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Abstract
In this paper, the global attractivity of the homogeneous equilibrium solution for the
diffusive age-structured model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t +

∂u
∂a = D(a) ∂

2u
∂x2

– d(a)u, t ≥ t0 ≥ Al > 0,a ≥ 0, 0 < x < π ,

w(t, x) =
∫ Al
τ u(t,a, x)da, t ≥ t0 ≥ Al > 0, 0 < x < π ,τ ≥ 0,

u(t, 0, x) = f (w(t, x)), t ≥ t0 ≥ Al > 0, 0 < x < π ,

ux(t,a, 0) = ux(t,a,π ) = 0, t ≥ t0 ≥ Al > 0,a ≥ 0,

is established when the diffusion and death rates, D(a) and d(a), respectively, are age
dependent during the whole life of the species, and when the birth function f (w) is
nonmonotone. In the paper, we also present some demonstrative examples.
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1 Introduction
Temporal maturation and spatial movement play a major role in many biological systems.
Therefore, many mathematical models and studies have appeared recently dealing with
the interaction between them; e.g., see [2–6, 8, 9, 11, 13–17, 20, 24, 26, 27, 29]. One of the
most popular techniques that has been used to study the interaction between the tempo-
ral maturation and the spatial movement is the Smith–Thieme age-structure technique
[17]. In this technique, the species population is divided into two categories: the imma-
ture population and the mature population. At different ages, the diffusive age-structured
model is given by

∂

∂t
u(t, a, x) +

∂

∂a
u(t, a, x) = D(a)

∂2

∂x2 u(t, a, x) – d(a)u(t, a, x), (1.1)

where u(t, a, x) is the size of the species population at any time t ≥ 0, age a ≥ 0, and a
spatial location x ∈ Ω ⊆ R; the functions D(a) and d(a) are the age-dependent diffusion
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and death rates of the species; see [12]. Let τ ≥ 0 be the maturation time of the species
and Al > 0 be its life span. Then the size of the mature population at any time t ≥ 0 and a
spatial location x ∈ Ω is given by

w(t, x) =
∫ Al

τ

u(t, a, x) da. (1.2)

Since only the mature individuals can reproduce, we assume that

u(t, 0, x) = f
(
w(t, x)

)
, (1.3)

where f (w) is a given birth function.
In [20], So et al. assumed that the diffusion and death rates of the mature population

are age independent. Particularly, Dm(a) = D and dm(a) = d, where D and d are positive
constants. By using this assumption and by applying the method of characteristics, So et
al. derived the following reaction–diffusion equation:

∂

∂t
w(t, x) = D

∂2

∂x2 w(t, x) – dw(t, x) + u(t, τ , x). (1.4)

The function u(t, τ , x) appears above is called the maturation rate of the species, and is
formulated by

u(t, τ , x) = κ

∫ ∞

–∞
Γδ(x – y)f

(
w(t – τ , y)

)
dy,

where

κ = exp

[

–
∫ τ

0
dI(a) da

]

,

δ =
∫ τ

0
DI(a) da,

and

Γδ(x) =
exp{–x2

4δ
}√

4πδ
.

The age-dependent functions DI(a) and dI(a) are the immature population diffusion and
death rates, respectively. In conclusion, So et al. deduced the non-local time-delayed
reaction–diffusion equation:

∂

∂t
w(t, x) = D

∂2

∂x2 w(t, x) – dw(t, x) + κ

∫ ∞

–∞
f
(
w(t – τ , y)

)
Kδ(x – y) dy, (1.5)

and they investigated the existence of monotone traveling wave solutions of this equation
for the specific birth function f (w) = pw exp{–aw

1
q }. In [11], Mei and So showed the sta-

bility of these traveling wave solutions. In [10], Liang and Wu investigated the existence
of monotone traveling wave solutions of (1.5) for different birth functions. In [9], by us-
ing a numerical simulation, Liang et al. investigated the long time behavior of the solution
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of the age-structured model (1.1)–(1.3) when the spatial domain Ω is the closed inter-
val [0, l]. In their study, Liang et al. assumed the diffusion and death rates of the mature
population to be age independent, so that they can easily derive non-local time-delayed
reaction–diffusion equations similar to equation (1.5).

