and j results in

n∑

j=1

n∑

l=1

Trijl(t)
gl(u∗

l )
2

gj
(
u∗

j
)

=
n∑

j=1

n∑

l=1

Trilj(t)
gj(u∗

j )
2

gl
(
u∗

l
)

=
n∑

j=1

n∑

l=1

Trilj(t)
gl(u∗

l )
2

gj
(
u∗

j
)
,

and hence

n∑

j=1

n∑

l=1

Trijl(t)gj
(
u∗

j
)
gl
(
u∗

l
)

=
n∑

j=1

n∑

l=1

gl(u∗
l )

2
(
Trijl(t) + Trilj(t)

)
gj
(
u∗

j
)
.
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Next, taking

Hri
(
u∗

i ,λ
)

= λhri
(
u∗

i
)

+ (1 – λ)u∗
i , λ ∈ [0, 1],

by (H2) and (H4) we get

∣∣Hri
(
u∗

i ,λ
)∣∣≥ λ

∣∣bi(ui)
∣∣ – λ

n∑

j=1

∣∣Wrij(t)
∣∣∣∣fj
(
u∗

j
)∣∣ – λ

n∑

j=1

∣∣Trij(t)
∣∣∣∣gj
(
u∗

j
)∣∣

– λ
1
2

n∑

j=1

n∑

l=1

∣∣gl
(
u∗

l
)∣∣(∣∣Trijl(t) + Trilj(t)

∣∣)∣∣gj
(
u∗

j
)∣∣ – (1 – λ)

∣∣u∗∣∣

≥ [
1 + λ(b̃i – 1)

]∣∣u∗
i
∣∣ – λ

n∑

j=1

∣∣Wrij(t)
∣∣F2j

∣∣u∗
j
∣∣ – λ

n∑

j=1

∣∣Trij(t)
∣∣G2j

∣∣u∗
j
∣∣

– λ
1
2

n∑

j=1

n∑

l=1

Ml
(∣∣Trijl(t) + Trilj(t)

∣∣)G2j
∣∣u∗

j
∣∣ – λ|αi| – λ

n∑

j=1

∣∣Wrij(t)
∣∣∣∣fj(0)

∣∣

– λ

n∑

j=1

∣∣Trij(t)
∣∣∣∣gj(0)

∣∣ – λ
1
2

n∑

j=1

n∑

l=1

Ml
(∣∣Trijl(t) + Trilj(t)

∣∣)∣∣gj(0)
∣∣. (3.8)

Moreover, we can rewrite (3.8) in the matrix and vector form:

∣∣Hr(t)
(
u∗,λ

)∣∣

≥ (1 – λ)
∣∣u∗∣∣ + λ

(
B –

∣∣Wr(t)
∣∣F2 –

∣∣Tr(t)
∣∣G2 –

1
2
Γ
∣∣T̃r(t)

∣∣G2

)∣∣u∗∣∣

– λ

[
|α| +

∣∣Wr(t)
∣∣∣∣f (0)

∣∣ –
∣∣Tr(t)

∣∣∣∣g(0)
∣∣ +

1
2
Γ
∣∣T̃r(t)

∣∣∣∣g(0)
∣∣
]

≥ (1 – λ)
∣∣u∗∣∣ + λ

(
B –

∣∣Wr(t)
∣∣F2 –

∣∣Tr(t)
∣∣G2 – Γ

∣∣T̃r(t)
∣∣G2

)∣∣u∗∣∣

– λ

[
|α| +

∣∣Wr(t)
∣∣∣∣f (0)

∣∣ –
∣∣Tr(t)

∣∣∣∣g(0)
∣∣ +

1
2
Γ
∣∣T̃r(t)

∣∣∣∣g(0)
∣∣
]

≥ (1 – λ)
∣∣u∗∣∣ + λ

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2

–
(
Γ |T̃r| + |Er||Ñr|

)
G2
)[∣∣u∗∣∣ –

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2

–
(
Γ |T̃r| + |Er||Ñr|

)
G2
)–1
(

|α| +
∣∣Wr(t)

∣∣∣∣f (0)
∣∣

–
∣∣Tr(t)

∣∣∣∣g(0)
∣∣ +

1
2
Γ
∣∣T̃r(t)

∣∣∣∣g(0)
∣∣
)]

.

Let

Ω̃ =
{

u ∈ Rn, |u| ≤ R +
(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2 – Γ TrG2

)–1

×
(

|α| +
∣∣Wr(t)

∣∣∣∣f (0)
∣∣ –
∣∣Tr(t)

∣∣∣∣g(0)
∣∣ +

1
2
Γ
∣∣T̃r(t)

∣∣∣∣g(0)
∣∣
)}

,
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where R ∈ Rn is a positive vector such that (B– (|Wr| + |Er||Nr|)F2 – (|Tr| + |Er||Nr0|)G2 –
(Γ |T̃r| + |Er||Ñr|)G2)R > 0, since (B – (|Wr| + |Er||Nr|)F2 – (|Tr| + |Er||Nr0|)G2 – (Γ |T̃r| +
|Er||Ñr|)G2) is an M-matrix.

Then Ω̃ is not empty since 0 ∈ Ω̃ , and for any u ∈ ∂Ω̃ ,

Hr(u,λ) ≥ (1 – λ)|u| + λ
(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2

–
(
Γ |T̃r| + |Er||Ñr|

)
G2
)
R > 0.

So

Hr(u,λ) �= 0 ∀u ∈ ∂Ω̃ ,λ ∈ [0, 1], r ∈ S.

Now the homotopy invariance theorem yields

deg(h, Ω̃ , 0) = deg
(
H(u, 1), Ω̃ , 0

)
= deg

(
H(u, 0), Ω̃ , 0

)
= 1,

where deg(h, Ω̃ , 0) denotes topological degree. Moreover, topological degree theory tells
us that there is at least one solution for h(u) = 0 in Ω̃ , which implies that there exists at
least one equilibrium point u∗ for system (2.1).

