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Abstract
Consider the one-dimensional quasilinear impulsive boundary value problem
involving the p-Laplace operator

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–(φp(u′))′ = λω(t)f (u), 0 < t < 1,

–�u|t=tk =μIk(u(tk)), k = 1, 2, . . . ,n,
�u′|t=tk = 0, k = 1, 2, . . . ,n,
u′(0) = 0, u(1) =

∫ 1
0 g(t)u(t)dt,

where λ,μ > 0 are two positive parameters, φp(s) is the p-Laplace operator, i.e.,
φp(s) = |s|p–2s, p > 1, ω(t) changes sign on [0, 1]. Several new results are obtained for
the above quasilinear indefinite problem.

Keywords: Multiplicity of positive solutions; Indefinite weight function; p-Laplace
operator; Quasilinear impulsive differential equation

1 Introduction
Impulsive differential equation is regarded as a critical mathematical tool to provide a
natural description of observed evolution processes (see [1–4]). So the consideration of
impulsive differential equations has gained prominence and many authors have begun to
take a great interest in the subject of impulsive differential equations, for example, see
[5–22] and the references cited therein.

Meanwhile, the p-Laplace operator equation is a typical quasilinear operator equation,
which comes naturally from glaciology, nonlinear flow laws, and non-Newtonian mechan-
ics (see [23, 24]). Recently, various existence, multiplicity, and uniqueness results of pos-
itive solutions for differential equations with one-dimensional p-Laplace operator have
been considered [25–33]. Specially, Zhang and Ge [34] investigated the following second
order one-dimensional p-Laplace operator equation

⎧
⎪⎪⎨

⎪⎪⎩

–(φp(u′(t)))′ = f (t, u(t)), t �= tk , t ∈ (0, 1),

�u|t=tk = Ik(u(tk)), k = 1, 2, . . . , n,

u(0) =
∑m–2

i=1 aiu(ξi), u′(1) = 0,

(1.1)
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where φp(s) is p-Laplace operator, i.e., φp(s) = |s|p–2s, p > 1, (φp)–1 = φq, 1
p + 1

q = 1, tk (k =
1, 2, . . . , n, where n is a fixed positive integer) are fixed points with 0 < t1 < t2 < · · · < tk <
· · · < tn < 1, ξi (i = 1, 2, . . . , m – 2) ∈ (0, 1) is given 0 < ξ1 < ξ2 < · · · < ξm–2 < 1 and ξi �= tk ,
i = 1, 2, . . . , m – 2, k = 1, 2, . . . , n, �u|t=tk denotes the jump of u(t) at t = tk , i.e.,

�u|t=tk = u
(
t+
k
)

– u
(
t–
k
)
,

where u(t+
k ) and u(t–

k ) represent the right-hand limit and left-hand limit of u(t) at t = tk ,
respectively. Applying the classical fixed-point index theorem for compact maps, the au-
thors got several new multiplicity results of positive solutions.

On the other hand, we observe that many authors (see [35–49]) have paid more atten-
tion to a class of boundary value problems involving integral boundary conditions, which
contains two-point, three-point, and general multi-point boundary value problems as ex-
ceptional cases, see [50–58] and the references cited therein.

However, in literature there are almost no papers on multiple positive solutions for sec-
ond order impulsive nonlocal indefinite boundary value problems with one-dimensional
p-Laplace operator and multiple parameters. More precisely, the study of λ > 0, μ > 0,
p �≡ 2, Ik �= 0 (k = 1, 2, . . . , n) and ω changes sign is still open for the second order nonlocal
boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(φp(u′))′ = λω(t)f (u), 0 < t < 1,