In [24], Thieme and Zhao showed the existence of monotone traveling waves for the
following stage-structured model:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu(t, a, x) + ∂au(t, a, x) = DI(a)	xu(t, a, x) – dI(a)u(t, a, x), 0 < a < τ , x ∈R
n,

u(t, 0, x) = f (um(t, x)), t ≥ –τ , x ∈ R
n,

∂tum(t, x) = Dm	xum(t, x) – dmg(um(t, x)) + u(t, τ , x), t > 0, x ∈ R
n,

(1.6)

where u(t, a, x) is the density of the species population at any time t ≥ –τ , age a ≥ 0, and
a location x ∈ R

n, um(t, x) is the density of the mature population at any time t ≥ –τ and
a location x ∈ R

n, the functions f (um) and g(um) are the birth and mortality rates for the
mature individuals, respectively, the age-dependent functions DI(a) and dI(a) are the dif-
fusion and mortality rates for the immature population, respectively, and the positive con-
stants Dm and dm are the age-independent diffusion and death rates for the mature popu-
lation, respectively. When the spatial domain is a closed and bounded set to R

n, the above
age-structured model has been investigated by Xu and Zhao [26] and by Jin and Zhao
[29]. In these two studies, the authors transformed Eq. (1.6) to the following non-local
time-delayed reaction–diffusion equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tum(t, x)

= Dm	xum(t, x) – dmg(um(t, x))

+
∫

Ω
Γ (χ (τ ), x, y)F (τ )f (um(t – τ , y)) dy, t > 0, x ∈ Ω ,

Bum(t, x) = 0, t ≥ 0, x ∈ ∂Ω ,

um(t, x) = ψ(t, x), t ∈ [–τ , 0], x ∈ Ω ,

(1.7)

where Γ (χ (τ ), x, y) is the Green’s function associated with the Laplacian operator 	x,
Bum := ∂um

∂n +βu, χ (τ ) :=
∫ τ

0 DI(s) ds, F (τ ) := e–
∫ τ

0 dI (s) ds, and ψ(t, x) is a positive initial data.
Particularly, Xu and Zhao in [26] investigated the global dynamics of (1.7) when the birth
function f (um) is monotonic; Jin and Zhao in [29] investigated the existence of asymptotic
spreading speeds and the dynamics of periodic solutions.

Conclusively, all these studies assumed that the diffusion and death rates of the mature
population to be age independent. In fact, many biological aspects could cause a varia-
tion in the diffusion and death rates among different ages of the mature individuals. For
example, the reproductivity of the mature individuals varies among different ages. A par-
ticular example is the human population where women at the ages between 15 to 40 years
have a lower death rate and a higher birth rate. Another example is the predation of ani-
mals where the predation of mature animals could be heavier on some certain age groups.
Therefore, the death rate of the mature individuals varies dependently on the age of ma-
ture individuals. In epidemiology, the disease infection rate could be higher in some age
groups of the mature populations. An example is the sexually transmitted diseases (STDs)
that spread among the mature individuals, and it implies to a change in the death rate
of the mature individuals depending on their age. Thus, it is more logistic to include the
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age effects of the mature population in the mathematical models. Therefore, Al-Jararha
and Ou in [1] investigated the age-structured model (1.1)–(1.3) with the assumption that
D(a) and d(a) are age-dependent functions during the whole life of the species. In their
study, the authors considered two cases: the unbounded domains case and the bounded
domains case. For the unbounded domains case, Al-Jararha and Ou derived from (1.1)–
(1.3) the following integral equation:

w(t, x) =
∫ Al

τ

∫ ∞

–∞
b
(
w(t – s, y)