Step 2. We prove that u∗ is the unique equilibrium point of system (2.1).
Indeed, if v∗ is another equilibrium point of (2.1), then

0 = –bi
(
u∗

i
)

+
n∑

j=1

Wrij(t)fj
(
u∗

j
)

+ (t)
n∑

j=1

Trij(t)gj
(
u∗

j
)

+
n∑

j=1

n∑

l=1

Trijl(t)gj
(
u∗

j
)
gl
(
u∗

l
)

+ αi,

0 = – bi
(
v∗

i
)

+
n∑

j=1

Wrij(t)fj
(
v∗

j
)

+ (t)
n∑

j=1

Trij(t)gj
(
v∗

j
)

+
n∑

j=1

n∑

l=1

Trijl(t)gj
(
v∗

j
)
gl
(
v∗

l
)

+ αi.

Since

n∑

j=1

n∑

l=1

Trijl(t)
(
gj
(
u∗

j
)
gl
(
u∗

l
)

– gj
(
v∗

j
)
gl
(
v∗

l
))

=
n∑

j=1

n∑

l=1

gl(u∗
l ) + gl(v∗

l )
2

(
Trijl(t) + Trilj(t)

)(
gj
(
u∗

j
)

– gl
(
v∗

j
))

,

we have

b̃i
∣∣u∗

i – v∗
i
∣∣≤ ∣∣bi

(
u∗

i
)

– bi
(
v∗

i
)∣∣

≤
n∑

j=1

∣∣Wrij(t)
∣∣F2j(t)

∣∣u∗
j – v∗

j
∣∣ +

n∑

j=1

∣∣Trij(t)
∣∣G2j(t)

∣∣u∗
j – v∗

j
∣∣
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+
n∑

j=1

n∑

l=1

Ml
∣∣Trijl(t) + Trilj(t)

∣∣G2j(t)
∣∣u∗

j – v∗
j
∣∣

or

B
∣∣u∗ – v∗∣∣

≤ ∣∣Wr(t)
∣∣F2
∣∣u∗ – v∗∣∣ +

∣∣Tr(t)
∣∣G2

∣∣u∗ – v∗∣∣ + Γ T̃r(t)G2
∣∣u∗ – v∗∣∣

≤ [(|Wr| + |Er||Nr|
)
F2 +

(|Tr| + |Er||Nr0|
)
G2 +

(
Γ T̃r + |Er||Ñr|

)
G2
]∣∣u∗ – v∗∣∣,

that is,

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2 –

(
Γ |T̃r| + |Er||Ñr|

)
G2
)∣∣u∗ – v∗∣∣≤ 0.

Since

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2 –

(
Γ |T̃r| + |Er||Ñr|

)
G2
)–1 � 0,

we get |u∗ – v∗| ≤ 0, and hence u∗ = v∗.
Thus we have proved the existence of the unique equilibrium point of system (2.6), and

so conclusion (a) is proved.
Step 3. Next, we prove the boundedness of all the solutions of system (2.1).
First, we note the following fact:

n∑

j=1

n∑

l=1

Trijl(t)
[
gj
(
uj
(
t – τ (t), x

))
gl
(
ul
(
t – τ (t), x

))
– gj

(
u∗

j
)
gl
(
u∗

l
)]

=
n∑

j=1

n∑

l=1

Trijl(t)ςl
(
gj – gj

(
u∗

j
))

+
n∑

j=1

n∑

l=1

Trijl(t)ςj
(
gl – gl

(
u∗

l
))

, (3.9)

where gj = gj(uj(t – τ (t), x)), gl = gl(ul(t – τ (t), x)), and

ςl =
gl(ul(t – τ (t), x)) + gl(u∗

l )
2

. (3.10)

Moreover, since i and j are symmetric, exchanging i and j results in

n∑

j=1

n∑

l=1

Trijl(t)ςj
(
gl(ul) – gl

(
u∗

l
))

=
n∑

j=1

n∑

l=1

Trilj(t)ςl
(
gj(uj) – gj

(
u∗

j
))

.

So we get

n∑

j=1

n∑

l=1

Trijl(t)
[
gj
(
uj
(
t – τ (t), x

))
gl
(
ul
(
t – τ (t), x

))
– gj

(
u∗

j
)
gl
(
u∗

l
)]

=
n∑

j=1

n∑

l=1

(
Trijl(t) + Trijl(t)

)
ςl
(
gj – gj

(
u∗

j
))

.



Rao and Zhong Advances in Difference Equations        (2018) 2018:434 Page 13 of 29

Moreover, by Lemma 3.1 we may rewrite system (2.1) in the following equivalent form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũi(t,x)
∂t = –

∑n
k=1

∂
∂xk

(Di|∇ũi(t, x)|p–2 ∂ũi(t,x)
∂xk

) – ai(ũi(t, x) + u∗
i )[b̃i(ũi(t, x))

–
∑n

j=1 Wrij(t)f j(ũj(t, x)) –
∑n

j=1 Trij(t)gj(ũj(t – τ (t), x))

–
∑n

j=1
∑n

l=1(Trijl(t) + Trijl(t))ςlgj(ũj(t – τ (t), x))],
∂ũi(t,x)

∂xj
= 0, i, j = 1, 2, . . . , n, (t, x) ∈ [0, +∞) × ∂Ω ,

ũi(s, x) = ξi(s, x) – u∗
i , x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ],

(3.11)

where ũ = u – u∗, f j(ũj(t, x)) = fj(uj(t, x)) – fj(u∗
j ), and gj(ũj(t, x)) = gj(uj(t, x)) – gj(u∗

j ).
Let

∥∥ui(t) – u∗
i
∥∥2 =

∫

Ω

∣∣ui – u∗
i
∣∣2 dx.