–�u|t=tk = μIk(u(tk)), k = 1, 2, . . . , n,

�u′|t=tk = 0, k = 1, 2, . . . , n,

u′(0) = 0, u(1) =
∫ 1

0 g(t)u(t) dt,

(1.2)

where λ > 0 and μ > 0 are two parameters, ω(t) may change sign, φp(s) is a p-Laplace
operator, i.e., φp(s) = |s|p–2s, p > 1, (φp)–1 = φq, 1

p + 1
q = 1. tk (k = 1, 2, . . . , n) (where n is a

fixed positive integer) are fixed points with 0 = t0 < t1 < t2 < · · · < tk < · · · < tn < tn+1 = 1,
�u|t=tk denotes the jump of u(t) at t = tk , i.e., �u|t=tk = u(t+

k ) – u(t–
k ), where u(t+

k ) and u(t–
k )

represent the right-hand limit and left-hand limit of u(t) at t = tk , respectively.
In addition, set J = [0, 1], R+ = [0, +∞), R = (–∞, +∞), and let ω, f , Ik , and g satisfy the

following conditions:
(H1) ω : J → R is continuous, and there exists a constant ξ ∈ (0, 1) such that

ω(t) ≥ 0, t ∈ [0, ξ ], ω(t) ≤ 0, t ∈ [ξ , 1].

Moreover, ω(t) does not vanish identically on any subinterval of J .
(H2) f : R+ → R+ is continuous, and f (u) > 0 for all u > 0, there exists 0 < c ≤ 1 such that

f (x) ≥ cψ(x), x ∈ R+,

where ψ(x) = max{f (y) : 0 ≤ y ≤ x};
(H3) Ik ∈ C(R+, R+), and Ik(u) > 0 for all u > 0.
(H4) g ∈ L1[0, 1] is nonnegative and η ∈ [0, 1), where

η =
∫ 1

0
g(s) ds. (1.3)
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(H5) There exist 0 < θ1 ≤ +∞, θ1 �= p – 1, 0 < θ2 ≤ +∞, θ2 �= 1, and k1, k2, k3, k4 > 0 such
that

k1uθ1 ≤ f (u) ≤ k2uθ1 , k3uθ2 ≤ Ik(u) ≤ k4uθ2 .

(H6) There exists a number 0 < σ < ξ such that

c2k1σ
θ1

∫ ξ

σ

ω+(t) dt ≥ k2ξ
θ1

∫ 1

ξ

ω–(t) dt.

We define ω+(t) = max{ω(t), 0}, ω–(t) = – min{ω(t), 0}. Then ω(t) = ω+(t) – ω–(t).
It is well accepted that the fixed point theorem in a cone is crucial in showing the exis-

tence of positive solutions of various boundary value problems for second order differen-
tial equations.

Lemma 1.1 (Theorem 2.3.4 of [59]) Let Ω1 and Ω2 be two bounded open sets in a real
Banach space E such that 0 ∈ Ω1 and Ω̄1 ⊂ Ω2. Let the operator T : P ∩ (Ω̄2\Ω1) → P be
completely continuous, where P is a cone in E. Suppose that one of the two conditions

(i) ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2,
or

(ii) ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2,
is satisfied. Then T has at least one fixed point in P ∩ (Ω̄2\Ω1).

This paper is organized in the following fashion. In Sect. 2, we present some lemmas
to be used in the subsequent sections. Section 3 is devoted to proving the multiplicity of
positive solutions for problem (1.2), and we give an example to illustrate the main results
in the final section.

2 Preliminaries
Let J ′ = J\{t1, t2, . . . , tn}. The basic space used in this paper PC[0, 1] = {u|u : J → R
is continuous at t �= tk , left continuous at t = tk , and u(t+

k ) exists, k = 1, 2, . . . , n}. Then
PC[0, 1] is a real Banach space with the norm ‖ · ‖PC defined by ‖u‖PC = supt∈J |u(t)|.
By a solution of (1.2), we mean that a function u ∈ PC[0, 1] ∩ C2(J ′) which satisfies (1.2).

In these main results, we will make use of the following lemmas.