)e–(x–y)2/4α(s)
√

4πα(s)
β(s) dy ds, t ≥ Al, (1.8)

where

α(a) =
∫ a

0
D(ξ ) dξ

and

β(a) = exp

[

–
∫ a

0
d(ξ ) dξ

]

,

and then they proved the existence of monotone traveling wave solutions for it. In the
bounded domains case, particularly, Ω = [0,π ], Al-Jararha and Ou derived from (1.1)–
(1.3) equipped with the Neumann boundary conditions the following integral equation:

w(t, x) =
∫ Al

τ

∫ π

0
Π (a, x, y)f

(
w(t – a, y)

)
dy da, t ≥ Al, (1.9)

where the kernel function Π (a, x, y) is given by

Π (a, x, y) =
β(a)
π

(

1 + 2
∞∑

n=1

e–n2α(a) cos nx cos ny

)

.

To study the dynamics of (1.9), particularly, the existence and the global stability of the
homogeneous equilibrium solution of (1.9), Al-Jararha and Ou assumed that f (w) is a
monotone function. So, they can apply the theory of monotone dynamics and the com-
parison concepts to prove the desired result.

In this paper, we prove the global attractivity of such homogeneous equilibrium solu-
tion with the assumption that f (w) is a non-monotone function. In this case, the theory
of monotone dynamics and the comparison arguments cannot be applied. Therefore, to
prove our main result, we apply the fluctuation method. The fluctuation method has been
improved in [23] to study the global dynamics of the non-local time-delayed reaction–
diffusion predator–prey model, and later it has been used in many mathematical articles
to deal with the non-monotone dynamics difficulties; e.g., see [7, 18, 21–24, 31].

The paper is organized as follows. In Sect. 2, we present some preliminary results and
concepts. In Sect. 3, we prove the main result. In Sect. 4, we present some demonstrative
examples. Section 5 is devoted to the concluding remarks and discussions.
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2 Preliminaries
In this section, we present some preliminary concepts and some previous results. Let
X = C([0,π ],R) be the space of all continuous real valued functions defined on the closed
interval [0,π ] equipped with the usual supremum norm:

‖ψ‖∞ = sup
x∈[0,π ]

∣
∣ψ(x)

∣
∣.

Let X
+ = {ψ(x) ∈ X | ψ(x) ≥ 0, x ∈ [0,π ]} be its positive cone. It is well known that

Int(X+) �= φ. Hence, a strongly positive relation on X
+ can be defined. This relation is de-

fined as follows: for any two functions η and ψ in X, we have η(x) 	 ψ(x) if and only if
η(x) ≤ ψ(x), ∀x ∈ [0,π ]. Thus, the pair (X,X+) forms a strongly ordered Banach space.
Also, we consider the functions space Y = C([t0 – Al, t0],X), where t0 ≥ Al is fixed, with its
ordered positive cone Y

+ = C([t0 – Al, t0],X+). For convenience, we identify each ψ ∈ Y
+

as a function from [t0 – Al, t0] × [0,π ] to R as follows: ψ(s, x) = ψ(s)(x). For any function
ξ (·) : [t0 – Al, c) → X, where c > t0, define ξt ∈ Y by ξt(s) = ξ (t + s), ∀s ∈ [t0 – Al, t0). Let
M > 0. Then define the positive cone ΣM := {ψ(x) ∈ X

+ | ψ(x) ≤ M, x ∈ [0,π ]} and the
function space ZM = C([t0 – Al, t0],ΣM). Assume that f (w) is a Lipschitz continuous func-
tion. Then by applying the method of steps (for example, see [25]) the nonlinear integral
equation