From Lemma 3.1 and (3.11) we can derive

d
dt
∥∥ui(t) – u∗

i
∥∥2

= 2
∫

Ω

(
ui – u∗

i
)∂(ui – u∗

i )
∂t

dx

≤ 2
∫

Ω

[
–aib̃i

∣∣ui(t, x) – u∗
i
∣∣2 + āi

n∑

j=1

∣∣Wrij(t)
∣∣∣∣ui(t, x) – u∗

i
∣∣F2j

∣∣uj(t, x) – u∗
j
∣∣

+ āi

n∑

j=1

∣∣ui(t, x) – u∗
i
∣∣
(
∣∣Trij(t)

∣∣ +
n∑

l=1

∣∣Trijl(t) + Trilj(t)
∣∣Ml

)

× G2j
∣∣uj
(
t – τ (t), x

)
– u∗

j
∣∣
]

dx,

which, together with the Hölder inequality, implies

∫

Ω

n∑

j=1

∣∣Wrij(t)
∣∣∣∣ui(t, x) – u∗

i
∣∣F2j|uj(t, x) – u∗

j )|dx

≤
n∑

j=1

∣∣Wrij(t)
∣∣F2j

∥∥ui(t, x) – u∗
i
∥∥∥∥uj(t, x) – u∗

j
∥∥

and

2
∥∥ui(t) – u∗

i
∥∥ d

dt
∥∥ui(t) – u∗

i
∥∥

=
d
dt
∥∥ui(t) – u∗

i
∥∥2

= 2
∫

Ω

(
ui – u∗

i
)∂(ui – u∗

i )
∂t

dx

≤ 2

{
–aib̃i

∥∥ui(t, x) – u∗
i
∥∥2 + āi

n∑

j=1

∣∣Wrij(t)
∣∣∥∥ui(t, x) – u∗

i
∥∥F2j

∥∥uj(t, x) – u∗
j
∥∥
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+ āi

n∑

j=1

∥∥ui(t, x) – u∗
i
∥∥
(
∣∣Trij(t)

∣∣ +
n∑

l=1

∣∣Trijl(t) + Trilj(t)
∣∣Ml

)

× G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥
}

,

which in turn implies that

d
dt
∥∥ui(t) – u∗

i
∥∥

≤ –aib̃i
∥∥ui(t, x) – u∗

i
∥∥ + āi

n∑

j=1

∣∣Wrij(t)
∣∣F2j

∥∥uj(t, x) – u∗
j
∥∥

+ āi

n∑

j=1

(
∣∣Trij(t)

∣∣ +
n∑

l=1

∣∣Trijl(t) + Trilj(t)
∣∣Ml

)
G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥.

Note that

∣∣Wr(t)
∣∣≤ |Wr| + |Er||Nr|,

∣∣Tr(t)
∣∣≤ |Tr| + |Er||Nr0| and

Γ
∣∣T̃r(t)

∣∣≤ Γ |T̃r| + |Er||Ñr|.

Define the matrix Ŵr = (Ŵrij)n×n as

Ŵr = |Wr| + |Er||Nr|,

the matrix T̂r = (T̂rij)n×n as

T̂r = |Tr| + |Er||Nr0|,

and the matrix Ťr = (Ťrij)n×n as

Ťr = Γ |T̃r| + |Er||Ñr|.

Then we have

d
dt
∥∥ui – u∗

i
∥∥≤ –aib̃i

∥∥ui(t, x) – u∗
i
∥∥ + āi

n∑

j=1

ŴrijF2j
∥∥uj(t, x) – u∗

j
∥∥

+ āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥.

Since (B– (|Wr|+ |Er||Nr|)F2 – (|Tr|+ |Er||Nr0|)G2 – (Γ |T̃r|+ |Er||Ñr|)G2) is an M-matrix,
there is a positive vector Q = (q1, q2, . . . , qn)T > 0 such that

āi

[
qib̃i –

n∑

j=1

qjŴrijF2j –
n∑

j=1

qj(T̂rij + Ťrij)G2j

]
> 0 ∀i, r.
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Let

κi =
āi
∑n

j=1 qjŴrijF2j + āi
∑n

j=1 qj(T̂rij + Ťrij)G2j

qiaib̃i

=
āi
∑n

j=1 qjŴrijF2j + āi
∑n

j=1 qj(T̂rij + Ťrij)G2j

qiāib̃i

āi

ai
<

āi

ai
∀i, r.

Let a∗ = maxi
āi
ai

. Then a∗ ≥ 1 and

κi < a∗ ∀i, r.

Since

d
dt
∥∥ui – u∗

i
∥∥≤ –aib̃i

∥∥ui(t, x) – u∗
i
∥∥ + āi

n∑

j=1

ŴrijF2j
∥∥uj(t, x) – u∗

j
∥∥

+ āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥,

we get

eaib̃it d
dt
∥∥ui(t) – u∗

i
∥∥

≤ –eaib̃itaib̃i
∥∥ui(t, x) – u∗

i
∥∥ + eaib̃it āi

n∑

j=1

ŴrijF2j
∥∥uj(t, x) – u∗

j
∥∥

+ eaib̃it āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥,

or

d
dt
(
eaib̃it

∥∥ui(t) – u∗
i
∥∥)≤ eaib̃it āi

n∑

j=1

ŴrijF2j
∥∥uj(t, x) – u∗

j
∥∥

+ eaib̃it āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
t – τ (t), x

)
– u∗

j
∥∥.

So we have

∫ t

0

d
ds
(
eaib̃is

∥∥ui(s) – u∗
i
∥∥)ds

≤
∫ t

0

[
eaib̃isāi

n∑

j=1

ŴrijF2j
∥∥uj(s, x) – u∗

j
∥∥

+ eaib̃isāi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
s – τ (s), x

)
– u∗

j
∥∥
]

ds,
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or

1
qi

∥∥ui(t) – u∗
i
∥∥

≤ 1
qi

e–aib̃it
∥∥ξi(0) – u∗

i
∥∥ +

1
qi

∫ t

0

[
e–aib̃i(t–s)āi

n∑

j=1

ŴrijF2j
∥∥uj(s, x) – u∗

j
∥∥

+ e–aib̃i(t–s)āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
s – τ (s), x

)
– u∗

j
∥∥
]

ds. (3.12)

Let

k0 = 1 +
1
qi

(
sup

s∈(–∞,δ0]

∥∥ui(s) – u∗
i
∥∥
)

.

The boundedness of ξ (·) yields that there is δ0 > 0 such that

e–aib̃it
∥∥ξi(0) – u∗

i
∥∥ < min

{
1 –

κi

a∗
,
(

1 –
κi

a∗

)
qi

}
, t ≥ δ0.