Lemma 2.1 Assume that (H1)–(H4) hold. Then u ∈ PC[0, 1] ∩ C2(J ′) is a solution of prob-
lem (1.2) if and only if u ∈ PC[0, 1] is a solution of the following impulsive integral equation:

u(t) =
1

1 – η

[∫ 1

0
g(t)

∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(t)

(∑

t≤tk

Ik
(
u(tk)

)
)

dt
]

+
∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ
∑

t≤tk

Ik
(
u(tk)

)
. (2.1)

Proof The proof is similar to that of Lemma 3.1 in [38]. �
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To establish the existence of multiple positive solutions in PC[0, 1] ∩ C2(J ′) of problem
(1.2), we denote

PC+[0, 1] =
{

u ∈ PC[0, 1] : min
t∈J

u(t) ≥ 0
}

,

and a cone K in PC[0, 1] by

K =
{

u ∈ PC+[0, 1] : u is concave on [0, ξ ], and u is convex on [ξ , 1]
}

. (2.2)

Let R > r > 0, define Kr = {u ∈ K : ‖u‖ < r}, KR,r = {u ∈ K : r < ‖u‖ < R}. Note that ∂Kr =
{u ∈ K : ‖u‖ = r}, KR,r = {u ∈ K : r ≤ ‖u‖ ≤ R}.

We define a map T : K → PC[0, 1] by

(Tu)(t) =
1

1 – η

[∫ 1

0
g(t)

∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(t)

(∑

t≤tk

Ik
(
u(tk)

)
)

dt
]

+
∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ
∑

t≤tk

Ik
(
u(tk)

)
, (2.3)

where η is defined in (1.3).

Lemma 2.2 From (2.1), we know that u ∈ PC[0, 1] is a solution of problem (1.2) if and only
if u is a fixed point of the map T .

Lemma 2.3 Assume that (H1)–(H6) hold. Then we have T(K) ⊂ K , and T : K → K is
completely continuous.

Proof From (2.3), we know that

(Tu)′(t) = –φq

(∫ t

0
λω(s)f

(
u(s)

)
ds

)

. (2.4)

Define q(t) : J → J as follows:

q(t) = min

{
t
ξ

,
1 – t
1 – ξ

}

,

and minσ≤t≤ξ q(t) = σ
ξ

, maxξ≤t≤1 q(t) = 1.
Firstly, for any u ∈ K , we have

∫ 1

0
ω(s)f

(
u(s)

)
ds ≥

∫ σ

0
ω+(s)f

(
u(s)

)
ds. (2.5)

In fact, by (2.2), we know that u(t) ≥ 0. Since u ∈ K , u(0) ≥ 0, and u(1) ≥ 0, we have

u(t) – u(0)
t – 0

≥ u(ξ ) – u(0)
ξ – 0

, t ∈ [0, ξ ] ⇒ u(t) ≥ q(t)u(ξ ), t ∈ [0, ξ ],

u(t) – u(1)
t – 1

≥ u(ξ ) – u(1)
ξ – 1

, t ∈ [ξ , 1] ⇒ u(t) ≤ q(t)u(ξ ), t ∈ [ξ , 1].
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As we all know, ψ is nondecreasing on J , so we have

ψ
(
u(t)

) ≥ ψ
(
q(t)u(ξ )

)
, t ∈ [0, ξ ], ψ

(
u(t)

) ≤ ψ
(
q(t)u(ξ )

)
, t ∈ [ξ , 1].

So, it follows from (H5) and (H6) that

∫ 1

0
ω(s)f

(
u(s)

)
ds –

∫ σ

0
ω+(s)f

(
u(s)

)
ds

=
∫ ξ

σ

ω+(s)f
(
u(s)

)
ds –

∫ 1

ξ

ω–(s)f
(
u(s)

)
ds

≥ c
∫ ξ

σ

ω+(s)ψ
(
u(s)

)
ds –

∫ 1

ξ

ω–(s)ψ
(
u(s)

)
ds

≥ c
∫ ξ

σ

ω+(s)ψ
(
q(s)u(ξ )

)
ds –

∫ 1

ξ

ω–(s)ψ
(
q(s)u(ξ )

)
ds

≥ c
∫ ξ

σ

ω+(s)f
(
q(s)u(ξ )

)
ds –

1
c

∫ 1

ξ

ω–(s)f
(
q(s)u(ξ )

)
ds

≥ ck1uθ (ξ )
σ θ

ξ θ

∫ ξ

σ

ω+(s) ds –
1
c

k2uθ (ξ )
∫ 1

ξ

ω–(s) ds

≥ uθ (ξ )
(

ck1
σ θ

ξ θ

∫ ξ

σ

ω+(s) ds –
1
c

k2

∫ 1

ξ

ω–(s) ds
)

≥ 0.