⎧
⎪⎪⎨

⎪⎪⎩

w(t, x) =
∫ Al
τ

∫ π

0 Π (a, x, y)f (w(t – a, y)) dy da, t ≥ Al, x, y ∈ [0,π ],

wx(t, 0) = wx(t,π ) = 0, t ≥ t0,

w(s, x) = ψ(s, x) ≥ 0, t0 – Al ≤ s ≤ t0, x ∈ [0,π ],

(2.1)

where

Π (a, x, y) =
β(a)
π

(

1 + 2
∞∑

n=1

e–n2α(a) cos nx cos ny

)

, (2.2)

has a unique solution w(t, x,ψ) for any t ≥ t0 and ψ ∈ Y
+. Therefore, we can define the

semiflow Φ(t) : Y+ → Y
+, by (Φ(t)ψ)(s, x) = w(t + s, x,ψ),∀s ∈ [t0 – Al, t0] and x ∈ [0,π ]. In

addition, the semiflow Φ(t) : Y+ →Y
+ is compact for ∀t > t0; see [25]. The concept of the

semiflow can be found in [30, p. 8] (also, one can see [19, p. 2]). We note that the kernel
function Π (a, x, y) is continuous, positive, and uniformly bounded on [τ , Al] × [0,π ] ×
[0,π ]; see [1]. Moreover,

∫ π

0 Π (a, x, y) dy = 1. So, if we set π∗ :=
∫ Al
τ

∫ π

0 Π (a, x, y) dy da, then
π∗ =

∫ Al
τ

β(a) da.
To prove our main result, we need the following assumptions on the birth function f (w):
(F) Assume that:

(F1) f : R+ →R is a Lipschitz continuous function ∀w ≥ 0, f (0) = 0, f is a
differentiable function at 0 with f ′(0) = p > 0, and f (w) ≤ pw, ∀w ≥ 0.

(F2) There exists a positive constant M, such that ∀w > M we have π∗ f̄ (w) ≤ w,
where f̄ (w) := maxv∈[0,w] f (v).
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Consider the following linearized equation:

⎧
⎪⎪⎨

⎪⎪⎩

w(t, x) = p
∫ Al
τ

∫ π

0 Π (a, x, y)w(t – a, y) dy da, t ≥ Al, x, y ∈ [0,π ],

wx(t, 0) = wx(t,π ) = 0, t ≥ t0,

w(s, x) = ψ(s, x) ≥ 0, t0 – Al ≤ s ≤ t0, x ∈ [0,π ].

(2.3)

Let w(t, x) = eλtw(x) in the above equation. Then we have the following eigenvalue prob-
lem:

⎧
⎨

⎩

w(x) = p
∫ Al
τ

∫ π

0 e–aλΠ (a, x, y)w(y) dy da, x ∈ [0,π ],

wx(0) = wx(π ) = 0.
(2.4)

Set w(x) = 1 in (2.4). Then the characteristic equation of (2.4) is given by pΓ0(λ) = 1,
where Γ0(λ) =

∫ Al
τ

exp{–(λa + γ (a))}da and γ (a) :=
∫ a

0 d(ξ ) dξ . By solving this character-
istic equation, we can uniquely determine the principal eigenvalue of (2.4). Clearly, Γ0(λ)
is a decreasing function in λ and it satisfies the following inequality:

e(–λτ )
∫ Al

τ

e–γ (a) da ≤
∫ Al

τ

exp
{

–
(
λa + γ (a)

)
da

} ≤ e(–λAl)
∫ Al

τ

e–γ (a) da.

Thus, limλ→∞ Γ0(λ) = 0, limλ→–∞ Γ0(λ) = ∞, and Γ0(0) = π∗ :=
∫ Al
τ

e–γ (a) da > 0. There-
fore, there exists a unique λ0 that solves pΓ0(λ) = 1. So, λ0 is the required principal eigen-
value of (2.4); see [1, Theorem 5.1]. Moreover, λ0 > 0 if pπ∗ > 1 and λ0 < 0 if pπ∗ < 1.

By following the same argument in the proof of Lemma 6.1 [1], we have the following
theorem.