We will prove that

∥∥ui(t) – u∗
i
∥∥≤ qik0 ≤ max

1≤i≤n
{qik0}. (3.13)

We will prove this by contradiction. Assume that (3.13) does not hold. Then there must
exist i ∈ {1, 2, . . . , n} and t∗ > δ0 such that

∥∥ui(t∗) – u∗
i
∥∥ = qik0,

∥∥uj(t) – u∗
j
∥∥≤ qjk0, j ∈ {1, 2, . . . , n}, t ≤ t∗.

On the other hand, (3.12) and the definition of κi result in

1
qi

∥∥ui(t∗) – u∗
i
∥∥

≤ 1
qi

e–aib̃it∗
∥∥ξi(0) – u∗

i
∥∥ +

1
qi

∫ t∗

0

[
e–aib̃i(t∗–s)āi

n∑

j=1

ŴrijF2j
∥∥uj(s, x) – u∗

j
∥∥

+ e–aib̃i(t∗–s)āi

n∑

j=1

(T̂rij + Ťrij)G2j
∥∥uj
(
s – τ (s), x

)
– u∗

j
∥∥
]

ds

≤
(

1 –
κi

a∗

)
+ κik0 ≤ k0

(
1 –

κi

a∗

)
+ κik0 ≤ k0 + κik0

(
1 –

1
a∗

)
≤ k0, (3.14)

which is contradictory to ‖ui(t∗) – u∗
i ‖ = qik0.

So we have proved the boundedness of all the solutions of system (2.1) and thus obtained
conclusion (b).

Step 4. We will prove that the equilibrium point u∗ is globally robustly asymptotically
stochastically stable.

From (H4) we have

∣∣f (u) – f (v)
∣∣≤ F2|u – v|, ∣∣g(u) – g(v)

∣∣≤ G2|u – v|
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ(t,x)
∂t = ∇ • (D ◦ ∇pũ(t, x)) – A(ũ(t, x) + u∗)

× [B̃(ũ(t, x)) – Wr(t)f (ũ(t, x)) – Tr(t)g(ũ(t – τ (t), x))

–

⎛

⎜⎝

ςT

ςT

. . .
ςT

⎞

⎟⎠

n×n2

⎛

⎜⎜⎝

Tr1(t)+TT
r1(t)

Tr2(t)+TT
r2(t)

...
Trn(t)+TT

rn(t)

⎞

⎟⎟⎠

n2×n

g(ũ(t – τ (t), x))],

u(s, x) = ξ (s, x), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ],

(3.15)

with the Neumann boundary value condition

∂ũ(t, x)
∂ν

= 0, (t, x) ∈ [0, +∞) × ∂Ω ,

where Tri = (Trijl)n×n, TT
ri = (Trilj)n×n, and

ςl =
gl(ul(t – τ (t), x)) + gl(u∗

l )
2

,

ς = (ς1,ς2, . . . ,ςn)T , ςT = (ς1,ς2, . . . ,ςn),

B̃(ũ) = B(u) – B
(
u∗), f (ũ) = f (u) – f

(
u∗), g(ũ) = g(u) – g

(
u∗).

Remark 2 If system (3.15) is under the Dirichlet boundary value condition

ũ(t, x) = 0, (t, x) ∈ [0, +∞) × ∂Ω ,

then we can still derive a formula similar to (3.2):

∫

Ω

n∑

i=1

qiũi

n∑

k=1

∂

∂xk

(
Di|∇ũi|p–2 ∂ũi

∂xk

)
dx

= –
n∑

k=1

n∑

i=1

∫

Ω

qiDi|∇ũi|p–2
(

∂ũi

∂xk

)2

dx

≤ –λ̃1qiDi

n∑

i=1

∫

Ω

|ũi|p dx, (3.2*)

where

λ̃1 = inf
0 �=ϕ∈W 1,p

0 (Ω)

∫
Ω

|∇ϕ|p dx∫
Ω

|ϕ|p dx
> 0.

If the Neumann boundary condition ∂ui(t,x)
∂xj

= 0 was replaced by the Dirichlet boundary
condition ui(t, x)|∂Ω = 0 in system (2.1), we would not derive a formula similar to (3.2),
since system (2.1) involves αi (the input from outside the networks), so that ũi = ui – u∗

i =
–u∗

i on ∂Ω , that is, the equilibrium solution u∗
i is not necessarily zero. Of course, we can

still deal with the Dirichlet boundary problem by employing the Ekeland variational prin-
ciple and Lyapunov–Krasovskii functional method [47]. However, system (3.15) does not
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involve the input αi, which implies that Dirichlet boundary value problem gives the same
results as the Neumann boundary problem.

Obviously, the null solution of system (3.15) is globally asymptotically stable if and only
if the unique equilibrium point u∗ of system (2.6) is globally asymptotically stable.

Consider the Lyapunov–Krasovskii functional

V(t, r) =
∫

Ω

ũT (t, x)Prũ(t, x) dx =
∫

Ω

∣∣ũ(t, x)
∣∣T Pr

∣∣ũ(t, x)
∣∣dx, r ∈ S.

Moreover, (H2) and (H3) yield

∫

Ω

ũT (t, x)
(
A(u)B̃(ũ)

)
dx ≥

∫

Ω

ũT (t, x)ABũ(t, x) dx

=
∫

Ω

∣∣ũT (t, x)
∣∣AB

∣∣ũ(t, x)
∣∣dx.

Diagonal matrices derive

∫

Ω

ũT (t, x)
n0∑

j=1

γrjPjũ(t, x) dx =
∫

Ω

∣∣ũ(t, x)
∣∣T

n0∑

j=1

γrjPj
∣∣ũ(t, x)

∣∣dx.