Secondly, if t ∈ [0, ξ ], we have

∫ t

0
ω(s)f

(
u(s)

)
ds =

∫ t

0
ω+(s)f

(
u(s)

)
ds ≥ 0.

Since p, q > 1, we get

(Tu)′′(t) =
(

–φq

(∫ t

0
λω(s)f

(
u(s)

)
ds

))′

=
(

–
(∫ t

0
λω+(s)f

(
u(s)

)
ds

)q–1)′

= –(q – 1)
(∫ t

0
λω+(s)f

(
u(s)

)
ds

)q–2

λω+(t)f
(
u(t)

)

≤ 0.

If t ∈ [ξ , 1], then we have

∫ t

0
ω(s)f

(
u(s)

)
ds =

∫ ξ

0
ω+(s)f

(
u(s)

)
ds –

∫ t

ξ

ω–(s)f
(
u(s)

)
ds

≥
∫ ξ

0
ω+(s)f

(
u(s)

)
ds –

∫ 1

ξ

ω–(s)f
(
u(s)

)
ds

=
∫ 1

0
ω(s)f

(
u(s)

)
ds
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≥
∫ σ

0
ω+(s)f

(
u(s)

)
ds

≥ 0.

And then, for t ∈ [ξ , 1], it follows from p, q > 1 that

(Tu)′′(t) =
(

–φq

(∫ t

0
λω(s)f

(
u(s)

)
ds

))′

=
(

–φq

(∫ ξ

0
λω+(s)f

(
u(s)

)
ds –

∫ t

ξ

λω–(s)f
(
u(s)

)
))′

=
(

–
(∫ ξ

0
λω+(s)f

(
u(s)

)
ds –

∫ t

ξ

λω–(s)f
(
u(s)

)
)q–1)′

= –(q – 1)
(∫ ξ

0
λω+(s)f

(
u(s)

)
ds –

∫ t

ξ

λω–(s)f
(
u(s)

)
)q–2(

–λω–(t)f
(
u(t)

))

≥ 0.

Moreover, by direct calculating, we get (Tu)(t) ≥ 0 for t ∈ J , (Tu)′′(t) ≤ 0 for t ∈ [0, ξ ],
and (Tu)′′(t) ≥ 0 for t ∈ [ξ , 1]. Thus, T(K) ⊂ K .

Then it finally follows from the Arzelà–Ascoli theorem that the operator T is completely
continuous. �

From Lemma 2.3, since (Tu)′(t) ≤ 0, then T is nonincreasing for u ∈ K . It is not difficult
to see that

‖Tu‖PC = (Tu)(0)

=
1

1 – η

[∫ 1

0
g(0)

∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(0)

(∑

t≤tk

Ik
(
u(tk)

)
)

dt
]

+
∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ

n∑

k=1

Ik
(
u(tk)

)
. (2.6)

Lemma 2.4 If (H1)–(H4) hold, then for u ∈ K we get

‖Tu‖PC ≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)
, (2.7)

‖Tu‖PC ≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )f
(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)
. (2.8)

Proof By (2.6), for u ∈ K , we have

‖Tu‖PC =
1

1 – η

[∫ 1

0
g(t)

∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(t)

(∑

t≤tk

Ik
(
u(tk)

)
)

dt
]
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+
∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ

n∑

k=1

Ik
(
u(tk)

)

≤ 1
1 – η

[∫ 1

0
g(t)

∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(t)

( n∑

k=1

Ik
(
u(tk)

)
)

dt

]

+
∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ

n∑

k=1

Ik
(
u(tk)

)

=
1

1 – η

∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)

=
1

1 – η

[∫ ξ

0
φq

(∫ s

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds +
∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

–
∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)]

ds + μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)

≤ 1
1 – η

[∫ ξ

0
φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds

+
∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds
]

+ μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)

=
1

1 – η

∫ 1

0
φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds + μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)

=
1

1 – η
φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)
.