Theorem 2.1 Assume that (F1) and (F2) hold. Then the following statements are valid:
(I) for any ψ ∈ Y

+, a unique solution w(t, x,ψ) of (2.1) globally exists and
lim supt→∞ w(t, x,ψ) ≤ M uniformly for all x ∈ [0,π ].

(II) the semiflow Φ(t) : Y+ →Y
+ admits a connected global attractor on Y

+ which
attracts every bounded set in Y

+.

Also, by applying the same argument as in the proof of Lemma 6.2 and Theorem 6.3 in
[1], we have the following theorem.

Theorem 2.2 Assume that (F1) and (F2) hold. Let w(t, x,ψ) be a solution of (2.1) for ψ ∈
Y

+. Then the following statements hold:
(I) If pπ∗ < 1 and ψ ∈Y

+, then limt→∞ w(t, x,ψ) = 0.
(II) If pπ∗ > 1, then (2.1) admits at least one positive homogeneous equilibrium solution

w∗ ∈ [0, M], and there exists a positive constant σ such that
lim inft→∞ w(t, x,ψ) ≥ σ uniformly, for all ψ ∈Y

+ and x ∈ [0,π ].

Remark 2.1 Assume that pπ∗ > 1 and assume that (F1) and (F2) hold. Let F(w) =
π∗f (w) – w. Since f (w) satisfies (F1), F(0) = 0 and F ′(0) = pπ∗ – 1 > 0. Moreover, since
f (w) satisfies (F2), F(M) ≤ 0. Therefore, there exists some w∗ ∈ (0, M] such that F(w∗) = 0.
Hence, w∗ is a positive homogeneous equilibrium solution of (2.1).
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3 The main result
In this section, we prove the global attractivity of the homogeneous equilibrium solu-
tion w∗. To prove this result we apply the fluctuation method. First, we start with the
following definition.

Definition 3.1 The function f (w) : (0, M] → R satisfies the property (P); if for any u, v ∈
(0, M] with u ≤ w∗ ≤ v, u ≥ π∗f (v), and v ≤ π∗f (u), then we have v = u.

Lemma 3.1 (Lemma 2.2 [7]) A function f (w) satisfies the property (P) if one of the following
statements hold:

(P0) f (w) is a non-decreasing function on [0, M].
(P1) wf (w) is a strictly increasing function on (0, M].
(P2) f (w) is a non-increasing function for w ∈ [w∗, M], and f (π∗f (w))

w is a strictly
decreasing function for w ∈ (0, w∗].

To prove our main result, we need more assumptions on the birth function f (w); there-
fore we assume that

(F3) f ′(0) > 1, f (w)
w is a strictly decreasing function ∀w ∈ (0, M], and f (w) satisfies the

property (P).

Lemma 3.2 Let ψ ∈Y
+ with ψ(t0, ·) �≡ 0. Moreover, Let ω(ψ) be the omega limit set of the

positive orbits through ψ for the solution semiflow Ψ (t). Then ZM is positively invariant,
i.e., Φ(t)ZM ⊂ ZM . In addition, ω(ψ) ⊂ ZM .

Proof Let ψ ∈ Y
+ with ψ(t0, ·) �≡ 0, and let ω(ψ) be the omega limit set of the positive

orbits through ψ for the solution semiflow Φ(t). Then the conclusion of Theorem 2.1
implies that lim supt→∞ w(t, x,ψ) ≤ M, ∀x ∈ [0,π ]. Hence, Φ(t)ZM ⊂ ZM , and so, ω(ψ) ⊂
ZM . �

Theorem 3.1 Assume that pπ∗ > 1. Moreover, assume that (F1)–(F3) hold. Then, for any
ψ ∈Y

+ with ψ(t0, ·) �≡ 0, we have limt→∞ w(t, x,ψ) = w∗ uniformly ∀x ∈ [0,π ].