Moreover, (3.14)–(3.15) and Lemma 3.1 yield

LV(t, r) ≤ 0 – 2
∫

Ω

∣∣ũ(t, x)
∣∣T (ABPr)

∣∣ũ(t, x)
∣∣dx

+
∫

Ω

∣∣ũ(t, x)
∣∣T

n0∑

j=1

γrjPj
∣∣ũ(t, x)

∣∣dx

+
∫

Ω

[∣∣f
(
ũ(t, x)

)∣∣T ∣∣Wr(t)
∣∣T APr

∣∣ũ(t, x)
∣∣

+
∣∣ũ(t, x)

∣∣T PrA
∣∣Wr(t)

∣∣∣∣f
(
ũ(t, x)

)∣∣]dx

+
∫

Ω

[∣∣g
(
ũ
(
t – τ (t), x

))∣∣T ∣∣Tr(t)
∣∣T APr

∣∣ũ(t, x)
∣∣

+
∣∣ũ(t, x)

∣∣T PrA
∣∣Tr(t)

∣∣∣∣g
(
ũ
(
t – τ (t), x

))∣∣]dx

+
∫

Ω

[∣∣g
(
ũ
(
t – τ (t), x

))∣∣T ∣∣T̃r(t)
∣∣TΓ T APr

∣∣ũ(t, x)
∣∣

+
∣∣ũ(t, x)

∣∣T PrAΓ
∣∣T̃r(t)

∣∣∣∣g
(
ũ
(
t – τ (t), x

))∣∣]dx, (3.16)

where L is the weak infinitesimal operator, Γ and T̃r(t) are the matrices defined in (2.8).
Letting

χ �

⎛

⎜⎜⎜⎝

|ũ(t, x)|
|ũ(t – τ (t), x)|

|f (ũ(t, x))|
|g(ũ(t – τ (t), x)|

⎞

⎟⎟⎟⎠ ,
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by (3.3)–(3.4) and (3.16) we can get

LV(t, r)

≤ χT

⎛

⎜⎜⎜⎝

Ãr 0 PrA|Wr(t)| + K0(F1 + F2) PrA(|Tr(t)| + Γ |T̃r(t)|)
∗ –2G1K1G2 0 K1(G1 + G2)
∗ ∗ –2K0 0
∗ ∗ ∗ –2K1

⎞

⎟⎟⎟⎠χ ,

≤ χTΘrχ (3.17)

where Ãr = Ar – 2F1K0F2,

Ar = –2PrAB +
n0∑

j=1

γrjPj,

and

Θr =

⎛

⎜⎜⎝

Ar – 2F1K0F2 0 PrA(|Wr| + |Er||K (t)||Nr|) + K0(F1 + F2) P̃r
∗ –2G1K1G2 0 K1(G1 + G2)
∗ ∗ –2K0 0
∗ ∗ ∗ –2K1

⎞

⎟⎟⎠

= Φr + �Φr (3.18)

with P̃r = PrA(|Tr| + Γ |T̃r| + |Er||K(t)|(|Nr0| + |Ñr|)),

Φr =

⎛

⎜⎜⎜⎝

Ar – 2F1K0F2 0 PrA|Wr| + K0(F1 + F2) PrA(|Tr| + Γ |T̃r|)
∗ –2G1K1G2 0 K1(G1 + G2)
∗ ∗ –2K0 0
∗ ∗ ∗ –2K1

⎞

⎟⎟⎟⎠

and

�Φr =

⎛

⎜⎜⎜⎝

0 0 PrA|Er||K(t)||Nr| PrA|Er||K(t)|(|Nr0| + |Ñr|)
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎞

⎟⎟⎟⎠ .

Denote

M =

⎛

⎜⎜⎜⎝

PrA|Er|
0
0
0

⎞

⎟⎟⎟⎠ , E =
(

0 0 |Nr|T |Nr0|T + |Ñr|T
)

.

Applying the Schur complement theorem twice yields

Φ̃ =

⎛

⎜⎝
Φ M ET

∗ –I 0
∗ ∗ –I

⎞

⎟⎠ < 0 ⇒ Φ + MMT + E
T
E < 0.
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Moreover, Lemma 2.1 yields

Θr = Φr + �Φ ≤ Φr + MMT + E
T
E < 0. (3.19)

Combining (3.19) and (3.17) results in

LV(t, r) ≤ χTΘrχ ≤ 0.

It follows by the standard Lyapunov functional theory that the null solution of sys-
tem (2.1) is globally robustly asymptotically stochastically stable. Thus conclusion (c) is
proved. �

Remark 3 It is the first time that the boundedness of p-Laplacian reaction–diffusion high-
order neural networks is investigated and the robust stability criterion is derived for such
complex systems. If p = 2, then we will further derive a better corollary.

4 Applications and analysis
In the case of p = 2, system (2.1) reduces to the common reaction–diffusion Cohen–
Grossberg neural networks (2.12). Applying Theorem 3.3 and Lemma 2.3 to the Sobolev
space W 1,2

0 (Ω) results in the following corollary.

Corollary 4.1 Assume that

(
B –

(|Wr| + |Er||Nr|
)
F2 –

(|Tr| + |Er||Nr0|
)
G2 –

(
Γ |T̃r| + |Er||Ñr|

)
G2
)–1 � 0, r ∈ S.

Then:
(a) System (2.12) or System (2.13) has a unique equilibrium point.
(b) All the solutions of system (2.12) and system (2.13) are bounded.

Suppose, in addition, that there are positive definite diagonal matrices Pr (r ∈ S),
K0, and K1 such that the following condition holds for all r ∈ S:

⎛

⎜⎜⎜⎜⎜⎜⎝

Ar 0 PrA|Wr| + K0(F1 + F2) PrA(|Tr| + Γ |T̃r|) PrA|Er| 0
∗ –2G1K1G2 0 K1(G1 + G2) 0 0
∗ ∗ –2K0 0 0 |Nr|T
∗ ∗ ∗ –2K1 0 |Nr0|T + |Ñr|T
∗ ∗ ∗ ∗ –I 0
∗ ∗ ∗ ∗ ∗ –I

⎞

⎟⎟⎟⎟⎟⎟⎠
< 0

with Ar = Ar – 2F1K0F2 – 2λ1DPr . Then:
(c) The unique equilibrium point of system (2.12) or system (2.13) is globally robustly

asymptotically stochastically stable, where λ1 is the smallest positive eigenvalue of the
Neumann boundary problem (2.15).

Remark 4 Corollary 4.1 illustrates that the diffusion item plays its role in stability criterion
of high-order reaction–diffusion system, whereas the influence of the diffusion term was
ignored in [31, Thm. 1].

Remark 5 The Weber theorem of one-variable quadratic equation was flexibly applied to
the LMI approach of robust stability criterion for reaction–diffusion neural networks. As
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far as we are concerned, seldom literature related to reaction–diffusion neural networks
involves such a technique.