Then (2.7) holds.
From (2.5) and (2.6), we have

‖Tu‖PC =
1

1 – η

[∫ 1

0
g(t)

∫ 1

t
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds dt

+ μ

∫ 1

0
g(t)

(∑

t≤tk

Ik
(
u(tk)

)
)

dt
]

+
∫ 1

0
φq

(∫ s

0
λω(τ )f

(
u(τ )

)
dτ

)

ds + μ

n∑

k=1

Ik
(
u(tk)

)

=
1

1 – η

{∫ ξ

0
g(t)

[∫ ξ

t
φq

(∫ s

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds

+
∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ
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–
∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds
]

dt +
∫ 1

ξ

g(t)
∫ 1

t
φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

–
∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds dt
}

+
∫ ξ

0
φq

(∫ s

0
λω+(τ )f

(
u(τ )

)
dτ

)

ds

+
∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

–
∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds + μ
1

1 – η

∫ 1

0
g(t)

∑

t≤tk

Ik
(
u(tk)

)
dt

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ 1
1 – η

∫ ξ

0
g(t)

∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ –

∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds dt

+
∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ –

∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds

+ μ

n∑

k=1

Ik
(
u(tk)

)

=
1 –

∫ 1
ξ

g(t) dt
1 – η

∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ –

∫ s

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ 1 –
∫ 1
ξ

g(t) dt
1 – η

∫ 1

ξ

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ –

∫ 1

ξ

λω–(τ )f
(
u(τ )

)
dτ

)

ds

+ μ

n∑

k=1

Ik
(
u(tk)

)

=
(1 –

∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ 1

0
λω(τ )f

(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )f
(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)
.

Then (2.8) holds. �

3 Main results
Based on the lemmas mentioned above, we give the following theorems and their proofs.

Theorem 3.1 Assume that (H1)–(H6) hold. If θ1 > p – 1 and θ2 > 1, there exist λ0 > 0 and
μ0 > 0 such that problem (1.2) admits two positive solutions for λ ∈ [λ0, +∞), μ ∈ [μ0, +∞).
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Proof Denote

A1 =
1

∫ ξ

0 λω+(τ ) dτ
φp

(
1 – η

2

)

, A2 =
1 – η

2μn
,

B1 =
1

∫ σ
σ
2

λω+(τ ) dτ
φp

(
1 – η

2α(1 – ξ )(1 –
∫ 1
ξ

g(t) dt)

)

, B2 =
1

2nμα
.

On the one hand, since θ1 > p – 1 and θ2 > 1, by (H5), we get

lim
u→0

f (u)
φp(u)

≤ lim
u→0

k2uθ1

up–1 = 0, lim
u→0

Ik(u)
u

≤ lim
u→0

k4uθ2

u
= 0.

Hence, there exists r > 0 such that

f (u) < A1φp(u), Ik(u) < A2u, u ∈ [0, r].

Then from (2.7), for u ∈ ∂Kr , then ‖u‖PC = r and 0 ≤ u(t) ≤ ‖u‖ = r for all t ∈ J . It is clear
that f (u(t)) < A1φp(u(t)) and Ik(u(t)) < A2u(t) for all t ∈ J . Then from (2.7), for u ∈ ∂Kr , we
get

‖Tu‖PC ≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ
1

1 – η

n∑

k=1

Ik
(
u(tk)

)

<
1

1 – η
φq

(∫ ξ

0
λω+(τ )A1φp

(
u(τ )

)
dτ

)

+ μ
1

1 – η

n∑

k=1

A2u(tk)

≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )A1φp

(‖u‖PC
)

dτ

)

+ μ
1

1 – η

n∑

k=1

A2‖u‖PC

=
‖u‖PC

2
+

‖u‖PC

2
= ‖u‖PC .

Consequently,

‖Tu‖PC < ‖u‖PC , ∀u ∈ ∂Kr . (3.1)

On the other hand, we denote δ(t) = min{ t
ξ

, ξ–t
ξ

}, t ∈ [0, ξ ]. If u ∈ K , then u is a nonneg-
ative function on [0, ξ ]. So we get

u(t) ≥ δ(t)‖u‖PC , t ∈ [0, ξ ].