Proof. To prove the global attractivity of w∗, by Lemma 3.2, it is sufficient to prove the
global attractivity of w∗ on ZM . Therefore, let ψ ∈ ZM be such that ψ(t0, ·) �≡ 0. Then the
solution of (2.1) through ψ satisfies

w(t, x) =
∫ Al

τ

∫ π

0
Π (a, x, y)f

(
w(t – a, y)

)
dy da.

Let w∞(x) = lim supt→∞ w(t, x) and w∞(x) = lim inft→∞ w(t, x) for any x ∈ [0,π ]. Then
w∞(x) ≥ w∞(x). Since pπ∗ > 1, by Theorem 2.2, we have

0 < σ ≤ w∞(x) ≤ w∞(x) ≤ M.

Moreover, if we let w∞ = supx∈[0,π ] w∞(x) and w∞ = infx∈[0,π ] w∞(x), then 0 < σ ≤ w∞ ≤
w∞ ≤ M. Now, we define the diagonal function

F(u, v) =

⎧
⎨

⎩

min{f (w) : u ≤ w ≤ v}, if u ≤ v,

max{f (w) : v ≤ w ≤ u}, if v ≤ u.
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Then F(u, v) : [0, M] × [0, M] →R is a continuous function, non-decreasing in u ∈ [0, M],
non-increasing in v ∈ [0, M], and f (w) = F(w, w); see, e.g., [22, Sect. 3.6]. Since the kernel
function Π (a, x, y) is uniformly bounded for all (a, x, y) ∈ [τ , Al]× [0,π ]× [0,π ], by Fatou’s
lemma, we have

w∞(x) = lim sup
t→∞

w(t, x)

= lim sup
t→∞

∫ Al

τ

∫ π

0
Π (a, x, y)f

(
w(t – a, y)

)
dy da

≤
∫ Al

τ

∫ π

0
Π (a, x, y) lim sup

t→∞
f
(
w(t – a, y)

)
dy da

=
∫ Al

τ

∫ π

0
Π (a, x, y) lim sup

t→∞
F
(
w(t – a, y), w(t – a, y)

)
dy da

≤
∫ Al

τ

∫ π

0
Π (a, x, y)F

(
w∞, w∞

)
dy da

= π∗F
(
w∞, w∞

)
.

Thus,

w∞(x) ≤ π∗F
(
w∞, w∞

)
. (3.1)

Using the same argument, we have the following inequality:

w∞(x) ≥ π∗f
(
w∞, w∞)

. (3.2)

Obviously, by the definition of F(u, v), there exist u, v ∈ [w∞, w∞] ⊂ [0, M] such that f (u) =
F(w∞, w∞) and f (v) = F(w∞, w∞). Hence,

f (u) = F
(
w∞, w∞

) ≥ w∞

π∗ ≥ u
π∗

(
v

π∗

)

(3.3)

and

f (v) = F
(
w∞, w∞) ≤ w∞

π∗ ≤ v
π∗

(
u
π∗

)

. (3.4)

Consequently,

π∗f (v)
v

≤ 1 =
π∗f (w∗)

w∗ ≤ π∗f (u)
u

.

f (w)
w is assumed to be a strictly decreasing function on (0, M]. Then u ≤ w∗ ≤ v. Also, from

(3.3) and (3.4), we get

f (u) ≥ w∞

π∗ ≥ v
π∗ (3.5)

and

f (v) ≤ w∞
π∗ ≤ u

π∗ . (3.6)
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That is,

π∗f (u) ≥ w∞ ≥ v and π∗f (v) ≤ w∞ ≤ u.

Since f (w) satisfies the property (P), w∗ = u = v. Moreover, we have

π∗f (u) ≥ w∞ ≥ u and f (v) ≤ w∞ ≤ v.

So, w∗ = w∞ = w∞. Recall that

w∞ ≥ w∞(x) ≥ w∞(x) ≥ w∞, ∀x ∈ [0,π ].