Remark 6 It is the first time that both boundedness result and robust stability criterion of
reaction–diffusion high-order neural networks are derived.

If the stochastic factor, the input variable, and parameter uncertainty are neglected,
then (2.12) becomes a deterministic system. Furthermore, letting ai(s) ≡ 1, bi(s) = b̄is, and
Tijl(t) = 0, then system (2.12) is reduced to the following reaction–diffusion cellular neural
network:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

∑n
k=1

∂
∂xk

(Di
∂ui(t,x)

∂xk
) – [b̄iui(t, x) –

∑n
j=1 Wijfj(uj(t, x))

–
∑n

j=1 Tijfj(uj(t – τ (t), x))], i = 1, 2, . . . , n,
∂ui(t,x)

∂xj
= 0, i, j = 1, 2, . . . , n, (t, x) ∈ [0, +∞) × ∂Ω ,

ui(s, x) = ξi(s, x), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ].

(4.1)

Definition 4.2 For any T > 0 and x ∈ Ω , u = {(u1(t, x), u2(t, x), . . . , un(t, x))}[0,T] with
T ∈ (0,∞] is called a mild solution of (4.1) if for any i ∈ N � {1, 2, . . . , n}, ui(t, ·) ∈
C([0, T]; L2(Ω)) and the following integral equations hold for t ∈ [0, T] and x ∈ Ω :

ui(t, x) = eqit�ξi(0, x) –
∫ t

0
eqi(t–θ )�

[
b̄iui(θ , x) –

n∑

j=1

Wijfj
(
uj(θ , x)

)

–
n∑

j=1

Tijfj
(
uj
(
θ – τ (θ ), x

))
]

dθ ,

and

ui(t, x) = ξi(t, x) ∀(s, x) ∈ [–τ , 0] × Ω ,

∂νui(t, x) = 0 ∀(t, x) ∈ [0, +∞] × ∂Ω .

Moreover, if the diffusion phenomenon is ignored, (4.1) degenerates into the following
cellular neural network:

⎧
⎨

⎩
dxi(t) = –b̄ixi(t) +

∑n
j=1 Wijfj(xj(t)) +

∑n
j=1 Tijfj(xj(t – τ (t))), t ≥ 0, i ∈N ,

xi(s) = ξi(s), s ∈ [–τ , 0].
(4.2)

For system (4.2), we get the following concise conclusion under the meaning of Defini-
tion 4.2.

Theorem 4.3 If fi is Lipschitz continuous with Lipschitz constants Li > 0 and fi(0) = 0 for
all i = 1, 2, . . . , n, then system (4.2) is globally exponentially mean-square stable.

To prove Theorem 4.3, we need to utilize [6, Thm. 5], to derive the following lemma.

Lemma 4.4 Let fi and σi be Lipschitz continuous with Lipschitz constants Li > 0 and Ti >
0 for i ∈ N , respectively. Let, in addition, fi(0) = 0 = σi(0) for i ∈ N . Then the following
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time-delay ordinary differential equations are globally stochastically exponentially mean-
square stable:

⎧
⎪⎪⎨

⎪⎪⎩

dxi(t) = –[aixi(t) –
∑n

j=1 bijfj(xj(t)) –
∑n

j=1 cijfj(xj(t – τ (t)))

–
∑n

j=1 hij
∫ t

t–ρ(t) fj(xj(s)) ds] dt + σi(xi(t)) dwi(t), t ≥ 0, i ∈N ,

xi(t) = ζi(t), (s) ∈ [–τ , 0].

(4.3)

Proof Rao and Zhong [6] utilized the Banach fixed point theorem, the Hölder inequal-
ity, the Burkhold–Davis–Gundy inequality, and the continuous semigroup of the Laplace
operator to derive the globally stochastically exponential stability in mean square of the
following impulsive stochastic reaction–diffusion cellular neural network with distributed
delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t, x) = qidiv∇ui(t, x) dt

– [aiui(t, x) –
∑n

j=1 bijfj(uj(t, x)) –
∑n

j=1 cijfj(uj(t – τ (t), x))

–
∑n

j=1 hij
∫ t

t–ρ(t) fj(uj(s, x)) ds] dt + σi(ui(t, x)) dwi(t),

t �= tk , x ∈ Υ , i ∈N ,

u(t+
k , x) = u(t–

k , x) + g(u(tk , x)), x ∈ Υ , k = 1, 2, . . . ,

ui(t, x) = ζi(t, x), (s, x) ∈ [–τ , 0] × Υ ,

u(t, x) = 0, u ∈ [0, +∞] × ∂Υ .

(4.4)

Letting qi = 0 in [6, Thm. 5], the diffusion phenomenon is ignored. Furthermore, if the
impulse phenomenon is neglected, then partial differential equations (4.4) degenerate into
the ordinary differential equations (4.2). In [6, (H1)], qi = 0 implies that γ > 0 can be big
enough if � is selected well. In [6, (6)], Gi = 0 (impulse phenomenon being ignored). So
by [6, (6)] we can get

κ � 6M2

[
1
γ 2

(
max
i∈N

a2
i

)
+ n

1
γ 2 max

i∈N

( n∑

j=1

(|bij|2 + |cij|2
)
L2

j

)
+

nτ 2

γ 2 +
2
γ

(
max
i∈N

T2
i

)]
.

Obviously, κ ∈ (0, 1) if letting γ big enough. Due to [6, Thm. 5], we complete the
proof. �

Proof of Theorem 4.3 Now, letting hij = 0 and σi(·) = 0 in Lemma 4.4, we can deduce The-
orem 4.3 immediately. �

Next, we discuss the boundedness of all the mild solutions of system (4.1). We further
assume that the initial value ξi(s, x) is bounded for all (s, x) ∈ [–τ , 0] × Ω .

Definition 4.5 Model (4.1) is said to be uniformly bounded in L∞ if for any given τ1 > 0
and for all t ∈ [τ1, T] with T ∈ (0,∞), we have

∥∥ui(t, ·)∥∥L∞(Ω) ≤ C ∀i ∈N .
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Lemma 4.6 ([48, 49]) Let Ω ⊂ R
N (N ∈ N) be a bounded domain with smooth boundary,

and let � denote the Laplacian in Ls(Ω) with domain

{
z ∈ W 2,s(Ω)|∇ · ν = 0 on ∂Ω

}

for s ∈ (1,∞). Then the operator –� + 1 is sectorial and possesses closed fractional pow-
ers (–� + 1)η,η ∈ (0, 1), with dense domain D((–� + 1)η). Moreover, the following three
properties hold.