It follows that u(t) ≥ α‖u‖PC , t ∈ [ σ
2 ,σ ], where α = min σ

2 ≤t≤σ δ(t).
Since θ1 > p – 1 and θ2 > 1, by (H5), we have

lim
u→+∞

f (u)
φp(u)

≥ lim
u→+∞

k1uθ1

up–1 = +∞, lim
u→+∞

Ik(u)
u

≥ lim
u→+∞

k3uθ2

u
= +∞.
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Furthermore, there exists 0 < r < R′ such that

f (u) ≥ B1φp(u), Ik(u) ≥ B2u, u ∈ [R′, +∞),

Choose R ≥ R′
α

. Then, for any u ∈ ∂KR, we have min σ
2 ≤t≤σ u(t) ≥ min σ

2 ≤t≤σ δ(t)‖u‖PC =
αR ≥ R′, and f (u(t)) ≥ B1up–1(t), Ik(u(t)) ≥ B2u(t), t ∈ [ σ

2 ,σ ].
Then by (2.8), for u ∈ ∂KR, we have

‖Tu‖PC ≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )f
(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )B1φp
(
u(τ )

)
dτ

)

+ μ

n∑

k=1

B2u(tk)

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )B1φp
(
α‖u‖PC

)
dτ

)

+ μ

n∑

k=1

B2α‖u‖PC

=
α(1 –

∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

‖u‖PCφq

(∫ σ

σ
2

λω+(τ )B1 dτ

)

+ μnB2α‖u‖PC

≥ 1
2
‖u‖PC +

1
2
‖u‖PC

= ‖u‖PC .

Consequently,

‖Tu‖PC ≥ ‖u‖PC , ∀u ∈ ∂KR. (3.2)

In addition, choose a number r′ ∈ (0, r). Noticing that f (u) > 0 for all u > 0 and Ik(u) > 0
for all u > 0, we can define

fr′ = min
{

f (u) : αr′ ≤ u ≤ r′}, Ikr′ = min
{

Ik : αr′ ≤ u ≤ r′},

Ir′ = min{Ikr′ : k = 1, 2, . . . , n}.

Let λ0 = 1∫ σ
σ
2

ω+(τ )fr′ dτ
φp( r′(1–η)

2(1–
∫ 1
ξ g(t) dt)(1–ξ )

), μ0 = r′
2nIr′

. Thus we have

(1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λ0ω
+(τ )fr′ dτ

)

=
1
2

r′,

μ0nIr′ =
1
2

r′.

If u ∈ ∂Kr′ , then ‖u‖PC = r′ and αr′ = min σ
2 ≤t≤σ δ(t)‖u‖PC ≤ u(t) ≤ ‖u‖PC = r′, t ∈ [ σ

2 ,σ ].
It is clear that f (u(t)) ≥ fr′ and Ik(u(t)) ≥ Ir′ , t ∈ [ σ

2 ,σ ].
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Then from (2.8), for u ∈ ∂Kr′ , we have

‖Tu‖PC ≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )f
(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λω+(τ )fr′ dτ

)

+ μ

n∑

k=1

Ir′

≥ (1 –
∫ 1
ξ

g(t) dt)(1 – ξ )
1 – η

φq

(∫ σ

σ
2

λ0ω
+(τ )fr′ dτ

)

+ μ0nIr′

=
1
2

r′ +
1
2

r′

= r′ = ‖u‖PC .

Consequently,

‖Tu‖PC ≥ ‖u‖PC , ∀u ∈ ∂Kr′ . (3.3)

Therefore, applying Lemma 1.1 to (3.1), (3.2), and (3.3) yields that T has two fixed points
u1 ∈ KR \ Kr and u2 ∈ Kr \ Kr′ . Thus, if θ1 > p – 1 and θ2 > 1, there exist λ0 > 0 and μ0 > 0
such that problem (1.2) admits two positive solutions for λ ∈ [λ0, +∞) and μ ∈ [μ0, +∞).
The proof of Theorem 3.1 is completed. �

Theorem 3.2 Assume that (H1)–(H6) hold. If 0 < θ1 < p – 1 and 0 < θ2 < 1, there exist
λ0 > 0 and μ0 > 0 such that problem (1.2) admits two positive solutions for λ ∈ (0,λ0] and
μ ∈ (0,μ0].