Thus, w∞(x) = w∞(x) = w∗, ∀x ∈ [0,π ]. Hence,

lim
t→∞ w(t, x) = w∗, ∀x ∈ [0,π ]. (3.7)

To complete the proof, we need to show that limt→∞ w(t, x) = w∗ uniformly ∀x ∈ [0,π ]. In
fact, it is enough to show that ω(ψ) = {w∗},∀ψ ∈ Y

+. Let η ∈ ω(ψ). By the definition of the
omega limit set, there exists a positive time sequence tn → ∞ such that Φ(tn)ψ → η in Y

as n → ∞. This implies that

lim
n→∞ w(tn + s, x,ψ) = η(s, x)

uniformly for (s, x) ∈ [t0 – Al, t0] × [0,π ]. Hence, from (3.7), we have η(s, x) = w∗, ∀(s, x) ∈
[t0 –Al, t0]×[0,π ]. It follows that ω(ψ) = w∗. Thus w(t, ·,ψ) converges to w∗ inX as t → ∞.

4 Examples
In this section, we present some examples to demonstrate the applicability of the main
result. First, we begin with the Nicholson blowflies birth function f (w) = pwe–awq where
a, p, and q are positive constants. Then we have the following theorem.

Theorem 4.1 Let f (w) = pwe–awq , where a > 0, p > 0, and q > 0. Assume that 1 < π∗p ≤
e

2
q . Then the unique positive steady state solution w∗ = [ 1

a ln(pπ∗)]
1
q attracts all positive

solutions of (2.1).

Proof First, we remark that f (w) satisfies the conditions (F1)–(F3), f (w)/w is a strictly de-
creasing function on [0,∞). Moreover, f ′(0) = p > 0, and f (w) takes its maximum at the
point w = ( 1

aq )
1
q and f (w) = p( 1

aqe )
1
q . Assume that 1 < π∗p ≤ e

1
q , then f (w) is increasing

function on [0, w∗]. Therefore, (P0) holds with M = w∗. Now, assume that π∗p > e
1
q . In this

case, we consider M = f (w). Hence, f (w) is decreasing function on [w∗, M]. Moreover, the
function

h(w) :=
f (π∗f (w))

w
= p2π∗ exp

{
–a

(
wq +

(
pπ∗w

)qe–aqwq)}

is a strictly decreasing function on [0, u∗] if e
1
q < pπ∗ ≤ e

2
q . Thus, property (P2) holds, so

the conditions of Theorem 3.1 are satisfied. As a result, w∗ attracts every positive solution
of (2.1). �
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Next, we consider the Beverton–Holt function f (w) = pw
1+awq , a > 0, p > 0, and q > 0. Then

we have the following theorem.

Theorem 4.2 Let f (w) = pw
1+awq , where a > 0, p > 0, and q > 0. Assume that q ∈ (0, max(2,

pπ∗
pπ∗–1 )], or q > max(2, pπ∗

pπ∗–1 ) and π∗f (w) ≤ ( 2
a(q–2) )

1
q ; where pπ∗ > 1 and w is the value where

f (w) takes its maximum. Then the unique positive steady state solution w∗ = ( pπ∗–1
a )1/q

attracts every positive solutions of (2.1).

Proof First, we remark that f (w) satisfies the conditions (F1)–(F3), and f (w)/w is a strictly
decreasing function on [0,∞). Moreover, f ′(0) = p > 0, and f (w) takes its maximum at
w = ( 1

a(q–1) )
1
q and f (w) = p(q–1)

q w. Assume that q ∈ (0, 1], then f (w) is monotone increasing
on [0,∞), and hence, (P0) holds with M = w∗. Now, if we assume 1 < q ≤ 2, then wf (w) is
increasing function on [0,∞). Hence (P1) holds with M = w∗. Moreover, if 1 < pπ∗ ≤ q

q–1

(i.e., q ∈ (1, pπ∗
pπ∗–1 )), then w∗ ≤ w. Hence, if we let M = w∗, then (P0) holds. Conclusively,

if q ∈ (0, max(2, pπ∗
pπ∗–1 )], then either (P0) or (P1) holds. If q > max(2, pπ∗

pπ∗–1 ), then h(w) :=

wf (w) = pw2

1+awq is a monotone increasing function on [0, ( 2
a(q–2) )