(i) If m ∈ {0, 1}, p ∈ [1,∞], and q ∈ (1,∞), then there exists a constant C1 > 0 such that,
for all z ∈ D((–� + 1)η),

‖z‖W m,p(Ω) ≤ C1
∥∥(–� + 1)ηz

∥∥
Lq(Ω),

(ii) Suppose p ∈ [1,∞). Then the associated heat semigroup (et�)t≥0 maps Lp(Ω) into
D((–� + 1)η) in Lp(Ω), and there exist constants C2 > 0 and λ2 > 0 such that

∥∥(–� + 1)ηet(�–1)z
∥∥

Lp(Ω) ≤ C2t–ηe–λ2t‖z‖Lp(Ω)

for all z ∈ Lp(Ω) and t > 0.
The initial value ξi(s, x) is further assumed to be bounded for all (s, x) ∈ [–τ , 0] × Ω .

Theorem 4.7 If fi is Lipschitz continuous with Lipschitz constants Li > 0 with fi(0) = 0 for
all i = 1, 2, . . . , n and ‖eDit�‖ ≤ Me–γ t , then model (4.1) is uniformly bounded in L∞, where
M > 0 and γ > 0 are constants.

Proof Employing the variation-of-constants formula for ui, we derive that, for any τ1 > 0,

ui(t, x) = eDit(�–1)ui(τ1, x) –
∫ t

τ1

eDi(t–s)(�–1)

{[
b̄iui(s, x) –

n∑

j=1

Wijfj
(
uj(s, x)

)

–
n∑

j=1

Tijfj
(
uj
(
s – τ (s), x

))
]

– Diui(s, x)

}
ds, t ≥ τ1, (4.5)

Letting q = 2 and η ∈ ( 1
2 , 2

3 ) in Lemma 4.6, we see that

∥∥eDit(�–1)ui(τ1, ·)∥∥L∞(Ω) ≤ (
C1
∥∥(–� + 1)ηeDit(�–1)ui(τ1, ·)∥∥L2(Ω)

)

≤ (
C1C2t–ηe–Diλ2t∥∥ui(τ1, ·)∥∥L2(Ω)

)≤ C3. (4.6)

Here λ2 > 0 is the first positive eigenvalue of the Neumann boundary problem

⎧
⎨

⎩
(–� + 1)ϕ = λϕ in Ω ,

∂νϕ = 0 on ∂Ω ,

where ∂ν denotes differentiation with respective to the outward normal of ∂Ω .
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In view of Definition 4.5, we can similarly derive

∥∥∥∥∥

∫ t

τ1

eDi(t–s)(�–1)
n∑

j=1

cijfj
(
uj
(
s – τ (s), x

))
ds

∥∥∥∥∥
L∞(Ω)

≤
n∑

j=1

C1C2|cij|Lj

∫ t

τ1

(t – s)–ηe–Diλ2t∥∥uj
(
s – τ (s), x

)∥∥
L2(Ω) ds ≤ C4.

Similarly, we can utilize the trigonometric inequality to prove

∥∥∥∥∥

∫ t

τ1

eDi(t–s)(�–1)

{[
b̄iui(s, x) –

n∑

j=1

Wijfj
(
uj(s, x)

)

–
n∑

j=1

Tijfj
(
uj
(
s – τ (s), x

))
]

– Diui(s, x)

}
ds

∥∥∥∥∥
L∞(Ω)

≤ C5. (4.7)

Combining (4.5)–(4.7) results in

∥∥ui(t, ·)∥∥L∞(Ω) ≤ C, ∀i ∈N ,

which completes the proof. �

By employing the method similar to that of the proof of Lemma 4.4, we get the following
corollary from Theorem 4.7.

Corollary 4.8 If fi is Lipschitz continuous with Lipschitz constants Li > 0 with fi(0) = 0 for
all i = 1, 2, . . . , n, then model (4.2) is uniformly bounded under in L∞.

5 Numerical example
Example 5.1 Consider system (2.1) or (2.6) with the following data. Let n = 2, S = {1, 2},
and rewrite system (2.1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

∑2
k=1

∂
∂xk

(Di|∇ui(t, x)|p–2 ∂ui(t,x)
∂xk

)

– ai(ui(t, x))[bi(ui(t, x)) –
∑2

j=1 Wrij(t)fj(uj(t, x))

–
∑2

j=1 Trij(t)gj(uj(t – τ (t), x))

–
∑2

j=1
∑2

l=1 Trijl(t)gj(uj(t – τ (t), x))gl(ul(t – τ (t), x)) + αi],

∀r ∈ S = {1, 2}, i = 1, 2,
∂ui(t,x)

∂xj
= 0, i, j = 1, 2, (t, x) ∈ [0, +∞) × ∂Ω ,

ui(s, x) = ξi(s, x) = cos200(s2 + x3) + sin(sx3),

x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ], i = 1, 2,

(5.1)

where Ω = [0, 1] × [0, 1] ⊂ R2, p = 2.116, and

a1(s) = 0.8 + 0.05
(
1 + cos2 s

)
, a2(s) = 0.8 + 0.08

(
1 + cos2 s2), s ∈ R;

b1(s) = 3s + sin s, b2(s) = 2.9s – sin s, s ∈ R;
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f1(s) = 0.2s + 0.01 sin s, f2(s) = 0.2s + sin(0.01s), s ∈ R;

g1(s) = 0.11 sin s, g2(s) = sin(0.12s), s ∈ R.

Remark 7 Here, we only verify that b1(·) satisfies (H2). Other functions can be similarly
verified to satisfy the corresponding conditions. Obviously, b1(0) = 0, and the Lagrange
mean value theorem yields

b1(s) – b1(r) = (s – r)(3 + cosη) ⇒ b1(s) – b1(r)
s – r

= 3 + cosη ≥ 2, s, r ∈ R, s �= r.