Proof On the one hand, since 0 < θ1 < p – 1 and 0 < θ2 < 1, by (H5), we get

lim
u→0

f (u)
φp(u)

≥ lim
u→0

k1uθ1

up–1 = +∞, lim
u→0

Ik(u)
u

≥ lim
u→0

k3uθ2

u
= +∞.

Hence, there exists r1 > 0 such that

f (u) > B1φp(u), Ik(u) > B2u, u ∈ [0, r1].

Then we have min{f (u) : αr1 ≤ u ≤ r1} > B1φp(u) and min{Ik(u) : αr1 ≤ u ≤ r1} > B2u.
If u ∈ ∂Kr1 , then ‖u‖PC = r1 and αr1 = min σ

2 ≤t≤σ δ(t)‖u‖PC ≤ u(t) ≤ ‖u‖PC = r1, t ∈
[ σ

2 ,σ ]. It is easy to see that f (u(t)) > B3φp(u(t)), Ik(u(t)) > B4u(t), t ∈ [ σ
2 ,σ ]. Then from

(2.8), for u ∈ ∂Kr1 , similar to (3.2), we have

‖Tu‖PC > ‖u‖PC , ∀u ∈ ∂Kr1 . (3.4)

On the other hand, since 0 < θ1 < p – 1 and 0 < θ2 < 1, by (H5), we have

lim
u→+∞

f (u)
φp(u)

≤ lim
u→+∞

k2uθ

up–1 = 0, lim
u→+∞

Ik(u)
u

≤ lim
u→+∞

k4uθ

u
= 0.
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Furthermore, there exists 0 < r1 < R′
1 < +∞ such that

f (u) ≤ A1

2
φp(u), Ik(u) ≤ A2

2
u, u ∈ [

R′
1, +∞)

.

Let M1 = max{f (u) : 0 ≤ u ≤ R′
1} and M2 = max{Ik : 0 ≤ u ≤ R′

1, k = 1, 2, . . . , n}. It implies
that

f (u) ≤ A1

2
φp(u) + M1, Ik(u) ≤ A2

2
u + M2, u ∈ [0, +∞).

Choose R1 ≥ {R′
1, 2φq(2

∫ ξ
0 λω+(τ )M1 dτ )

1–η
, 4μnM2}. If u ∈ ∂KR1 , then ‖u‖ = R1 and 0 ≤ u(t) ≤

R1, t ∈ J . It is easy to see that f (u(t)) ≤ A1
2 φp(u(t)) + M1, Ik(u(t)) ≤ A2

2 u(t) + M2, t ∈ J . Then
from (2.7), for u ∈ ∂KR1 , we have

‖Tu‖PC ≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )

(
A1

2
φp

(
u(τ )

)
+ M1

)

dτ

)

+ μ

n∑

k=1

(
A2

2
u(tk) + M2

)

≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )

A1

2
φp

(‖u‖PC
)

dτ +
∫ ξ

0
λω+(τ )M1 dτ

)

+ μ

n∑

k=1

A2

2
‖u‖PC + μnM2

≤ 1
1 – η

φq

(
1
2
φp

(‖u‖PC(1 – η)
2

)

+
1
2
φp

(
R1(1 – η)

2

))

+
‖u‖PC

4
+

R1

4

=
1
2

R1 +
1
2

R1

= R1 = ‖u‖PC .

Consequently,

‖Tu‖PC ≤ ‖u‖PC , ∀u ∈ ∂KR1 . (3.5)

In addition, choosing a number r′
1 ∈ (0, r1), we can define

f r′1 = max
{

f (u) : 0 < u ≤ r′
1
}

, Ir′1
k = max

{
Ik(u) : 0 < u ≤ r′

1
}

,

Ir′1 = max
{

Ir′1
k : k = 1, 2, . . . , n

}
.