1
q ]. Hence, if we consider

M = π∗f (w), then (P1) holds provided that π∗f (w) ≤ ( 2
a(q–2) )

1
q . Thus, the conditions of

Theorem 3.1 hold, and so, w∗ attracts every positive solution of (2.1). �

Finally, we consider the logistic function f (w) = pw(1 – w
K ), where p and K are positive

constants. Then we have the following theorem.

Theorem 4.3 Let f (w) = pw(1 – w
K ), p > 0, and K > 0 in (2.1). Moreover, assume that

1 < pπ∗ ≤ 3. Then the unique positive steady state solution w∗ = K(1 – 1
pπ∗ ) attracts ev-

ery positive solution of (2.1).

Proof First, we remark that f (w) satisfies the conditions (F1)–(F3), and f (w)/w is a strictly
decreasing function on (0, K]. Moreover, f ′(0) = p > 0, and f (w) takes its maximum at w =
K
2 with f (w) = pK

4 . Assume that 1 < pπ∗ ≤ 2, then f (w) is a monotone increasing function
on [0, 2

K ], and hence, (P0) holds with M = u∗. Assume that 2 < pπ∗ < 4, and let M = pπ∗
4 K .

Then the function

h(w) :=
f (π∗f (w))

w
=

p2π∗

K3

(
K2(K – w) – pπ∗w(K – w)2)

is a strictly decreasing function on [0, w∗] provided that 2 < pπ∗ ≤ 3. Hence, the prop-
erty (P2) holds. Therefore, the assumptions of Theorem 3.1 hold. Thus w∗ attracts every
positive solution of (2.1). �

5 Results and discussions
Since many biological aspects could cause a variation in the diffusion and death rates
among different ages of the mature individuals, it is important to investigate the dynamics
of the ecological model (1.1)–(1.3) when the diffusion and death rates are age-dependent
functions along the whole life of the species. For this purpose, the authors of [1] investi-
gated (1.1)–(1.3) under this crucial assumption. In their paper they showed the existence
of a unique positive and homogeneous equilibrium solution w∗, and they proved its global
stability when the birth function f (w) is monotone. If we assume that (F1)–(F2) hold, then
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(1.9) has a positive homogeneous equilibrium solution w∗. Moreover, if we assume that
(F3) holds and the inequality pπ∗ > 1 is satisfied, then w∗ is attracting every positive so-
lution of (2.1). To show the implication of this result, we applied it to three types of birth
functions.

We address a particular case; let D(a) = D and d(a) = d, where D and d are positive
constants, and let f (w) = pwe–aw. Assume the life span of the species is large (i.e., Al �
1) and suppose that 1 < π∗p ≤ e2. Since Al � 1, π∗ ∼ e–dτ

d . Thus, by Theorem 4.1, the
positive equilibrium solution w∗ = 1

a ln( pe–dτ

d ) is globally stable. Hence, by Theorem 2.2
and Theorem 4.1, the following two statements are valid:

(I) if pe–dτ < d, then the trivial solution is attracting every positive solution of (2.1);
(II) if 1 < pe–dτ

d ≤ e2, then the equilibrium solution w∗ = 1
a ln( pe–dτ

d ) is attracting every
positive solution of (2.1).

Here, we remark that a similar result to above threshold dynamics can be found in [28]
when the diffusion and death rates are age independent.

In the paper, we employed the method of fluctuation to prove the global attractivity of
a positive and homogeneous equilibrium solution w∗ of (1.9) in the case that f (w) is a
non-monotone function.
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