This verifies that b1(·) satisfies condition (H2).
Next, we propose the following data for system (2.1) or (2.6):

B =

(
2 0
0 1.9

)
, F1 =

(
–0.13 0

0 –0.15

)
, F2 =

(
0.21 0

0 0.22

)
,

G1 =

(
–0.131 0

0 –0.151

)
, G2 =

(
0.18 0

0 0.19

)
, D =

(
0.016 0

0 0.019

)
,

T1 =

(
0.11 0.01

0 0.119

)
, T2 =

(
0.101 0.01
–0.01 0.119

)
,

M =

(
0.11
0.12

)
, Γ =

(
0.11 0.12 0 0

0 0 0.11 0.12

)
.

T11 =

(
0.11 0.01
0.12 0.12

)
, T12 =

(
0.12 0.011
0.13 0.112

)
, T̃1 =

⎛

⎜⎜⎜⎝

0.22 0.013
0.13 0.24
0.24 0.141

0.141 0.224

⎞

⎟⎟⎟⎠ ,

T21 =

(
0.117 0.011
0.12 0.121

)
, T22 =

(
0.112 0.011
0.113 0.118

)
, T̃2 =

⎛

⎜⎜⎜⎝

0.234 0.131
0.131 0.242
0.224 0.124
0.124 0.236

⎞

⎟⎟⎟⎠ ,

W1 =

(
0.101 0.011

0.0112 0.103

)
, W2 =

(
0.133 0.021

0.0112 0.11265

)
, E1 =

(
0.118 0.011
0.012 0.111

)
,

E2 =

(
0.113 0.01
–0.02 0.115

)
, N1 =

(
0.111 0.0011

0 0.1002

)
, N2 =

(
0.103 0.011
0.012 0.11795

)
,

Ñ1 =

(
0.117 0.012
0.011 0.1101

)
, Ñ2 =

(
0.103 0.001

–0.012 0.1215

)
,

N10 =

(
0.1011 0.001

0.01 0.1003

)
,

N20 =

(
0.1143 0.011
0.012 0.11555

)
, A =

(
0.833 0

0 0.8101

)
, A =

(
1.001 0

0 0.8993

)
,

Π =

(
γ11 γ12

γ21 γ22

)
=

(
–0.3896 0.3896
0.5788 –0.5788

)
.
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Figure 1 Computer simulations of the state u1(t, x)

Let αi = 1
2i+1 , ξi(s, x) = cos(s2 + x2 + i), i = 1, 2; τ (t) = 9.878 cos2 t, and τ = 9.878. Now we can

compute by Matlab that

(
B –

(|W1| + |E1||N1|
)
F2 –

(|T1| + |E1||N10|
)
G2 –

(
Γ |T̃1| + |E1||Ñ1|

)
G2
)–1

=

(
1.9444 –0.0111

–0.0113 1.8398

)–1

=

(
0.5143 0.0031
0.0032 0.5436

)
� 0

and

(
B –

(|W2| + |E2||N2|
)
F2 –

(|T2| + |E2||N20|
)
G2 –

(
Γ |T̃2| + |E2||Ñ2|

)
G2
)–1

=

(
1.9395 –0.0160

–0.0133 1.8364

)–1

=

(
0.5156 0.0045
0.0037 0.5446

)
� 0,

so that (3.5) is satisfied.
Moreover, running Matlab LMI toolbox on LMI condition (3.6) results in

P1 =

(
2.4653 0

0 1.5081

)
, P2 =

(
11.5294 0

0 7.4705

)
,

K0 =

(
522.2023 0

0 455.3373

)
, K1 =

(
0.0479 0

0 0.0422

)
.

Therefore, according to Theorem 3.3, there exists a unique equilibrium point for system
(5.1), which is globally robustly asymptotically stochastically stable, and all the solutions
of system (5.1) are bounded (see Figs. 1–2).

Remark 8 In [31, Thm. 1], the equilibrium point of system (1.1) is globally exponentially
stable in norm ‖ · ‖2 in the mean square for any time-varying delays τ (t) satisfying τ̇ (t) ≤
η < 1, whereas the condition τ̇ (t) ≤ η < 1 is not necessary in our Theorem 3.3 (see, e.g.,
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Figure 2 Computer simulations of the state u2(t, x)

Example 5.1). Due to the ingenious employment of our Lemma 3.2, we get robust stability
criteria and boundedness results in our Theorem 3.3 and Corollary 4.1 whereas such newly
obtained results did not appear in [31, Thm. 1]. Motivated by some good methods and
results, we have created some new methods and results in this paper.

In [50], stability of periodic solution for reaction–diffusion high-order Hopfield neural
networks with time-varying delays was derived, which gives us a lot of beneficial inspira-
tion.

Remark 9 In comparison with [50, Thms. 3.1–3.3], our Theorem 3.3 and Corollary 4.1
give criteria of LMI conditions, which can be applicable to Matlab LMI toolbox, implying
that our Theorem 3.3 and Corollary 4.1 are more practical than [50, Thms. 3.1–3.3]. In
addition, the boundedness is not considered in [50], whereas in this paper we presented
boundedness results.

6 Conclusions and further considerations
It is the first time that the boundedness of p-Laplacian reaction–diffusion Markovian jump
high-order neural networks is obtained, and the given robust stability criteria are applied
to computer Matlab LMI toolbox, which is applicable to wide calculations of practical
complex engineering. Finally, a numerical example demonstrates the effectiveness of the
proposed method.

Under the Lipschitz condition on the active function, Theorem 4.3 and Corollary 4.8
present the stability and boundedness result for system (4.2). So we want to know whether
the following system is bounded and stable under similar concise conditions:

⎧
⎪⎪⎨

⎪⎪⎩

dxi(t)
dt = –ai(xi(t))[bi(xi(t)) –

∑n
j=1 Wij(t)fj(xj(t)) –

∑n
j=1 Tij(t)gj(xj(t – τ (t)))

–
∑n

j=1
∑n

l=1 Tijl(t)gj(xj(t – τ (t)))gl(xl(t – τ (t))) + αi], i = 1, 2, . . . , n,

xi(s) = ξi(s), x ∈ Ω , –τ ≤ s ≤ 0, τ (t) ∈ [0, τ ].

This is an interesting problem.
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