Let λ0 = 1
∫ ξ

0 ω+(τ )f r′1 dτ
φp( r′1(1–η)

2 ) and μ0 = r′1
2nIr′1

. It is clear that

1
1 – η

φq

(∫ ξ

0
λ0ω+(τ )f r′1 dτ

)

≤ 1
2

r′
1, μ0nIr′1 ≤ 1

2
r′

1.
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If u ∈ ∂Kr′1 , then ‖u‖PC = r′
1 and 0 ≤ u(t) ≤ ‖u‖PC = r′

1, t ∈ J . It is clear that f (u(t)) ≤ f r′1 ,
Ik(u(t)) ≤ Ir′1 , t ∈ J . Then from (2.7), for u ∈ ∂Kr′1 , we have

‖Tu‖PC ≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )f

(
u(τ )

)
dτ

)

+ μ

n∑

k=1

Ik
(
u(tk)

)

≤ 1
1 – η

φq

(∫ ξ

0
λω+(τ )f r′1 dτ

)

+ μ

n∑

k=1

Ir′1

≤ 1
1 – η

φq

(∫ ξ

0
λ0ω+(τ )f r′1 dτ

)

+ μ0nIr′1

=
1
2

r′
1 +

1
2

r′
1

= r′
1 = ‖u‖PC .

Consequently,

‖Tu‖PC ≤ ‖u‖PC , ∀u ∈ ∂Kr′1 . (3.6)

Therefore, applying Lemma 1.1 to (3.4), (3.5), and (3.6) yields that T has two fixed points
u′

1 ∈ KR1 \Kr1 and u′
2 ∈ Kr1 \Kr′1 . Thus, if 0 < θ1 < p – 1 and 0 < θ2 < 1, there exist λ0 > 0 and

μ0 > 0 such that problem (1.2) admits two positive solutions for λ ∈ (0,λ0] and μ ∈ (0,μ0].
The proof of Theorem 3.2 is finished. �

Remark 3.1 If Ik = 0 (k = 1, 2, . . . , n), even for the case g(t) ≡ 0 on J , the results of the
present paper are still novel.

Remark 3.2 Comparing with Li, Feng, and Qin [60], the main features of this paper are as
follows:

(i) p > 1 is considered, not only p ≡ 2.
(ii) Ik �= 0 (k = 1, 2, . . . , n) is considered.

(iii) The basic space PC[0, 1] is available, not C[0, 1].

4 An example
We give an example to illustrate our main conclusions.

Example 4.1 Let p = 3
2 , n = 1, t1 = 1

2 . Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(φp(u′))′ = λω(t)(u + sin u), 0 < t < 1,

–�u|t=t1 = μI1(u(t1)),

�u′|t=t1 = 0,

u′(0) = 0, u(1) =
∫ 1

0 g(t)u(t) dt,

(4.1)

where

ω(t) =

⎧
⎨

⎩

12( 2
3 – t), t ∈ [0, 2

3 ],
2
3 – t, t ∈ [ 2

3 , 1],
I1(u) = u2, g(t) = t.
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From the definition of ω(t) and g(t), we know that ξ = 1
2 and η =

∫ 1
0 t dt = 1

2 . From p = 3
2 ,

we can get that q = 3.
Since f is nondecreasing, then c = 1. For fixed k1 = 1, k2 = 2, θ1 = 1, k3 = k4 = 1, θ2 = 2,

σ = 1
4 , we can prove that (H5) holds.

In fact,

1
2

∫ 2
3

1
2

12
(

2
3

– τ

)

dτ = 6
∫ 2

3

1
2

(
2
3

– τ

)

dτ

= 6
(

2
3
τ –

τ 2

2

)∣
∣
∣
∣

2
3

1
2

dτ

=
1

12
,

and

2 × 2
3

∫ 1

2
3

(

τ –
2
3

)

dτ =
4
3

(
τ 2

2
–

2
3
τ

)∣
∣
∣
∣

1

2
3

=
2

27
.

Obviously, 1
12 > 2

27 . Thus

1
2

∫ 2
3

1
2

12
(

2
3

– τ

)

dτ ≥ 4
3

∫ 1

2
3

(

τ –
2
3

)

dτ .

This shows that (H6) holds.
Let λ0 = 12

7

√
3

13 ( 1
8 + sin 1

8 )–1, μ0 = 16. Then it follows from Theorem 3.1 that problem

(4.1) admits two positive solutions for λ ∈ [ 12
7

√
3

13 ( 1
8 + sin 1

8 )–1, +∞), μ ∈ [16,∞).
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